matlab典型例题
- 格式:doc
- 大小:134.00 KB
- 文档页数:3
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
1-32是:图形应用篇33-66是:界面设计篇67-84是:图形处理篇85-100是:数值分析篇实例1:三角函数曲线(1)function shili01h0=figure('toolbar','none',...'position',[198 56 350 300],...'name','实例01');h1=axes('parent',h0,...'visible','off');x=-pi:0.05:pi;y=sin(x);plot(x,y);xlabel('自变量X');ylabel('函数值Y');title('SIN( )函数曲线');grid on实例2:三角函数曲线(2)function shili02h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例02');x=-pi:0.05:pi;y=sin(x)+cos(x);plot(x,y,'-*r','linewidth',1);grid onxlabel('自变量X');ylabel('函数值Y');title('三角函数');实例3:图形的叠加function shili03h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例03');x=-pi:0.05:pi;y1=sin(x);y2=cos(x);plot(x,y1,...'-*r',...x,y2,...'--og');grid onxlabel('自变量X');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制function shili04h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例04');x=0:900;a=1000;b=0.005;y1=2*x;y2=cos(b*x);[haxes,hline1,hline2]=plotyy(x,y1,x,y2,'semilogy','plot'); axes(haxes(1))ylabel('semilog plot');axes(haxes(2))ylabel('linear plot');实例5:单个轴窗口显示多个图形function shili05h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例05');t=0:pi/10:2*pi;[x,y]=meshgrid(t);subplot(2,2,1)plot(sin(t),cos(t))axis equalsubplot(2,2,2)z=sin(x)-cos(y);plot(t,z)axis([0 2*pi -2 2])subplot(2,2,3)h=sin(x)+cos(y);plot(t,h)axis([0 2*pi -2 2])subplot(2,2,4)g=(sin(x).^2)-(cos(y).^2);plot(t,g)axis([0 2*pi -1 1])实例6:图形标注function shili06h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例06');t=0:pi/10:2*pi;h=plot(t,sin(t));xlabel('t=0到2\pi','fontsize',16);ylabel('sin(t)','fontsize',16);title('\it{从0to2\pi 的正弦曲线}','fontsize',16) x=get(h,'xdata');y=get(h,'ydata');imin=find(min(y)==y);imax=find(max(y)==y);text(x(imin),y(imin),...['\leftarrow最小值=',num2str(y(imin))],...'fontsize',16)text(x(imax),y(imax),...['\leftarrow最大值=',num2str(y(imax))],...'fontsize',16)实例7:条形图形function shili07h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例07');tiao1=[562 548 224 545 41 445 745 512];tiao2=[47 48 57 58 54 52 65 48];t=0:7;bar(t,tiao1)xlabel('X轴');ylabel('TIAO1值');h1=gca;h2=axes('position',get(h1,'position'));plot(t,tiao2,'linewidth',3)set(h2,'yaxislocation','right','color','none','xticklabel',[]) 实例8:区域图形function shili08h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例08');x=91:95;profits1=[88 75 84 93 77];profits2=[51 64 54 56 68];profits3=[42 54 34 25 24];profits4=[26 38 18 15 4];area(x,profits1,'facecolor',[0.5 0.9 0.6],...'edgecolor','b',...'linewidth',3)hold onarea(x,profits2,'facecolor',[0.9 0.85 0.7],...'edgecolor','y',...'linewidth',3)hold onarea(x,profits3,'facecolor',[0.3 0.6 0.7],...'edgecolor','r',...'linewidth',3)hold onarea(x,profits4,'facecolor',[0.6 0.5 0.9],...'edgecolor','m',...'linewidth',3)hold offset(gca,'xtick',[91:95])set(gca,'layer','top')gtext('\leftarrow第一季度销量')gtext('\leftarrow第二季度销量')gtext('\leftarrow第三季度销量')gtext('\leftarrow第四季度销量')xlabel('年','fontsize',16);ylabel('销售量','fontsize',16);实例9:饼图的绘制function shili09h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例09');t=[54 21 35;68 54 35;45 25 12;48 68 45;68 54 69];x=sum(t);h=pie(x);textobjs=findobj(h,'type','text');str1=get(textobjs,{'string'});val1=get(textobjs,{'extent'});oldext=cat(1,val1{:});names={'商品一:';'商品二:';'商品三:'};str2=strcat(names,str1);set(textobjs,{'string'},str2)val2=get(textobjs,{'extent'});newext=cat(1,val2{:});offset=sign(oldext(:,1)).*(newext(:,3)-oldext(:,3))/2; pos=get(textobjs,{'position'});textpos=cat(1,pos{:});textpos(:,1)=textpos(:,1)+offset;set(textobjs,{'position'},num2cell(textpos,[3,2]))实例10:阶梯图function shili10h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=exp(-a*t).*sin(b*t);stairs(t,f)hold onplot(t,f,':*')hold offglabel='函数e^{-(\alpha*t)}sin\beta*t的阶梯图'; gtext(glabel,'fontsize',16)xlabel('t=0:10','fontsize',16)axis([0 10 -1.2 1.2])实例11:枝干图function shili11h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例11');x=0:pi/20:2*pi;y1=sin(x);y2=cos(x);h1=stem(x,y1+y2);hold onh2=plot(x,y1,'^r',x,y2,'*g');hold offh3=[h1(1);h2];legend(h3,'y1+y2','y1=sin(x)','y2=cos(x)') xlabel('自变量X');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图function shili12h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例12');winddirection=[54 24 65 84256 12 235 62125 324 34 254];windpower=[2 5 5 36 8 12 76 14 10 8];rdirection=winddirection*pi/180;[x,y]=pol2cart(rdirection,windpower); compass(x,y);desc={'风向和风力','气象台','10月1日0:00到','10月1日12:00'};gtext(desc)实例13:轮廓图function shili13h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例13');[th,r]=meshgrid((0:10:360)*pi/180,0:0.05:1); [x,y]=pol2cart(th,r);z=x+i*y;f=(z.^4-1).^(0.25);contour(x,y,abs(f),20)axis equalxlabel('实部','fontsize',16);ylabel('虚部','fontsize',16);h=polar([0 2*pi],[0 1]);delete(h)hold oncontour(x,y,abs(f),20)实例14:交互式图形function shili14h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例14');axis([0 10 0 10]);hold onx=[];y=[];n=0;disp('单击鼠标左键点取需要的点'); disp('单击鼠标右键点取最后一个点'); but=1;while but==1[xi,yi,but]=ginput(1);plot(xi,yi,'bo')n=n+1;disp('单击鼠标左键点取下一个点');x(n,1)=xi;y(n,1)=yi;endt=1:n;ts=1:0.1:n;xs=spline(t,x,ts);ys=spline(t,y,ts);plot(xs,ys,'r-');hold off实例14:交互式图形function shili14h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例14');axis([0 10 0 10]);hold onx=[];y=[];n=0;disp('单击鼠标左键点取需要的点'); disp('单击鼠标右键点取最后一个点'); but=1;while but==1[xi,yi,but]=ginput(1);plot(xi,yi,'bo')n=n+1;disp('单击鼠标左键点取下一个点');x(n,1)=xi;y(n,1)=yi;endt=1:n;ts=1:0.1:n;xs=spline(t,x,ts);ys=spline(t,y,ts);plot(xs,ys,'r-');hold off实例15:变换的傅立叶函数曲线function shili15h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例15');axis equalm=moviein(20,gcf);set(gca,'nextplot','replacechildren') h=uicontrol('style','slider','position',...[100 10 500 20],'min',1,'max',20) for j=1:20plot(fft(eye(j+16)))set(h,'value',j)m(:,j)=getframe(gcf);endclf;axes('position',[0 0 1 1]);movie(m,30)实例16:劳伦兹非线形方程的无序活动function shili15h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例15');axis equalm=moviein(20,gcf);set(gca,'nextplot','replacechildren') h=uicontrol('style','slider','position',...[100 10 500 20],'min',1,'max',20) for j=1:20plot(fft(eye(j+16)))set(h,'value',j)m(:,j)=getframe(gcf);endclf;axes('position',[0 0 1 1]);movie(m,30)实例17:填充图function shili17h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例17');t=(1:2:15)*pi/8;x=sin(t);y=cos(t);fill(x,y,'r')axis square offtext(0,0,'STOP',...'color',[1 1 1],...'fontsize',50,...'horizontalalignment','center') 例18:条形图和阶梯形图function shili18h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例18');subplot(2,2,1)x=-3:0.2:3;y=exp(-x.*x);bar(x,y)title('2-D Bar Chart')subplot(2,2,2)x=-3:0.2:3;y=exp(-x.*x);bar3(x,y,'r')title('3-D Bar Chart')subplot(2,2,3)x=-3:0.2:3;y=exp(-x.*x);stairs(x,y)title('Stair Chart')subplot(2,2,4)x=-3:0.2:3;y=exp(-x.*x);barh(x,y)title('Horizontal Bar Chart')实例19:三维曲线图function shili19h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例19');subplot(2,1,1)x=linspace(0,2*pi);y1=sin(x);y2=cos(x);y3=sin(x)+cos(x);z1=zeros(size(x));z2=0.5*z1;z3=z1;plot3(x,y1,z1,x,y2,z2,x,y3,z3)grid onxlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-D Plot')subplot(2,1,2)x=linspace(0,2*pi);y1=sin(x);y2=cos(x);y3=sin(x)+cos(x);z1=zeros(size(x));z2=0.5*z1;z3=z1;plot3(x,z1,y1,x,z2,y2,x,z3,y3)grid onxlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-D Plot')实例20:图形的隐藏属性function shili20h0=figure('toolbar','none',...'position',[200 150 450 300],...'name','实例20');subplot(1,2,1)[x,y,z]=sphere(10);mesh(x,y,z)axis offtitle('Figure1:Opaque')hidden onsubplot(1,2,2)[x,y,z]=sphere(10);mesh(x,y,z)axis offtitle('Figure2:Transparent') hidden off实例21PEAKS函数曲线function shili21h0=figure('toolbar','none',...'position',[200 100 450 450],...'name','实例21');[x,y,z]=peaks(30);subplot(2,1,1)x=x(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(x>-0.6&x<0.5);z(i,j)=nan*z(i,j);surfc(x,y,z)xlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:surfc函数形成的曲面') subplot(2,1,2)x=x(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(x>-0.6&x<0.5);z(i,j)=nan*z(i,j);surfl(x,y,z)xlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:surfl函数形成的曲面')实例22:片状图function shili22h0=figure('toolbar','none',...'position',[200 150 550 350],...'name','实例22');subplot(1,2,1)x=rand(1,20);y=rand(1,20);z=peaks(x,y*pi);t=delaunay(x,y);trimesh(t,x,y,z)hidden offtitle('Figure1:Triangular Surface Plot'); subplot(1,2,2)x=rand(1,20);y=rand(1,20);z=peaks(x,y*pi);t=delaunay(x,y);trisurf(t,x,y,z)title('Figure1:Triangular Surface Plot'); 实例23:视角的调整function shili23h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例23');x=-5:0.5:5;[x,y]=meshgrid(x);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;subplot(2,2,1)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure1')view(-37.5,30)subplot(2,2,2)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure2')view(-37.5+90,30)subplot(2,2,3)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure3')view(-37.5,60)subplot(2,2,4)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure4')view(180,0)实例24:向量场的绘制function shili24h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例24');subplot(2,2,1)z=peaks;ribbon(z)title('Figure1')subplot(2,2,2)[x,y,z]=peaks(15);[dx,dy]=gradient(z,0.5,0.5); contour(x,y,z,10)hold onquiver(x,y,dx,dy)hold offtitle('Figure2')subplot(2,2,3)[x,y,z]=peaks(15);[nx,ny,nz]=surfnorm(x,y,z);surf(x,y,z)hold onquiver3(x,y,z,nx,ny,nz)hold offtitle('Figure3')subplot(2,2,4)x=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(x,y,z,c)grid ontitle('Figure4')实例25:灯光定位function shili25h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例25');vert=[1 1 1;1 2 1;2 2 1;2 1 1;1 1 2;12 2;2 2 2;2 1 2];fac=[1 2 3 4;2 6 7 3;4 3 7 8;15 8 4;1 2 6 5;5 6 7 8];grid offsphere(36)h=findobj('type','surface');set(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.4 0.4 0.4],...'backfacelighting',...'lit')hold onpatch('faces',fac,'vertices',vert,...'facecolor','y');light('position',[1 3 2]);light('position',[-3 -1 3]); material shinyaxis vis3d offhold off实例26:柱状图function shili26h0=figure('toolbar','none',...'position',[200 50 450 450],...'name','实例26');subplot(2,1,1)x=[5 2 18 7 39 8 65 5 54 3 2];bar(x)xlabel('X轴');ylabel('Y轴');title('第一子图');subplot(2,1,2)y=[5 2 18 7 39 8 65 5 54 3 2];barh(y)xlabel('X轴');ylabel('Y轴');title('第二子图');实例27:设置照明方式function shili27h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例27');subplot(2,2,1)sphereshading flatcamlight leftcamlight rightlighting flatcolorbaraxis offtitle('Figure1')subplot(2,2,2)sphereshading flatcamlight leftcamlight rightlighting gouraudcolorbaraxis offtitle('Figure2')subplot(2,2,3)sphereshading interpcamlight rightcamlight leftlighting phongcolorbaraxis offtitle('Figure3')subplot(2,2,4)sphereshading flatcamlight leftcamlight rightlighting nonecolorbaraxis offtitle('Figure4')实例28:羽状图function shili28h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例28');subplot(2,1,1)alpha=90:-10:0;r=ones(size(alpha));m=alpha*pi/180;n=r*10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')axis([0 20 0 10])subplot(2,1,2)t=0:0.5:10;x=0.05+i;y=exp(-x*t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)function shili29h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例29');[x,y,z]=meshgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=x.*exp(-x.^2-y.^2-z.^2);grid onfor i=-2:0.5:2;h1=surf(linspace(-2,2,20),...linspace(-2,2,20),...zeros(20)+i);rotate(h1,[1 -1 1],30)dx=get(h1,'xdata');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1)slice(x,y,z,v,[-2 2],2,-2)hold onslice(x,y,z,v,dx,dy,dz)hold offaxis tightview(-5,10)drawnowend实例30:立体透视(2)function shili30h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例30');[x,y,z]=meshgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=x.*exp(-x.^2-y.^2-z.^2); [dx,dy,dz]=cylinder;slice(x,y,z,v,[-2 2],2,-2)for i=-2:0.2:2h=surface(dx+i,dy,dz);rotate(h,[1 0 0],90)xp=get(h,'xdata');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)hold onhs=slice(x,y,z,v,xp,yp,zp);axis tightxlim([-3 3])view(-10,35)drawnowdelete(hs)hold offend实例31:表面图形function shili31h0=figure('toolbar','none',...'position',[200 150 550 250],...'name','实例31');subplot(1,2,1)x=rand(100,1)*16-8;y=rand(100,1)*16-8;r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;xlin=linspace(min(x),max(x),33); ylin=linspace(min(y),max(y),33); [X,Y]=meshgrid(xlin,ylin);Z=griddata(x,y,z,X,Y,'cubic'); mesh(X,Y,Z)axis tighthold onplot3(x,y,z,'.','Markersize',20)subplot(1,2,2)k=5;n=2^k-1;theta=pi*(-n:2:n)/n;phi=(pi/2)*(-n:2:n)'/n;X=cos(phi)*cos(theta);Y=cos(phi)*sin(theta);Z=sin(phi)*ones(size(theta));colormap([0 0 0;1 1 1])C=hadamard(2^k);surf(X,Y,Z,C)axis square实例32:沿曲线移动的小球h0=figure('toolbar','none',...'position',[198 56 408 468],...'name','实例32');h1=axes('parent',h0,...'position',[0.15 0.45 0.7 0.5],...'visible','on');t=0:pi/24:4*pi;y=sin(t);plot(t,y,'b')n=length(t);h=line('color',[0 0.5 0.5],...'linestyle','.',...'markersize',25,...'erasemode','xor');k1=uicontrol('parent',h0,...'style','pushbutton',...'position',[80 100 50 30],...'string','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while 1,',...'if k==0,',...'break,',...'end,',...'if k~=0,',...'set(h,''xdata'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,',...'if i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2=uicontrol('parent',h0,...'style','pushbutton',...'position',[180 100 50 30],...'string','停止',...'callback',[...'k=0;,',...'set(e1,''string'',m),',...'p=get(h,''xdata'');,',...'q=get(h,''ydata'');,',...'set(e2,''string'',p);,',...'set(e3,''string'',q)']); k3=uicontrol('parent',h0,...'style','pushbutton',...'position',[280 100 50 30],...'string','关闭',...'callback','close');e1=uicontrol('parent',h0,...'style','edit',...'position',[60 30 60 20]);t1=uicontrol('parent',h0,...'style','text',...'string','循环次数',...'position',[60 50 60 20]);e2=uicontrol('parent',h0,...'style','edit',...'position',[180 30 50 20]); t2=uicontrol('parent',h0,...'style','text',...'string','终点的X坐标值',...'position',[155 50 100 20]); e3=uicontrol('parent',h0,...'style','edit',...'position',[300 30 50 20]); t3=uicontrol('parent',h0,...'style','text',...'string','终点的Y坐标值',...'position',[275 50 100 20]);实例33:曲线转换按钮h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例33');x=0:0.5:2*pi;y=sin(x);h=plot(x,y);grid onhuidiao=[...'if i==1,',...'i=0;,',...'y=cos(x);,',...'delete(h),',...'set(hm,''string'',''正弦函数''),',...'h=plot(x,y);,',...'grid on,',...'else if i==0,',...'i=1;,',...'y=sin(x);,',...'set(hm,''string'',''余弦函数''),',...'delete(h),',...'h=plot(x,y);,',...'grid on,',...'end,',...'end'];hm=uicontrol(gcf,'style','pushbutton',...'string','余弦函数',...'callback',huidiao);i=1;set(hm,'position',[250 20 60 20]);set(gca,'position',[0.2 0.2 0.6 0.6])title('按钮的使用')hold on实例34:栅格控制按钮h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例34');x=0:0.5:2*pi;y=sin(x);plot(x,y)huidiao1=[...'set(h_toggle2,''value'',0),',...'grid on,',...];huidiao2=[...'set(h_toggle1,''value'',0),',...'grid off,',...];h_toggle1=uicontrol(gcf,'style','togglebutton',...'string','grid on',...'value',0,...'position',[20 45 50 20],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'style','togglebutton',...'string','grid off',...'value',0,...'position',[20 20 50 20],...'callback',huidiao2);set(gca,'position',[0.2 0.2 0.6 0.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'position',[200 150 350 250],...'name','实例35');f='Please input the letter';huidiao1=[...'g=upper(f);,',...'set(h2_edit,''string'',g),',...];huidiao2=[...'g=lower(f);,',...'set(h2_edit,''string'',g),',...];h1_edit=uicontrol(gcf,'style','edit',...'position',[100 200 100 50],...'HorizontalAlignment','left',...'string','Please input the letter',...'callback','f=get(h1_edit,''string'');',...'background','w',...'max',5,...'min',1);h2_edit=uicontrol(gcf,'style','edit',...'HorizontalAlignment','left',...'position',[100 100 100 50],...'max',5,...'min',1);h1_button=uicontrol(gcf,'style','pushbutton',...'string','小写变大写',...'position',[100 45 100 20],...'callback',huidiao1);h2_button=uicontrol(gcf,'style','pushbutton',...'string','大写变小写',...'position',[100 20 100 20],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例36');x=0:0.5:2*pi;y=sin(x);h=plot(x,y);grid onhm=uicontrol(gcf,'style','popupmenu',...'string',...'sin(x)|cos(x)|sin(x)+cos(x)|exp(-sin(x))',...'position',[250 20 50 20]);set(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'switch v,',...'case 1,',...'delete(h),',...'y=sin(x);,',...'h=plot(x,y);,',...'grid on,',...'case 2,',...'delete(h),',...'y=cos(x);,',...'h=plot(x,y);,',...'grid on,',...'case 3,',...'delete(h),',...'y=sin(x)+cos(x);,',...'h=plot(x,y);,',...'grid on,',...'case 4,',...'y=exp(-sin(x));,',...'h=plot(x,y);,',...'grid on,',...'end'];set(hm,'callback',huidiao)set(gca,'position',[0.2 0.2 0.6 0.6])title('弹出式菜单的使用')实例37:滑标的使用h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例37');[x,y]=meshgrid(-8:0.5:8);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;h0=mesh(x,y,z);h1=axes('position',...[0.2 0.2 0.5 0.5],...'visible','off');htext=uicontrol(gcf,...'units','points',...'position',[20 30 45 15],...'string','brightness',...'style','text');hslider=uicontrol(gcf,...'units','points',...'position',[10 10 300 15],...'min',-1,...'max',1,...'style','slider',...'callback',...'brighten(get(hslider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例38');[x,y]=meshgrid(-8:0.5:8);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;h0=mesh(x,y,z);hlist=uicontrol(gcf,'style','listbox',...'string','default|spring|summer|autumn|winter',...'max',5,...'min',1,...'position',[20 20 80 100],...'callback',[...'k=get(hlist,''value'');,',...'switch k,',...'case 1,',...'colormap default,',...'case 2,',...'colormap spring,',...'case 3,',...'colormap summer,',...'case 4,',...'colormap autumn,',...'case 5,',...'colormap winter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例39');x=0:0.5:2*pi;y=cos(x);h=plot(x,y);grid onset(gcf,'toolbar','none')hm=uimenu('label','example');huidiao1=[...'set(hm_gridon,''checked'',''on''),',...'set(hm_gridoff,''checked'',''off''),',...'grid on'];huidiao2=[...'set(hm_gridoff,''checked'',''on''),',...'set(hm_gridon,''checked'',''off''),',...'grid off'];hm_gridon=uimenu(hm,'label','grid on',...'checked','on',...'callback',huidiao1);hm_gridoff=uimenu(hm,'label','grid off',...'checked','off',...'callback',huidiao2);实例40:UIMENU菜单的应用。
matlab程序设计例题及答案1.编写程序:计算1/3+2/5+3/7+……+10/21法一: s=0;for i=1:10s=s+i/(2*i+1); end ss =法二:sum((1:10)./(3:2:21)) ans =2.编写程序:计算1~100中即能被3整除,又能被7整除的所有数之和。
s=0;for i=1:100if mod(i,3)==0&&mod(i,7)==0 s=s+i; end,end ss =2103.画出y=n!的图,阶乘的函数自己编写,禁用MATLAB 自带的阶乘函数。
x=1:10; for i=1:10try y(i)=y(i-1)*i; catch y(i)=1; end,end plot(x,y)106123456789104.一个数恰好等于它的因子之和,这个数就称为完数。
例如,6的因子为1,2,3,而6=1+2+3,因此6就是一个完数。
编程找出20XX以内的所有完数。
g=;for n=2:20XX s=0;for r=1:n-1if mod(n,r)==0 s=s+r; end endif s==ng=[g n]; end end gg =6 28 4965.编写一个函数,模拟numel函数的功能,函数中调用size函数。
function y=numelnumel(x) m=size(x); y=m(1)*m(2);numelnumel([1 2 3;4 5 6])ans =66. 编写一个函数,模拟length函数的功能,函数中调用size函数。
function y=lengthlength(x) m=size(x);y=max(m(1),m(2));lengthlength([1 2 3;4 5 6])ans =37.求矩阵rand的所有元素和及各行平均值,各列平均值。
s=rand(5);sum=sum(sum(s)) mean2=mean(s,2) mean1=mean(s)sum =mean2 =mean1 =8.编程判断1001,1003,1007,1009,1011为素数,若不是,输出其约数。
例2.1>> muw0=1.785;>> a=0.03368;>> b=0.000221;>> t=0:20:80;>> muw=muw0./(1+a*t+b*t.^2)例2.2 数值数组和字符串的转换>> a=[1:5];>> b=num2str(a);>> a*2ans =2 4 6 8 10>> b*2ans =98 64 64 100 64 64 102 64 64 104 64 64 106例2.9比较左除和右除求解恰定方程>> rand('seed',12);>> a=rand(100)+1.e8;>> x=ones(100,1);>> b=a*x;>> cond(a)ans =5.0482e+011>> tic;x1=b'/a;t1=toct1 =0.4711>> er1=norm(x-x1')er1 =139.8326>> re1=norm(a*x1'-b)/norm(b)re1 =4.3095e-009>> tic;x1=a\b;t1=toct1 =0.0231>> tic;x1=a\b;t1=toct1 =0.0011>> er2=norm(x-x1)er2 =1.5893e-004>> re1=norm(a*x1-b)/norm(b)re1 =4.5257e-016例2.14:计算矩阵的指数>> b=magic(3);>> expm(b)ans =1.0e+006 *1.0898 1.0896 1.08971.0896 1.0897 1.08971.0896 1.0897 1.0897 例2.18:特征值条件数>> a=[-149 -50 -154;537 180 546; -27 -9 -25]a =-149 -50 -154537 180 546-27 -9 -25>> [V,D,s]=condeig(a)V =0.3162 -0.4041 -0.1391-0.9487 0.9091 0.9740-0.0000 0.1010 -0.1789D =1.0000 0 00 2.0000 00 0 3.0000例2.41 5阶多项式在【0,2pi】最小二乘拟合>> x=0:pi/20:pi/2;>> y=sin(x);>> a=polyfit(x,y,5);>> x1=0:pi/30:pi*2;>> y1=sin(x1);>> y2=a(1)*x1.^5+a(2)*x1.^4+a(3)*x1.^3+a(4)*x1.^2+a(5)*x1+a(6); >> plot(x1,y1,'b-',x1,y2,'r*')>> legend('原曲线','拟合曲线')>> axis([0,7,-1.2,4])例3.7 gradient绘制矢量图>> x=0:pi/20:pi/2;>> y=sin(x);>> a=polyfit(x,y,5);>> x1=0:pi/30:pi*2;>> y1=sin(x1);>> y2=a(1)*x1.^5+a(2)*x1.^4+a(3)*x1.^3+a(4)*x1.^2+a(5)*x1+a(6); >> plot(x1,y1,'b-',x1,y2,'r*')>> legend('原曲线','拟合曲线')>> axis([0,7,-1.2,4])>>>> [x,y]=meshgrid(-2:.2:2,-2:.2:2); >> z=x.*exp(-x.^2-y.^2);>> [px,py]=gradient(z,.2,.2);>> contour(z),>> hold on>> quiver(px,py)>> hold off例基本绘图命令rand(100,1);plot(y)例4.1 绘制如图>> x=1:0.1*pi:2*pi;>> y=sin(x);>> z=cos(x);>> plot(x,y,'--k',x,z,'-.rd')例4.5 绘制如图>> x=1:10;>> y=rand(10,1);>> bar(x,y);>> x=0:0.1*pi:2*pi;>> y=x.*sin(x);>> feather(x,y)例 4.6 绘制如图>> lim=[0,2*pi,-1,1];>> fplot('[sin(x),cos(x)]',lim)例4.7绘图如下>> x=[2,4,6,8];>> pie(x,{'math','english','chinese','music'}) 例4.9 绘图如下三维螺旋线>> x=0:pi/50:10*pi;>> y=sin(x);>> x=0:pi/50:10*pi;>> y=sin(x);>> z=cos(x);>> plot3(x,y,z);例4.10 绘图如下。
浅议matlab 的功能和应用数值计算1、编程求满足∑=>mi i 1100002的最小m 值。
解:m=1; s=0;while s<=10000s=s+2^m; m=m+1;end m=m-1;di sp('m=');disp(m);运行结果:m=132、编写一个函数,计算下面函数的值,给出标量x 的值,调用该函数后,返回y 的值。
function [y]=myfun1(x)选择一些数据测试你编写的函数。
function y=myfun1(x) if x<=0y=sin(x); elseif x>0&x<=3 y=x; else y=6-x; end⎪⎩⎪⎨⎧>+-≤<≤=3,630,0,sin )(x x x x x x x yreturn ;3、编写一个函数,给出一个向量],,[21n x x x x=,生成如下范德蒙矩阵。
function [v]=myvander(x)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---112112222121111n n n n n n x x x x x x x x x例如:>>v=myvander([2 3 4 5]) 得v=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1256427825169454321111 生成一些数据测试你写的函数。
function [v]=myvander(x) n=length(x); v(1:n)=1; for i=n+1:n*n a=i/n;r=mod(i,n); b=floor(a); if r==0 r=n; b=b-1; endv(i)=x(r)^b; endv=reshape(v,n,n)';>> myvander([1 2 3])ans =1 1 11 2 3 1 4 9>> myvander([ 1 4 6 8])ans =1 1 1 1 1 4 6 8 1 16 36 64 1 64 216 512图像的绘制1、在同一坐标系下绘制下面三个函数在t ∈[0,4π]的图象。
试题1.“数学黑洞”:任意一个4位自然数,将组成该数的各位数字重新排列,形成一个最大数和一个最小数,之后两数相减,其差仍为一个自然数。
重复进行上述运算,最终会出现一个神秘的数,请编程输出这个神秘的数。
clear;a=input('请输入一个四位正整数:');str_a=num2str(a); %将a转化为一个字符串b_min=str2double(sort(str_a)); %形成最小数b_max=str2double(sort(str_a,'descend')); %形成最大数b=b_max-b_min; %求最大数与最小数之差while (b~=a)a=b;str_a=num2str(a); %将a转化为一个字符串b_min=str2double(sort(str_a)); %形成最小数b_max=str2double(sort(str_a,'descend')); %形成最大数b=b_max-b_min; %求最大数与最小数之差endb试题2.将数字1、2、3、4、5、6填入一个2行3列的表格中,要使得每一列右边的数字比左边的数字大,每一行下面的数字比上面的数字大。
请编写程序求出按此要求可有几种填写方法。
a(1)=1;a(6)=6;count=0; %用来计数b=perms('2345'); %产生2345的全排列[m,n]=size(b);for i=1:mtemp=b(i,:);a(2)=str2double(temp(1));a(3)=str2double(temp(2));a(4)=str2double(temp(3));a(5)=str2double(temp(4));if ((a(4)>a(2))&&(a(4)>a(3))&&(a(5)>a(3)))count=count+1;c=reshape(a,2,3); %将a向量转化为2*3矩阵输出disp(c);endenddisp(['共有',num2str(count),'种填写方法']); %输出填写方法的种数试题3.编写成绩排序程序。
一、概述Matlab是一种强大的工程计算软件,在工程领域有着广泛的应用。
对于学习Matlab程序设计来说,通过例题学习是非常有效的方法。
通过实际的例题练习,可以帮助学生更深入地理解Matlab的基本原理和应用技巧。
本文将介绍几个常见的Matlab程序设计例题,并进行详细的分析和讲解,希望能够帮助读者加深对Matlab程序设计的理解。
二、例题一:矩阵运算题目:编写一个Matlab程序,实现两个任意大小的矩阵相加的运算。
1.我们需要定义两个任意大小的矩阵A和矩阵B,可以通过rand函数生成随机矩阵,也可以手动输入矩阵的元素。
2.编写Matlab程序,使用矩阵的加法运算符“+”进行矩阵相加操作。
3.输出矩阵相加的结果,并进行验证和检查。
通过这个例题,可以加深对Matlab矩阵运算的理解,包括矩阵的定义、矩阵相加的操作和结果输出的方法。
三、例题二:函数绘图题目:编写一个Matlab程序,绘制sin函数的曲线图像。
1.我们需要定义sin函数的自变量范围和取值步长,可以使用linspace函数生成自变量的取值范围。
2.编写Matlab程序,调用sin函数计算自变量对应的函数值。
3.接下来,使用plot函数绘制sin函数的曲线图像,并设置图像的标题、坐标轴标签等其他参数。
4.输出绘制好的sin函数曲线图像,并进行观察和分析。
通过这个例题,可以了解Matlab中函数绘图的基本方法,包括自变量的定义、函数值的计算和图像的绘制等操作。
四、例题三:数值积分题目:编写一个Matlab程序,实现对指定函数在指定区间上的数值积分。
1.我们需要定义积分的目标函数和积分区间,在Matlab中可以使用function定义目标函数,也可以手动输入目标函数和积分区间。
2.编写Matlab程序,调用Matlab内置的数值积分函数(如quad、quadl等)进行数值积分的计算。
3.输出数值积分的结果,并与解析解进行比较和分析。
通过这个例题,可以了解Matlab中数值积分的计算方法,包括目标函数的定义、积分区间的设定和数值积分函数的调用。
一.对以下数据分别作二次,三次多项式拟合,并画出图形.x=1:16;y=[4,6.4,8,8.4,9.28,9.5,9.7,9.86,10,10.2,10.32,10.42,10.5, 10.55,10.58,10.6];答:程序如下(1)x=(1:16);y=erf(x);p=polyfit(x,y,2);f=polyval(p,x);plot(x,y,x,f);结果p=-0.00100.02020.9096(2)y=[4,6.4,8,8.4,9.28,9.5,9.7,9.86,10,10.2,10.32,10.42,10.5, 10.55,10.58,10.6];y=erf(x);p=polyfit(x,y,3)f=polyval(p,x);plot(x,y,x,f)结果P=0.0002-0.00710.06280.8404二.在[0,4pi]画sin(x),cos(x)(在同一个图象中);其中cos(x)图象用红色小圆圈画.并在函数图上标注“y=sin(x)”,“y=cos(x)”,x轴,y轴,标题为“正弦余弦函数图象”.答:程序如下x=[0:720]*pi/180;plot(x,sin(x),x,cos(x),'ro');x=[2.5;7];y=[0;0];s=['y=sin(x)';'y=cos(x)'];text(x,y,s);xlabel('正弦余弦函数图象'),ylabel('正弦余弦函数图象')图形如下三.选择一个单自由度线性振动系统模型,自定质量、弹簧刚度、阻尼、激振力等一组参数,分别编程(m 文件)计算自由和强迫振动时的响应,并画出振动曲线图。
(要求画出该单自由度线性振动系统模型图)其中质量为m=1000kg,弹性刚度k=48020N/m,阻尼c=1960N.s/m,激振力f(t)=0.阻尼比ζ的程序p=1960/(2*sqrt(48020*1000))求得p=0.1414而p为阻尼比ζ强迫振动时的响应程序g =tf([-101],[48020048020*1.9848020]);bode(g)图形g =tf([001],[0001]);bode(g)振动曲线图程序:函数文件function dx =rigid(t,x)dx =zeros(2,1);dx(1)=x(2);dx(2)=(-48020*x(1)-1960*x(2))/1000;命令文件options =odeset('RelTol',1e-4,'AbsTol',[1e-41e-4]);[T,X]=ode45(@rigid,[012],[11],options);plot(T,X(:,1),'-')其图形如下024681012-6-5-4-3-2-11234单自由度线性强迫振动系统模型图其中质量为m=1000kg,弹性刚度k=48020N/m,阻尼c=1960N.s/m,f(t)=cos(3*pi*t)振动曲线图程序:函数文件function dx=rigid(t,x)dx=zeros(2,1);dx(1)=x(2);dx(2)=(-48020*x(1)-1960*x(2))/1000+cos(3*pi*t);命令文件options=odeset('RelTol',1e-4,'AbsTol',[1e-41e-4]);[T,X]=ode45(@rigid,[020],[11],options);plot(T,X(:,1),'-')力等一组参数,建立Simulink仿真模型框图进行仿真分析。
以下各题均要求编程实现,并将程序贴在题目下方。
1.从键盘输入任意个正整数,以0结束,输出那些正整数中的素数。
clc;clear;zzs(1)=input('请输入正整数:');k=1;n=0;%素数个数while zzs(k)~=0flag=0;%是否是素数,是则为1for yz=2:sqrt(zzs(k))%因子从2至此数平方根if mod(zzs(k),yz)==0flag=1;break;%非素数跳出循环endendif flag==0&zzs(k)>1%忽略0和1的素数n=n+1;sus(n)=zzs(k);endk=k+1;zzs(k)=input('请输入正整数:');enddisp(['你共输入了' num2str(k-1) '个正整数。
它们是:'])disp(zzs(1:k-1))%不显示最后一个数0if n==0disp('这些数中没有素数!')%无素数时显示elsedisp('其中的素数是:')disp(sus)end2.若某数等于其所有因子(不含这个数本身)的和,则称其为完全数。
编程求10000以内所有的完全数。
clc;clear;wq=[];%完全数赋空数组for ii=2:10000yz=[];%ii 的因子赋空数组for jj=2:ii/2 %从2到ii/2考察是否为ii 的因子if mod(ii,jj)==0yz=[yz jj];%因子数组扩展,加上jjendendif ii==sum(yz)+1wq=[wq ii];%完全数数组扩展,加上iiendenddisp(['10000以内的完全数为:' num2str(wq)])%输出3.下列这组数据是美国1900—2000年人口的近似值(单位:百万)。
(1) 若.2c bt at y t y ++=的经验公式为与试编写程序计算出上式中的a 、b 、c;(2) 若.bt ae y t y =的经验公式为与试编写程序计算出上式中的a 、b;(3) 在一个坐标系下,画出数表中的散点图(红色五角星),c bx ax y ++=2中拟合曲线图(蓝色实心线),以及.bt ae y = (黑色点划线)。
例1.1 分别绘制函数和的曲线。
x=-2*pi:pi/180:2*pi;plot(x,2.^(-abs(x)),':',x,sin(x));例1.2 求方程2x5-3x3 +71x2-9x+13=0的全部根。
p=[2,0,-3,71,-9,13];x=roots(p)例1.3 求解线性方程组。
a=[2,3,-1;8,2,3;45,3,9];b=[2;4;23];x=inv(a)*b例1.4 求积分quad('x.*log(1+x)',0,1)例2.2 利用M文件建立MYMAT矩阵。
(1)启动有关编辑程序或MATLAB文本编辑器(见第4章),并输入待建矩阵:MYMAT=[101,102,103,104,105,106,107,108,109;201,202,203,204,205,206,207,208,209;301,302,303,304,305,306,307,308,309]例2.3 建立5阶方阵A,判断A的元素是否能被3整除。
A =[24,35,13,22,63;23,39,47,80,80; ...90,41,80,29,10;45,57,85,62,21;37,19,31,88,76]P=rem(A,3)==0例2.5 建立矩阵A,然后找出在[10,20]区间的元素的位置。
(1) 建立矩阵A。
A=[4,15,-45,10,6;56,0,17,-45,0](2) 找出大于4的元素的位置。
find(A>=10 & A<=20)ans =367例2.6 建立一个字符串向量,然后对该向量做如下处理:(1)取第1~5个字符组成的子字符串。
(2)将字符串倒过来重新排列。
(3)将字符串中的小写字母变成相应的大写字母,其余字符不变。
(4)统计字符串中小写字母的个数。
命令如下:ch='ABc123d4e56Fg9';subch=ch(1:5)subch =ABc12revch=ch(end:-1:1)revch =9gF65e4d321cBAk=find(ch>='a'&ch<='z');ch(k)=ch(k)-('a'-'A');char(ch)ans =ABC123D4E56FG9length(k)ans =4例3.2 建立随机矩阵:(1) 在区间[20,50]内均匀分布的5阶随机矩阵。
一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧。
初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势。
解:程序代码:>〉 x=linspace (0,2*pi,600); t=sin (x)。
/(cos (x )+eps );plot(x ,t);title (’tan (x )');axis ([0,2*pi ,-50,50]); 图象:程序代码: 〉〉 x=linspace (0,2*pi,100); ct=cos (x)。
/(sin(x)+eps ); plot(x,ct );title(’cot(x)');axis ([0,2*pi ,—50,50]); 图象:cot(x)4在区间]1,1[-画出函数xy 1sin =的图形。
解:程序代码:>> x=linspace (-1,1,10000);y=sin(1。
/x ); plot (x,y ); axis ([-1,1,—2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>〉 t=linspace(0,2*pi,100); plot(cos(t ).*cos (5*t ),sin(t )。
*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:〉〉 t=0:0.01:2*pi ; r=exp (t/10);polar(log(t+eps ),log (r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形。
matlab十个简单案例编写1. 求解线性方程组线性方程组是数学中常见的问题之一,而MATLAB提供了用于求解线性方程组的函数。
例如,我们可以使用"linsolve"函数来求解以下线性方程组:2x + 3y = 74x - 2y = 2代码如下所示:A = [2, 3; 4, -2];B = [7; 2];X = linsolve(A, B);disp(X);解释:上述代码定义了一个2x2的矩阵A和一个2x1的矩阵B,分别表示线性方程组的系数矩阵和常数向量。
然后,使用linsolve函数求解线性方程组,结果存储在X中,并通过disp函数打印出来。
运行代码后,可以得到x=2和y=1的解。
2. 求解非线性方程除了线性方程组外,MATLAB还可以用于求解非线性方程。
例如,我们可以使用"fzero"函数求解以下非线性方程:x^2 + 2x - 3 = 0代码如下所示:fun = @(x) x^2 + 2*x - 3;x0 = 0;x = fzero(fun, x0);disp(x);解释:上述代码定义了一个匿名函数fun,表示非线性方程。
然后,使用fzero函数传入fun和初始值x0来求解非线性方程的根,并通过disp函数打印出来。
运行代码后,可以得到x=1的解。
3. 绘制函数图像MATLAB提供了强大的绘图功能,可以帮助我们可视化函数的形状和特征。
例如,我们可以使用"plot"函数绘制以下函数的图像:y = cos(x)代码如下所示:x = linspace(0, 2*pi, 100);y = cos(x);plot(x, y);解释:上述代码首先使用linspace函数生成一个从0到2π的100个等间距点的向量x,然后计算对应的cos值,并存储在向量y中。
最后,使用plot函数将x和y作为横纵坐标绘制出函数图像。
运行代码后,可以看到cos函数的周期性波动图像。
matlab编程经典例题
以下是一些经典的 MATLAB 编程例题:
1. 编写一个程序,计算一个数列的前 N 个斐波那契数(斐波那契数列是指前两个数为 1,后续每个数是前两个数之和)。
2. 编写一个程序,计算一个数的阶乘。
3. 编写一个程序,计算两个矩阵的乘积。
4. 编写一个程序,找到一个数组中的最大元素。
5. 编写一个程序,检查一个字符串是否是回文。
6. 编写一个程序,为给定的一组数据计算均值、中位数和标准差。
7. 编写一个程序,将一个字符串中的所有元音字母替换成大写字母。
8. 编写一个程序,计算一个数列的前 N 个素数(素数是指只能被 1 和自身整除的数)。
9. 编写一个程序,实现冒泡排序算法,对一个数组进行排序。
10. 编写一个程序,计算一个数的平方根。
以上是一些经典的 MATLAB 编程例题,你可以根据自己的实际需要选择其中的一个或几个进行练习和编程。
1、设⎥⎦⎤⎢⎣⎡++=)1(sin35.0cos2xxxy,把x=0~2π间分为101点,画出以x为横坐标,y为纵坐标的曲线。
第一题的matlab源程序:①考虑cos(x)为一个整体,然后乘以中括号里面的全部x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式plot(x,y)%画出图形图如下:②考虑对整体求解cos,先求x乘以括号中的部分x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式plot(x,y) %画出图形图如下:2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。
并求该矩阵全体数的平均值和均方差。
第二题的matlab源程序如下:R1=randn(8,6) %产生正态分布随机矩阵R1 =1.0933 -0.7697 1.5442 -0.1924 1.4193 0.21571.1093 0.3714 0.0859 0.8886 0.2916 -1.1658-0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.14800.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049-1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223-1.1135 0.0326 2.3505 0.4882 0.6966 2.5855-0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.66691.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值aver =0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差a =1.0819 0.8093 1.3456 0.8233 0.8079 1.2150aver1=(sum(R1(:)))./48 %全体数的平均值aver1 =0.0950b=std(R1(:)) %全体数的均方差即标准差b =1.01033、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。
4 编写函数文件f17.m实现求一个向量所有元素的和(不能用sum)。
再编写一个测试脚本t17.m,随机生成一个4行5列的矩阵A,调用f17求A每列的和function sum=f17(A)a=0;b=size(A);for i=1:b(2)a=a+A(i);endsum=a;A=rand(4,5)sum=[];for j=1:5b=A(1:end,j);b=b';m=f17(b);sum=[sum,m];enddisp(sum);2 有1020个西瓜,第一天卖一半多两个,以后每天卖剩下的一半多两个,问几天后可以卖完?编写求出天数的脚本文件.day=0;x1=1020;while(x1>=0)b=round(x1/2);x2=x1-(b+2);x1=x2;day=day+1;endfprintf('%d\n',day);case {1,3,5,7,8,10,12}day_of_year = day_of_year + 31;case {4,6,9,11}day_of_year= day_of_year + 30;case 2day_of_year = day_of_year + 28 + leap_day;endendfprintf('The date %2d/%2d/%4d is day of year %d.\n', month, day, year,day_of_year);例2,商场购物,100件以下,不优惠,100~199件95折,200~399件90折,400~799件85折,800~1499件80折,1500件以上,75折。
输入所购货物的单价、件数,求实际付款数目。
编写脚本文件,用if语句switch语句实现。
%ifclc;price=input('Input price:'); num=input('Input num:'); if num>=1500d=0.75;elseif num>=800d=0.8;elseif num>=400d=0.85;elseif num>=200d=0.90;elseif num>=100d=0.95;elsed=1;endsum=num*price*d%switchclc;price=input('Input price:'); num=input('Input num:'); sel=fix(num/100);switch selcase 0d=1;case 1d=0.95;case {2,3}d=0.90;case {4,5,6,7}d=0.85;case {8,9,10,11,12,13,14}d=0.80;otherwised=0.75;endsum=num*price*d例3,用1、2、3、4共4个不同的个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?clc;p=[];count=0;for i=1:4for j=1:4for k=1:4if i~=j & i~=k & j~=kn=i*100+j*10+k;p=[p,n];count=count+1;endendendenddisp('互不重复的三位数分别是:');pdisp(['这样的三位数共有',num2str(count),'个'])例4,有1020个桃子,第一天卖一半多两个,以后每天卖剩下的一半多两个,问几天后可以卖完?编写脚本文件求出天数。
一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧.初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势.解:程序代码:>> x=linspace(0,2*pi,600);t=sin(x)./(cos(x)+eps);plot(x,t);title('tan(x)');axis ([0,2*pi,-50,50]);图象:程序代码:>> x=linspace(0,2*pi,100);ct=cos(x)./(sin(x)+eps);plot(x,ct);title('cot(x)');axis ([0,2*pi,-50,50]);图象:4在区间]1,1[-画出函数xy 1sin =的图形. 解:程序代码:>> x=linspace(-1,1,10000);y=sin(1./x);plot(x,y);axis([-1,1,-2,2])图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y t t t x 3cos sin )(5cos cos )(的图形: 解:程序代码:>> t=linspace(0,2*pi,100);plot(cos(t).*cos(5*t),sin(t).*cos(3*t));图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形.解:程序代码:>> t=0::2*pi;r=exp(t/10);polar(log(t+eps),log(r+eps));图象:分段函数作图10 作出符号函数x y sgn =的图形.解:程序代码:>> x=linspace(-100,100,10000);y=sign(x);plot(x,y);axis([-100 100 -2 2]);函数性质的研究12研究函数)3(log 3)(35x e x x f x -++=在区间]2,2[-上图形的特征.解:程序代码:>> x=linspace(-2,2,10000);y=x.^5+3*exp(x)+log(3-x)/log(3);plot(x,y);图象:实验2 极限与连续(基础实验)实验目的 通过计算与作图, 从直观上揭示极限的本质,加深对极限概念的理解. 掌握用 Matlab 画散点图, 以及计算极限的方法. 深入理解函数连续的概念,熟悉几种间断点的图形 特征,理解闭区间上连续函数的几个重要性质.作散点图14分别画出坐标为)10,,2,1(),4,(),,(3222Λ=+i i i i i i 的散点图, 并画出折线图.解:散点图程序代码:>> i=1:10;plot(i,i.^2,'.')或:>> x=1:10;y=x.^2;for i=1:10;plot(x(i),y(i),'r')hold onend折线图程序代码:>> i=1:10;plot(i,i.^2,'-x')程序代码:>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'.')>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'-x')数列极限的概念16通过动画观察当∞→n 时数列21n a n =的变化趋势.解:程序代码:>> n=1:100;an=(n.^2);n=1:100;an=1./(n.^2);n=1:100;an=1./(n.^2);for i=1:100plot(n(1:i),an(1:i)),axis([0,100,0,1])pauseend图象:函数的极限18在区间]4,4[-上作出函数xx x x x f --=339)(的图形, 并研究 )(lim x f x ∞→ 和 ).(lim 1x f x → 解:作出函数x x x x x f --=339)(在区间]4,4[-上的图形 >> x=-4::4;y=(x.^3-9*x)./(x.^3-x+eps);plot(x,y)从图上看,()f x 在x →1与x →∞时极限为0两个重要极限20计算极限 ⎪⎭⎫ ⎝⎛+→x x x x x sin 11sin lim )1(0 x x e x 2lim )2(+∞→ 30sin tan lim )3(xx x x -→ x x x 0lim )4(+→ x x x ln cot ln lim )5(0+→ x x x ln lim )6(20+→ xx x x x x sin cos sin lim )7(20-→ 125523lim )8(323+++-∞→x x x x x x x x e e x x x sin 2lim )9(0----→ x x x x cos 110sin lim )10(-→⎪⎭⎫ ⎝⎛解:(1)>> limit(x*sin(1/x)+1/x*sin(x))ans =1(2) >> limit(x^2/exp(x),inf)ans = 0(3) >> limit((tan(x)-sin(8))/x^3)ans =NaN(4) >> limit(x^x,x,0,'right')ans =1(5) >> limit(log(cot(x))/log(x),x,0,'right')ans =-1(6) >> limit(x^2*log(x),x,0,'right')ans =0(7) >> limit((sin(x)-x.*cos(x))./(x.^2.*sin(x)),x,0)ans =1/3(8) >> limit((3*x.^3-2*x.^2+5)/(5*x.^3+2*+1),x,inf)ans =3/5(9) >> limit((exp(x)-exp(-x)-2*x)./(x-sin(x)))ans =2(10) >> limit((sin(x)/x).^(1/(1-cos(x))))ans =exp(-1/3)实验3 导数(基础实验)实验目的 深入理解导数与微分的概念, 导数的几何意义. 掌握用Matlab 求导数与高 阶导数的方法. 深入理解和掌握求隐函数的导数, 以及求由参数方程定义的函数的导数的方法. 导数概念与导数的几何意义22作函数71232)(23+-+=x x x x f 的图形和在1-=x 处的切线.解:作函数71232)(23+-+=x x x x f 的图形程序代码:>> syms x;>> y=2*x^3+3*x^2-12*x+7;>> diff(y)ans =6*x^2+6*x-12>> syms x;y=2*x^3+3*x^2-12*x+7;>> f=diff(y)f =6*x^2+6*x-12>> x=-1;f1=6*x^2+6*x-12f1 =-12>> f2=2*x^3+3*x^2-12*x+7f2 =20>> x=linspace(-10,10,1000);y1=2*x.^3+3*x.^2-12*x+7;y2=-12*(x+1)+20;plot(x,y1,'r',x,y2,'g')求函数的导数与微分24求函数bx ax x f cos sin )(=的一阶导数. 并求.1⎪⎭⎫ ⎝⎛+'b a f 解:求函数bx ax x f cos sin )(=的一阶导数程序代码:>> syms a b x y;y= sin(a*x)*cos(b*x);D1=diff(y,x,1)答案:D1 =cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b 求.1⎪⎭⎫ ⎝⎛+'b a f 程序代码:>> x=1/(a+b);>> cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b答案:ans =cos(a/(a+b))*a*cos(b/(a+b))-sin(a/(a+b))*sin(b/(a+b))*b拉格朗日中值定理26对函数),2)(1()(--=x x x x f 观察罗尔定理的几何意义.(1) 画出)(x f y =与)(x f '的图形, 并求出1x 与.2x解:程序代码:>> syms x;f=x*(x-1)*(x-2);f1=diff(f)f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1)>> solve(f1)ans =1+1/3*3^(1/2)1-1/3*3^(1/2)>> x=linspace(-10,10,1000);y1=x.*(x-1).*(x-2);y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1);plot(x,y1,x,y2)(2)画出)(x f y =及其在点))(,(11x f x 与))(,(22x f x 处的切线.程序代码:>> syms x;>> f=x*(x-1)*(x-2);>> f1=diff(f)f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1)>> solve(f1)ans =1+1/3*3^(1/2)1-1/3*3^(1/2)>> x=linspace(-3,3,1000);>> y1=x.*(x-1).*(x-2);>> y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1);>> plot(x,y1,x,y2)>> hold on>> x=1+1/3*3^(1/2);>> yx1=x*(x-1)*(x-2)yx1 =>> x=1-1/3*3^(1/2);>> yx2=x*(x-1)*(x-2)yx2 =x=linspace(-3,3,1000);yx1 =*x.^0;yx2 =*x.^0;plot(x,yx1,x,yx2)28求下列函数的导数: (1) 31+=x e y ;解:程序代码:>> syms x y;y=exp((x+1)^3);D1=diff(y,1)答案:D1 =3*(x+1)^2*exp((x+1)^3) (2) )]42ln[tan(π+=x y ; 解:程序代码:>> syms x;y=log(tan(x/2+pi/4));D1=diff(y,1)答案:D1 =(1/2+1/2*tan(1/2*x+1/4*pi)^2)/tan(1/2*x+1/4*pi) (3) x x y sin ln cot 212+=; 解:程序代码:>> syms x;y=1/2*(cot(x))^2+log(sin(x));D1=diff(y,1)答案:D1 =cot(x)*(-1-cot(x)^2)+cos(x)/sin(x) (4) xy 2arctan 21=. 解:程序代码:>> y=sqrt(2)*atan(sqrt(2)/x);>> D1=diff(y,1)答案:D1 =-2/x^2/(1+2/x^2)一元函数积分学与空间图形的画法实验4 一元函数积分学(基础实验)实验目的 掌握用Matlab 计算不定积分与定积分的方法. 通过作图和观察, 深入理解 定积分的概念和思想方法. 初步了解定积分的近似计算方法. 理解变上限积分的概念. 提高应用定积分解决各种问题的能力.不定积分计算30求.)1(532⎰-dx x x解:程序代码:>> syms x y;>> y=x^2*(1-x^3)^5;>> R=int(y,x)答案:R =-1/18*x^18+1/3*x^15-5/6*x^12+10/9*x^9-5/6*x^6+1/3*x^332求.arctan 2⎰xdx x解:程序代码:>> syms x y;>> y=x^2*atan(x);>> R=int(y,x)答案:R =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1)定积分计算 34 求.)(102⎰-dx x x解:程序代码:>> syms x y;>> y=x-x^2;>> R=int(y,x,0,1)答案: R =1/6变上限积分36 画出变上限函数⎰x dt t t 02sin 及其导函数的图形.解:程序代码:>> syms x y t;>> y=t*sin(t^2);>> R=int(y,x,0,x)答案:R =t*sin(t^2)*x程序代码:>> DR=diff(R,x,1)答案:DR =t*sin(t^2)实验5 空间图形的画法(基础实验)实验目的 掌握用Matlab 绘制空间曲面和曲线的方法. 熟悉常用空间曲线和空间曲面 的图形特征,通过作图和观察, 提高空间想像能力. 深入理解二次曲面方程及其图形.一般二元函数作图38作出函数2214y x z ++=的图形. 解:程序代码:>> x=linspace(-5,5,500);[x,y]=meshgrid(x);z=4./(1+x.^2+y.^2);mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')40作出函数)94cos(22y x z +=的图形.解:程序代码:>> x=-10::10;[x,y]=meshgrid(x);z=cos(4*x.^2+9*y.^2);mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')讨论:坐标轴选取范围不同时,图形差异很大,对本题尤为明显,如右图为坐标轴[-1,1]二次曲面42作出单叶双曲面1941222=-+z y x 的图形.(曲面的参数方程为 ,tan 3,cos sec 2,sin sec u z v u y v u x === (.20,2/2/πππ≤≤<<-v u ))解:程序代码:>> v=0:pi/100:2*pi;>> u=-pi/2:pi/100:pi/2;>> [U,V]=meshgrid(u,v);>> x=sec(U).*sin(V);>> y=2*sec(U).*cos(V);>> z=3*tan(U);>> surf(x,y,z)44 可以证明: 函数xy z =的图形是双曲抛物面. 在区域22,22≤≤-≤≤-y x 上作出它的图形.解:程序代码:>> x=-2::2;[x,y]=meshgrid(x);>> z=x.*y;>> mesh(x,y,z);46 画出参数曲面]2,001.0[],4,0[)5/2/ln(tan cos sin sin sin cos ∈∈⎪⎩⎪⎨⎧++===v u u v v z vu y v u x π 的图形.解:程序代码: >> v=::2;>> u=0:pi/100:4*pi;>> [U,V]=meshgrid(u,v);>> x=cos(U).*sin(V);>> y=sin(U).*sin(V);>> z=cos(V)+log(tan(V/2)+U/5);>> mesh(x,y,z);空间曲线48 作出空间曲线)60(2,sin ,cos π≤≤===t t z t t y t t x 的图形.解:程序代码:>> syms t;ezplot3(t*cos(t),t*sin(t),2*t,[0,6*pi])50绘制参数曲线 ⎪⎪⎩⎪⎪⎨⎧=+==t z t y t x arctan 211cos 2的图形. 解:程序代码:>> t=-2*pi:pi/100:2*pi;x=cos(t).*cos(t);y=1./(1+2*t);z=atan(t);plot3(x,y,z);grid;xlabel('x'),ylabel('y'),zlabel('z')多元函数微积分实验6 多元函数微分学(基础实验)实验目的 掌握利用Matlab 计算多元函数偏导数和全微分的方法, 掌握计算二元 函数极值和条件极值的方法. 理解和掌握曲面的切平面的作法. 通过作图和观察, 理解二元 函数的性质、方向导数、梯度和等高线的概念.求多元函数的偏导数与全微分52设),(cos )sin(2xy xy z +=求.,,,222yx z x z y z x z ∂∂∂∂∂∂∂∂∂ 解:程序代码:>> syms x y;S=sin(x*y)+(cos(x*y))^2;D1=diff(S,'x',1);D2=diff(S,'y',1);D3=diff(S,'x',2);D4=diff(S,'y',2);D1,D2,D3,D4答案: D1 = cos(x*y)*y-2*cos(x*y)*sin(x*y)*yD2 = cos(x*y)*x-2*cos(x*y)*sin(x*y)*xD3 =-sin(x*y)*y^2+2*sin(x*y)^2*y^2-2*cos(x*y)^2*y^2D4 = -sin(x*y)*x^2+2*sin(x*y)^2*x^2-2*cos(x*y)^2*x^2实验7 多元函数积分学(基础实验)实验目的掌握用Matlab 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.计算重积分54计算,2dxdy xyD ⎰⎰ 其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.解:程序代码:>> syms x y;int(int(x*y^2,x,2-y,sqrt(y)),y,1,2)答案:ans =193/120重积分的应用56求旋转抛物面224y x z --=在Oxy 平面上部的面积.S解:程序代码:>> int(2*pi*r,r,0,2)答案: ans =4*pi无穷级数与微分方程实验8 无穷级数(基础实验)实验目的观察无穷级数部分和的变化趋势,进一步理解级数的审敛法以及幂级数部分和对函数的 逼近. 掌握用Matlab 求无穷级数的和, 求幂级数的收敛域, 展开函数为幂级数以及展 开周期函数为傅里叶级数的方法.数项级数58(1) 观察级数∑∞=121n n 的部分和序列的变化趋势. 解:程序代码:for i=1:100 s=0;for n=1:i s=s+1/n^2;endplot(i,s,'.');hold on;end(2) 观察级数∑∞=11n n 的部分和序列的变化趋势. >> for i=1:100 s=0;for n=1:i s=s+1/n;endplot(i,s,'.'); hold on;end60 求∑∞=++123841n n n 的值. 解:程序代码:>> syms n;score=symsum(1/(4*n^2+8*n+3),1,inf)答案: score =1/6函数的幂级数展开62求x arctan 的5阶泰勒展开式.>> syms x;>> T5=taylor(atan(x),6)答案:T5 =x-1/3*x^3+1/5*x^5实验9 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用Matlab 求微分方程及方程组解的常用命令和方法.求解微分方程64求微分方程 22x xe xy y -=+'的通解.解:程序代码:>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x')答案:y =(1/2*x^2+C1)*exp(-x^2)66求微分方程x e y y y x 2cos 52=+'-''的通解.解:程序代码:>> y=dsolve('D2y-2*Dy+5*y=exp(x)*cos(2*x)','x')答案: y =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/4*exp(x)*sin(2*x)*x68求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dx t 在初始条件0,100====t t y x 下的特解. 解:程序代码:>> [x,y]=dsolve('Dx+x+2*y-exp(t)','Dy-x-y','x(0)=1','y(0)=0','t')答案: x = cos(t)y = 1/2*sin(t)-1/2*cos(t)+1/2*exp(t)70求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 解:程序代码:>> syms x yy=dsolve('Dy-2*y/(x+1)-(x+1)^(5/2)','x')答案:y =(2/3*(x+1)^(3/2)+C1)*(x+1)^2做积分曲线由>> syms x yx=linspace(-5,5,100);C=input('请输入C 的值:');y=(2/3*(x+1).^(3/2)+C).*(x+1).^2;plot(x,y)例如对应有: 请输入C 的值:2 请输入C 的值:20矩阵运算与方程组求解实验10 行列式与矩阵实验目的掌握矩阵的输入方法. 掌握利用Matlab 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.矩阵A 的转置函数Transpose[A]72 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛411365243271的转置. 解:程序代码: >> A=[1,7,2;3,4,2;5,6,3;1,1,4];>> Sove=A'答案:Sove =1 3 5 17 4 6 12 23 4矩阵线性运算73设,291724,624543⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=B A 求.24,A B B A -+ 解:程序代码:>> A=[3,4,5;4,2,6];B=[4,2,7;1,9,2];S1=A+BS2=4*B-2*A答案:S1 =7 6 125 11 8S2 =10 0 18-4 32 -474设,148530291724,36242543⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=mb ma 求矩阵ma 与mb 的乘积. 解:程序代码:>> ma=[3,4,5,2;4,2,6,3];>> mb=[4,2,7;1,9,2;0,3,5;8,4,1];>> Sove=ma*mb答案:Sove =32 65 5642 56 65矩阵的乘法运算75设,101,530291724⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A 求AB 与,A B T 并求.3A解:程序代码:>> A=[4 2 7;1 9 2;0 3 5];B=[1;0;1];>> AB=A*BAB =1135>> BTA=B'*ABTA =4 5 12>> A3=A^3A3 =119 660 555141 932 44454 477 260求方阵的逆76 设,5123641033252312⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 求.1-A 解:程序代码:>> A=[2,1,3,2;5,2,3,3;0,1,4,6;3,2,1,5];Y=inv(A)答案:Y =77 设,221331317230,5121435133124403⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=B A 求.1B A - 解:程序代码:>> A=[3 0 4 4 ;2 1 3 3 ;1 5 3 4;1 2 1 5];B=[0 3 2 ;7 1 3;1 3 3 ;1 2 2];Solve=A'*B答案:Solve =16 16 1714 20 2225 26 2830 37 3978 解方程组⎪⎩⎪⎨⎧-=-+=+-=++.2442,63,723z y x z y x z y x解:程序代码:>> A=[3 2 1;1 -1 3;2 4 -4];b=[7 6 -2];>> A\b'答案:ans =求方阵的行列式79 求行列式 .3351110243152113------=D 解:程序代码:>> A=[3,1,-1,2;-5,1,3,-4;2,0,1,-1;1,-5,3,-3];D=det(A)答案:D =4080求.11111111111122222222d d d d c c c c b b b b a a a a D ++++= 解:程序代码:>> syms a b c d;D=[a^2+1/a^2 a 1/a 1;b^2+1/b^2 b 1/b 1;c^2+1/c^2 c 1/c 1;d^2+1/d^2 d 1/d 1]; det(D)答案:ans =-(-c*d^2*b^3+c^2*d*b^3-c^3*d^2*a+c^3*d*a^2*b^4+c*d^2*a^3-c^3*d^2*a*b^4-c^2*d*a^3-c*d^2*b^3*a^4+c^2*d*b^3*a^4+c^3*d^2*b*a^4-c^3*d*b^2*a^4-c^2*d^3*b*a^4+c*d^3*b^2*a ^4+c*d^2*a^3*b^4-c^2*d*a^3*b^4+c^3*d^2*b-c^3*d*b^2-c^2*d^3*b+c*d^3*b^2+c^3*d*a^2+c^2*d^3*a-c*d^3*a^2-b*d^2*a^3+b^2*d*a^3+b^3*d^2*a-b^3*d*a^2-b^2*d^3*a+b*d^3*a^2+b*c^2*a^3-b^2*c*a^3-b^3*c^2*a+b^3*c*a^2+b^2*c^3*a-b*c^3*a^2+c^2*d^3*a*b^4-c*d^3*a^2*b^4-b*d^2*a^3*c^4+b^2*d*a^3*c^4+b^3*d^2*a*c^4-b^3*d*a^2*c^4-b^2*d^3*a*c^4+b*d^3*a^2*c^4+b*c^2*a^3*d^4-b^2*c*a^3*d^4-b^3*c^2*a*d^4+b^3*c*a^2*d^4+b^2*c^3*a*d^4-b*c^3*a^2*d^4)/a^2/c^2/d^2/b^281 计算范德蒙行列式.1111145444342413534333231252423222154321x x x x x x x x x x x x x x x x x x x x 解:程序代码:>> syms x1 x2 x3 x4 x5;>> A=[1,1,1,1,1;x1,x2,x3,x4,x5;x1^2,x2^2,x3^2,x4^2,x5^2;x1^3,x2^3,x3^3,x4^3,x5^3;x1^4,x2^4,x3^4,x4^4,x5^4];>> DC=det(A);>> DS=simple(DC)答案:DS =(-x5+x4)*(x3-x5)*(x3-x4)*(-x5+x2)*(x2-x4)*(x2-x3)*(-x5+x1)*(x1-x4)*(x1-x3)*(x1-x2)82 设矩阵 ,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A 求.),(|,|3A A tr A 解:程序代码:>> A=[3,7,2,6,-4;7,9,4,2,0;11,5,-6,9,3;2,7,-8,3,7;5,7,9,0,-6];>> D=det(A),T=trace(A),A3=A^3答案:D =11592T =3A3=726 2062 944 294 -3581848 3150 26 1516 2281713 2218 31 1006 4041743 984 -451 1222 384801 2666 477 745 -125向量的内积83 求向量}3,2,1{=u 与}0,1,1{-=v 的内积.解:程序代码:>> u=[1 2 3];v=[1 -1 0];solve=dot(u,v)答案:solve =-184设,001001⎪⎪⎪⎭⎫⎝⎛=λλλA 求.10A 一般地?=k A (k 是正整数).解:程序代码:>> syms r;>> A=[r,1,0;0,r,1;0,0,r];>> A^10答案:ans =[ r^10, 10*r^9, 45*r^8][ 0, r^10, 10*r^9][ 0, 0, r^10]85.求⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++a a a aa 1111111111111111111111111的逆. 解:程序代码:>> syms aA=[1+a,1,1,1,1;1,1+a,1,1,1;1,1,1+a,1,1;1,1,1,1+a,1;1,1,1,1,1+a];solve=inv(A)答案:solve =[ 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5)][ -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5)]实验11 矩阵的秩与向量组的极大无关组实验目的 学习利用Matlab 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组.求矩阵的秩86 设,815073*********⎪⎪⎪⎭⎫ ⎝⎛-------=M 求矩阵M 的秩.解:程序代码:>> M=[3,2,-1,-3,-2;2,-1,3,1,-3;7,0,5,-1,-8];R=rank(M)答案:R=2向量组的秩87求向量组)0,3,0,2(),2,5,4,0(),1,1,2,1(231=--=-=ααα的秩.解:程序代码:>> A=[1,2,-1,1;0,-4,5,-2;2,0,3,0];R=rank(A)答案:R =288向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关? 解:由>> A=[1 1 2 3;1 -1 1 1;1 3 4 5;3 1 5 7];rank(A)ans = 3即rank(A)=3 小于阶数489向量组)3,1,1(),2,1,3(),7,2,2(321=-==ααα是否线性相关?解:由>> A3=[2,2,7;3,-1,2;1,1,3];R=rank(A3)得 R = 3即rank(A3)=3 等于阶数3故向量组线性无关。
【例】水资源系统规划调度常应用系统分析方法处理,以一个水资源分配问题为例,讨论线性规划问题。
例:有甲、乙两个水库同时给A、B、C三个城市供水,甲水库的日供水量为28万m3/d,乙水库的日供水量为35万m3/d,三个城市的日需水量分别为A≥10万m3/d,B≥15万m3/d,C≥20 万m3/d。
由于水库与各城市的距离不等,输水方式不同,因此单位水费也不同。
各单位水费分别为c11=2000元/万m3、c12=3000元/万m3、c13=4000元/万m3、c21=4500元/万m3、c22=3500元/万m3、c23=3000元/万m3。
试作出在满足对三个城市供水的情况下,输水费用最小的方案。
设甲水库向三城市日供水量分别为x ll、x12、x13,乙水库向三城市日供水量分别为x2l、x22、x23。
建立约束条件:
x11 + x21 ≥10
x12 + x22 ≥15
x13 + x23 ≥20
x11 + x12 + x13 ≤28
x21 + x22 + x23 ≤35
x11,x12,x13,x21,x22,x23,≥0
目标函数:
fmin=c11x11+c12x12+c13x13+c21x21+c22x22+c23x23
这样的问题单纯求解是非常繁琐的,而MLTLAB求解是十分简单的,只要在命令行输入:
》f=[0.2 0.3 0.4 0.45 0.35 0.3]’;
》A=[-1 0 0 -1 0 0;0 -1 0 0 -1 0;0 0 -1 0 0 -1;1 1 1 0 0 0;
0 0 0 1 1 1];
》B=[-10 -15 -20 28 35];
》lb=zeros(6,1);
》[X,Zmin]=linprog(f,A,B,[],[],lb,[])
最后得出x=[10 15 0 0 0 20]万m3,Zmin=12.5万元。