matlab例题
- 格式:doc
- 大小:49.50 KB
- 文档页数:5
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
matlab程序设计例题及答案1.编写程序:计算1/3+2/5+3/7+……+10/21法一: s=0;for i=1:10s=s+i/(2*i+1); end ss =法二:sum((1:10)./(3:2:21)) ans =2.编写程序:计算1~100中即能被3整除,又能被7整除的所有数之和。
s=0;for i=1:100if mod(i,3)==0&&mod(i,7)==0 s=s+i; end,end ss =2103.画出y=n!的图,阶乘的函数自己编写,禁用MATLAB 自带的阶乘函数。
x=1:10; for i=1:10try y(i)=y(i-1)*i; catch y(i)=1; end,end plot(x,y)106123456789104.一个数恰好等于它的因子之和,这个数就称为完数。
例如,6的因子为1,2,3,而6=1+2+3,因此6就是一个完数。
编程找出20XX以内的所有完数。
g=;for n=2:20XX s=0;for r=1:n-1if mod(n,r)==0 s=s+r; end endif s==ng=[g n]; end end gg =6 28 4965.编写一个函数,模拟numel函数的功能,函数中调用size函数。
function y=numelnumel(x) m=size(x); y=m(1)*m(2);numelnumel([1 2 3;4 5 6])ans =66. 编写一个函数,模拟length函数的功能,函数中调用size函数。
function y=lengthlength(x) m=size(x);y=max(m(1),m(2));lengthlength([1 2 3;4 5 6])ans =37.求矩阵rand的所有元素和及各行平均值,各列平均值。
s=rand(5);sum=sum(sum(s)) mean2=mean(s,2) mean1=mean(s)sum =mean2 =mean1 =8.编程判断1001,1003,1007,1009,1011为素数,若不是,输出其约数。
一、必做题:
1.已知典型二阶系统的传递函数为2
22210)(ωωω++=s k s s G ,试绘制当100ωπ=时,8,7,6,5,4,3,2,1=k 时的系统在单位阶跃相应,要求编制程序实现,并在同一图面中绘制要有必要的文字标志说明和图形编辑。
2.试用Simulink构建三相整流逆变电路。
要求:给出整流桥桥臂电流和电压,整流桥输出电压和逆变桥输入电压,逆变滤波以后的输出电压,并有必要的分析和说明。
第二题 、选做题
5、已知某控制系统的开环传递函数,)
9)(5()2()()(2+++=s s s s k s H s G ,要求绘制系统正反馈、负反馈时系统的根轨迹,并判断系统的稳定性有何区别。
要求编制相应的程序实现。
7、已知如图1所示的电路中,电源
电压10)(=t u s V 时,L =2H ,Ω=1R 求解
图中的电流波形。
假设初始电流
A i 2)0(=,试用Simulink 工具箱搭建模型求出电流波形。
15.用Simulink构建如图8所示的电路,其中R1=5 Ώ,R2=3 Ώ,R3=4 Ώ,R4=2 Ώ,R5=1 Ώ,求电流I。
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv)12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
Matlab例题汇总:【例2-4】两个矩阵分别为[1 2 3;4 5 6;7 8 9]和[1 1 1;2 2 2;3 3 3],求两者相加的和。
a=[1 2 3;4 5 6;7 8 9];b=[1 1 1;2 2 2;3 3 3];c=a+b【例2-5】两个矩阵分别为[1 2 3;4 5 6;7 8 9]和[1 1 1],阶数不同,求两者相减的差。
a=[1 2 3;4 5 6;7 8 9];b=[1 1 1];c=a-b【例2-6】两个矩阵相乘,矩阵a为,矩阵b为,分别计算c=a*b和d=b*a。
a=[1 2 3;4 5 6;7 8 9];b=[1 2 3];c=a*b% 将第三句c=a*b改成d=b*a,再运行一次% 【例2-7】两个数组相乘,数组a为,数组b为,求两数组的乘法。
% 在命令窗口输入两数组,计算c=a.*b:a=[1 2 3];b=[4 5 6];c=a.*b% 【例2-8】两个矩阵相除,矩阵a和b均为3×3阶矩阵。
a=rand(3)b=rand(3)c=a/bd=b\a% 【例2-9】数组a为,数组b为,求两数组的除法。
a=[1 2 3];b=[4 5 6];c=a.\bc=b./a% 【例2-10】矩阵a为[1 2;3 4],求它的1.5次幂。
a=[1 2;3 4];c=a^1.5% 【例2-11】数组a为[1 2 3],数组b为[4 5 6],求数组的幂c=a.^b。
a=[1 2 3];b=[4 5 6];c=a.^b% 【例2-12】数组a为[1 2 3],求数组的幂c=a.^2。
a=[1 2 3];c=a.^2% 【例2-13】数组a为[1 2 3],求数组的幂运算c=2.^a。
a=[1 2 3];c=2.^a% 【例2-14】矩阵a为[1 2 3;4 5 6;7 8 9],计算a的转置。
a=[1 2 3;4 5 6;7 8 9];c=a'% 【例2-15】矩阵a为[1+2i 3+4i],计算a的转置。
一.对以下数据分别作二次,三次多项式拟合,并画出图形.x=1:16;y=[4,6.4,8,8.4,9.28,9.5,9.7,9.86,10,10.2,10.32,10.42,10.5, 10.55,10.58,10.6];答:程序如下(1)x=(1:16);y=erf(x);p=polyfit(x,y,2);f=polyval(p,x);plot(x,y,x,f);结果p=-0.00100.02020.9096(2)y=[4,6.4,8,8.4,9.28,9.5,9.7,9.86,10,10.2,10.32,10.42,10.5, 10.55,10.58,10.6];y=erf(x);p=polyfit(x,y,3)f=polyval(p,x);plot(x,y,x,f)结果P=0.0002-0.00710.06280.8404二.在[0,4pi]画sin(x),cos(x)(在同一个图象中);其中cos(x)图象用红色小圆圈画.并在函数图上标注“y=sin(x)”,“y=cos(x)”,x轴,y轴,标题为“正弦余弦函数图象”.答:程序如下x=[0:720]*pi/180;plot(x,sin(x),x,cos(x),'ro');x=[2.5;7];y=[0;0];s=['y=sin(x)';'y=cos(x)'];text(x,y,s);xlabel('正弦余弦函数图象'),ylabel('正弦余弦函数图象')图形如下三.选择一个单自由度线性振动系统模型,自定质量、弹簧刚度、阻尼、激振力等一组参数,分别编程(m 文件)计算自由和强迫振动时的响应,并画出振动曲线图。
(要求画出该单自由度线性振动系统模型图)其中质量为m=1000kg,弹性刚度k=48020N/m,阻尼c=1960N.s/m,激振力f(t)=0.阻尼比ζ的程序p=1960/(2*sqrt(48020*1000))求得p=0.1414而p为阻尼比ζ强迫振动时的响应程序g =tf([-101],[48020048020*1.9848020]);bode(g)图形g =tf([001],[0001]);bode(g)振动曲线图程序:函数文件function dx =rigid(t,x)dx =zeros(2,1);dx(1)=x(2);dx(2)=(-48020*x(1)-1960*x(2))/1000;命令文件options =odeset('RelTol',1e-4,'AbsTol',[1e-41e-4]);[T,X]=ode45(@rigid,[012],[11],options);plot(T,X(:,1),'-')其图形如下024681012-6-5-4-3-2-11234单自由度线性强迫振动系统模型图其中质量为m=1000kg,弹性刚度k=48020N/m,阻尼c=1960N.s/m,f(t)=cos(3*pi*t)振动曲线图程序:函数文件function dx=rigid(t,x)dx=zeros(2,1);dx(1)=x(2);dx(2)=(-48020*x(1)-1960*x(2))/1000+cos(3*pi*t);命令文件options=odeset('RelTol',1e-4,'AbsTol',[1e-41e-4]);[T,X]=ode45(@rigid,[020],[11],options);plot(T,X(:,1),'-')力等一组参数,建立Simulink仿真模型框图进行仿真分析。
以下各题均要求编程实现,并将程序贴在题目下方。
1.从键盘输入任意个正整数,以0结束,输出那些正整数中的素数。
clc;clear;zzs(1)=input('请输入正整数:');k=1;n=0;%素数个数while zzs(k)~=0flag=0;%是否是素数,是则为1for yz=2:sqrt(zzs(k))%因子从2至此数平方根if mod(zzs(k),yz)==0flag=1;break;%非素数跳出循环endendif flag==0&zzs(k)>1%忽略0和1的素数n=n+1;sus(n)=zzs(k);endk=k+1;zzs(k)=input('请输入正整数:');enddisp(['你共输入了' num2str(k-1) '个正整数。
它们是:'])disp(zzs(1:k-1))%不显示最后一个数0if n==0disp('这些数中没有素数!')%无素数时显示elsedisp('其中的素数是:')disp(sus)end2.若某数等于其所有因子(不含这个数本身)的和,则称其为完全数。
编程求10000以内所有的完全数。
clc;clear;wq=[];%完全数赋空数组for ii=2:10000yz=[];%ii 的因子赋空数组for jj=2:ii/2 %从2到ii/2考察是否为ii 的因子if mod(ii,jj)==0yz=[yz jj];%因子数组扩展,加上jjendendif ii==sum(yz)+1wq=[wq ii];%完全数数组扩展,加上iiendenddisp(['10000以内的完全数为:' num2str(wq)])%输出3.下列这组数据是美国1900—2000年人口的近似值(单位:百万)。
(1) 若.2c bt at y t y ++=的经验公式为与试编写程序计算出上式中的a 、b 、c;(2) 若.bt ae y t y =的经验公式为与试编写程序计算出上式中的a 、b;(3) 在一个坐标系下,画出数表中的散点图(红色五角星),c bx ax y ++=2中拟合曲线图(蓝色实心线),以及.bt ae y = (黑色点划线)。
一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧。
初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势。
解:程序代码:>〉 x=linspace (0,2*pi,600); t=sin (x)。
/(cos (x )+eps );plot(x ,t);title (’tan (x )');axis ([0,2*pi ,-50,50]); 图象:程序代码: 〉〉 x=linspace (0,2*pi,100); ct=cos (x)。
/(sin(x)+eps ); plot(x,ct );title(’cot(x)');axis ([0,2*pi ,—50,50]); 图象:cot(x)4在区间]1,1[-画出函数xy 1sin =的图形。
解:程序代码:>> x=linspace (-1,1,10000);y=sin(1。
/x ); plot (x,y ); axis ([-1,1,—2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>〉 t=linspace(0,2*pi,100); plot(cos(t ).*cos (5*t ),sin(t )。
*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:〉〉 t=0:0.01:2*pi ; r=exp (t/10);polar(log(t+eps ),log (r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形。
1、设⎥⎦⎤⎢⎣⎡++=)1(sin35.0cos2xxxy,把x=0~2π间分为101点,画出以x为横坐标,y为纵坐标的曲线。
第一题的matlab源程序:①考虑cos(x)为一个整体,然后乘以中括号里面的全部x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式plot(x,y)%画出图形图如下:②考虑对整体求解cos,先求x乘以括号中的部分x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式plot(x,y) %画出图形图如下:2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。
并求该矩阵全体数的平均值和均方差。
第二题的matlab源程序如下:R1=randn(8,6) %产生正态分布随机矩阵R1 =1.0933 -0.7697 1.5442 -0.1924 1.4193 0.21571.1093 0.3714 0.0859 0.8886 0.2916 -1.1658-0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.14800.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049-1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223-1.1135 0.0326 2.3505 0.4882 0.6966 2.5855-0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.66691.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值aver =0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差a =1.0819 0.8093 1.3456 0.8233 0.8079 1.2150aver1=(sum(R1(:)))./48 %全体数的平均值aver1 =0.0950b=std(R1(:)) %全体数的均方差即标准差b =1.01033、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。
matlab仿真实例100题Matlab是一种强大的数学软件,广泛应用于科学计算、数据分析和工程仿真等领域。
在学习和使用Matlab的过程中,通过实例的方式进行仿真练习是一种非常有效的学习方法。
下面将给出100个Matlab仿真实例题目,帮助读者更好地掌握Matlab的使用。
1. 编写一个程序,计算并输出1到100之间所有奇数的和。
2. 编写一个程序,计算并输出1到100之间所有偶数的乘积。
3. 编写一个程序,计算并输出1到100之间所有素数的个数。
4. 编写一个程序,计算并输出1到100之间所有整数的平方和。
5. 编写一个程序,计算并输出1到100之间所有整数的立方和。
6. 编写一个程序,计算并输出1到100之间所有整数的阶乘和。
7. 编写一个程序,计算并输出1到100之间所有整数的倒数和。
8. 编写一个程序,计算并输出1到100之间所有整数的平均值。
9. 编写一个程序,计算并输出1到100之间所有整数的中位数。
10. 编写一个程序,计算并输出1到100之间所有整数的标准差。
11. 编写一个程序,计算并输出1到100之间所有整数的方差。
12. 编写一个程序,计算并输出1到100之间所有整数的最大值。
13. 编写一个程序,计算并输出1到100之间所有整数的最小值。
15. 编写一个程序,计算并输出1到100之间所有整数的平方根和。
16. 编写一个程序,计算并输出1到100之间所有整数的立方根和。
17. 编写一个程序,计算并输出1到100之间所有整数的对数和。
18. 编写一个程序,计算并输出1到100之间所有整数的指数和。
19. 编写一个程序,计算并输出1到100之间所有整数的正弦和。
20. 编写一个程序,计算并输出1到100之间所有整数的余弦和。
21. 编写一个程序,计算并输出1到100之间所有整数的正切和。
22. 编写一个程序,计算并输出1到100之间所有整数的双曲正弦和。
23. 编写一个程序,计算并输出1到100之间所有整数的双曲余弦和。
matlab编程经典例题
以下是一些经典的 MATLAB 编程例题:
1. 编写一个程序,计算一个数列的前 N 个斐波那契数(斐波那契数列是指前两个数为 1,后续每个数是前两个数之和)。
2. 编写一个程序,计算一个数的阶乘。
3. 编写一个程序,计算两个矩阵的乘积。
4. 编写一个程序,找到一个数组中的最大元素。
5. 编写一个程序,检查一个字符串是否是回文。
6. 编写一个程序,为给定的一组数据计算均值、中位数和标准差。
7. 编写一个程序,将一个字符串中的所有元音字母替换成大写字母。
8. 编写一个程序,计算一个数列的前 N 个素数(素数是指只能被 1 和自身整除的数)。
9. 编写一个程序,实现冒泡排序算法,对一个数组进行排序。
10. 编写一个程序,计算一个数的平方根。
以上是一些经典的 MATLAB 编程例题,你可以根据自己的实际需要选择其中的一个或几个进行练习和编程。
MATLAB例题考试及答案例1.1 分别绘制函数和的曲线。
x=-2*pi:pi/180:2*pi;plot(x,2.^(-abs(x)),':',x,sin(x));例1.2 求方程2x5-3x3 +71x2-9x+13=0的全部根。
p=[2,0,-3,71,-9,13];x=roots(p)例1.3 求解线性方程组。
a=[2,3,-1;8,2,3;45,3,9];b=[2;4;23];x=inv(a)*b例1.4 求积分quad('x.*log(1+x)',0,1)例2.2 利用M文件建立MYMAT矩阵。
(1)启动有关编辑程序或MATLAB文本编辑器(见第4章),并输入待建矩阵:MYMAT=[101,102,103,104,105,106,107,108,109;201,202,203,204,205,206,207,208,209;301,302,303,304,305,306,307,308,309]例2.3 建立5阶方阵A,判断A的元素是否能被3整除。
A =[24,35,13,22,63;23,39,47,80,80; ...90,41,80,29,10;45,57,85,62,21;37,19,31,88,76]P=rem(A,3)==0例2.5 建立矩阵A,然后找出在[10,20]区间的元素的位置。
(1) 建立矩阵A。
A=[4,15,-45,10,6;56,0,17,-45,0](2) 找出大于4的元素的位置。
find(A>=10 & A<=20)ans =367例2.6 建立一个字符串向量,然后对该向量做如下处理:(1)取第1~5个字符组成的子字符串。
(2)将字符串倒过来重新排列。
(3)将字符串中的小写字母变成相应的大写字母,其余字符不变。
(4)统计字符串中小写字母的个数。
命令如下:ch='ABc123d4e56Fg9';subch=ch(1:5)subch =ABc12revch=ch(end:-1:1)revch =9gF65e4d321cBAk=find(ch>='a'&ch<='z');ch(k)=ch(k)-('a'-'A');char(ch)ans =ABC123D4E56FG9length(k)ans =4例3.2 建立随机矩阵:(1) 在区间[20,50]内均匀分布的5阶随机矩阵。
【例】水资源系统规划调度常应用系统分析方法处理,以一个水资源分配问题为例,讨论线性规划问题。
例:有甲、乙两个水库同时给A、B、C三个城市供水,甲水库的日供水量为28万m3/d,乙水库的日供水量为35万m3/d,三个城市的日需水量分别为A≥10万m3/d,B≥15万m3/d,C≥20 万m3/d。
由于水库与各城市的距离不等,输水方式不同,因此单位水费也不同。
各单位水费分别为c11=2000元/万m3、c12=3000元/万m3、c13=4000元/万m3、c21=4500元/万m3、c22=3500元/万m3、c23=3000元/万m3。
试作出在满足对三个城市供水的情况下,输水费用最小的方案。
设甲水库向三城市日供水量分别为x ll、x12、x13,乙水库向三城市日供水量分别为x2l、x22、x23。
建立约束条件:x11 + x21 ≥10x12 + x22 ≥15x13 + x23 ≥20x11 + x12 + x13 ≤28x21 + x22 + x23 ≤35x11,x12,x13,x21,x22,x23,≥0目标函数:fmin=c11x11+c12x12+c13x13+c21x21+c22x22+c23x23这样的问题单纯求解是非常繁琐的,而MLTLAB求解是十分简单的,只要在命令行输入:》f=[0.2 0.3 0.4 0.45 0.35 0.3]’;》A=[-1 0 0 -1 0 0;0 -1 0 0 -1 0;0 0 -1 0 0 -1;1 1 1 0 0 0;0 0 0 1 1 1];》B=[-10 -15 -20 28 35];》lb=zeros(6,1);》[X,Zmin]=linprog(f,A,B,[],[],lb,[])最后得出x=[10 15 0 0 0 20]万m3,Zmin=12.5万元。
填空题1. MATLAB于1984年由美国Mathworks公司推出,其后每年更新(两次。
2. MATLAB是一种以(矩阵)运算为基础的交互式程序设计语言。
3. MATLAB具有卓越的数值计算能力和符号计算、文字处理、可视化建模仿真和实时控制等众多功能,其每个变量代表一个(矩阵),每个元素都看作(复数)。
4.通过命令(help)、(lookfor),可以查找所有命令或函数的使用方法。
5.执行语句a=1:2:10,得到的一维数组是(1 3 5 7 9).6.执行语句b=linspace(1,10,10)后,一维数组b包含(10)个元素,最大值是10)7.函数rem()的功能是取(余)数。
8.若p=[1 0 0;1 1 0],则p|〜p=([1 1 1;1 1 1]).(注:填空时请用本题的p的方式表示结果)9.若p=[1 0 0;1 1 0],则all(p)=([1 0 0]).10.矩阵的加减运算,要求相加减的矩阵阶数相同。
若A=[1 2 3 4;2 3 1 8],则执行语句:[n,m]=size(A),则n=(2 ),m=(4 ).11.对于一维矩阵,求其长度的函数是(length()).12.数组和数组之间的运算,尤其是对于乘除运算和乘方运算,如果采用点方式进行计算,表明是数组的(元素)之间的运算关系。
13.求矩阵运算A*B时,要求在维度上,A的(列)数与B的(行)数相等。
二、判断题1.MATLAB只有一种数据类型,一种标准的输入输出语句,不需编译,可直接运行。
(对2.MATLAB的特殊常量是一些预选定义好的数值变量。
(对3.MATLAB变量名不区分大小写。
(错4.i是特殊常量。
(对5.NAN是非数。
(对6.MATLAB中所有的变量都表示一个矩阵或一个向量。
(对7.MATLAB中变量不需要先定义后使用,会自动根据实际赋值的类型对变量类型进行定义。
(对8.clc命令可以从内存中删除一个、多个和所有变量。
1、 在MATLAB 中用Jacobi 迭代法讨论线性方程组,1231231234748212515x x x x x x x x x -+=⎧⎪-+=-⎨⎪-++=⎩(1)给出Jacobi 迭代法的迭代方程,并判定Jacobi 迭代法求解此方程组是否收敛。
(2)若收敛,编程求解该线性方程组.解(1):A=[4 -1 1;4 —8 1;-2 1 5] %线性方程组系数矩阵A =4 -1 1 4 -8 1 —2 1 5>> D=diag(diag(A))D =4 0 0 0 —8 0 0 0 5〉〉 L=—tril (A,-1) % A 的下三角矩阵L =0 0 0 —4 0 0 2 —1 0〉〉U=-triu(A,1)% A的上三角矩阵U =0 1 —10 0 —10 0 0B=inv(D)*(L+U)% B为雅可比迭代矩阵B =0 0.2500 —0。
25000.5000 0 0.12500。
4000 —0.2000 0〉〉r=eigs(B,1)%B的谱半径r =0。
3347 〈1Jacobi迭代法收敛。
(2)在matlab上编写程序如下:A=[4 —1 1;4 -8 1;—2 1 5];〉〉b=[7 —21 15]';>〉x0=[0 0 0]’;〉〉[x,k]=jacobi(A,b,x0,1e—7)x =2。
00004.00003。
0000k =17附jacobi迭代法的matlab程序如下:function [x,k]=jacobi(A,b,x0,eps)% 采用Jacobi迭代法求Ax=b的解%A为系数矩阵%b为常数向量%x0为迭代初始向量%eps为解的精度控制max1= 300; %默认最多迭代300,超过300次给出警告D=diag(diag(A));%求A的对角矩阵L=-tril(A,—1); %求A的下三角阵U=—triu(A,1); %求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;k=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;k=k+1;if(k〉=max1)disp(’迭代超过300次,方程组可能不收敛’);return;endend2、设有某实验数据如下:(1)在MATLAB中作图观察离散点的结构,用多项式拟合的方法拟合一个合适的多项式函数;(2)在MATLAB中作出离散点和拟合曲线图。
五、某公司投资2000万元建成一条生产线。
投产后,在时刻t 的追加成本和追加收益分别为3/225)(t t t G ++=(百万元/年),3/218)(t t H -=(百万元/年)。
试确定该生产线在何时停产可获最大利润?最大利润是多少?
提示:利用函数⎰=T
G H t R 0t 20-d ))t (-)t (()((百万元),由于H (t )-G (t )单调
下降,所以H (t )=G (t )时,R (t )取得最大利润。
5.解:构造函数f(t)=H(t)-G(t)=13-t-3t 2/3=0 ;
令t 1/3=x,则f(t)=-t 3-3t 2+13
可得矩阵P=[-1,-3,0,13]
求最佳生产时间的源程序如下:
p=[-1,-3,0,13];
x=roots(p);
t=x.^3
运行结果如下:
t =
3.6768 +21.4316i
3.6768 -21.4316i
4.6465
再分别将t 的三个值带入函数f(t),比较大小后,得到最大利润与最佳生产时间。
求最大利润的程序代码如下:
① t=3.6768 +21.4316i;
x=0:0.01:t;
y=13-x-3*x.^(2/3);
trapz(x,y)
运行结果: ans =
25.2583
② t=3.6768 -21.4316i;
x=0:0.01:t;
y=13-x-3*x.^(2/3);
trapz(x,y)
运行结果: ans =
25.2583
③ t=4.6465;
x=0:0.01:t;
y=13-x-3*x.^(2/3);
trapz(x,y)
运行结果: ans =
26.3208
比较以上三组数据,可知最佳生产时间t=4.6465年,可获得的最大利润 26.3208(百万元/年)。
clear; close;
fplot('18-t^(2/3)',[0,20]);grid on;hold on;
fplot('5+t+2*t^(2/3)',[0,20],'r');hold off;
%发现t 约为4
[t,f,h]=fsolve('18-x^(2/3)-5-x-2*x^(2/3)',4)
%求得t=4.6465
t=linspace(0,t,100); y=18-t.^(2/3)-5-t-2*t.^(2/3); trapz(t,y)-20
%最大利润6.3232(百万元)
习题六
1. (科学计算)
A=randn(10,5)
(1)mean(A) ;均值std(A) ;标准方差
(2)max(max(A)) ;最大元素min(min(A)) ;最小元素(3)B=sum(A,2) ;A每行元素的和sum(B) ;A全部元素之和(4)sort(A) ;A的每列元素按升序排列
sort(A,2,’descend’) ;A的每行元素按将序排列
3.
x=[165 123 150 123 141];
y=[187 126 172 125 148];
P=polyfit(x,y,3)
P =
1.0e+003 *
-0.0000 0.0013 -0.1779 8.4330
所以它的线性拟合曲线为:p(x)=1.3x2—177.9x+8433
5.
(1)
建立函数文件:
function f=fxy(u)
x=u(1);y=u(2);
f=3.*x.^2+2*x.*y+y.^2
在命令窗口中输入以下命令:
[U,fmin]=fminsearch('fxy',[1,1])
结果:
U =
1.0e-004 *
-0.0675 0.1715
fmin =
1.9920e-010
(2)
f=inline('-sin(x)-cos(x.^2)'); fmax=fminbnd(f,0,pi) fmax =
0.7310
9.
(1)
矩阵求逆法:
A=[2 3 5;3 7 4;1 -7 1];
b=[10;3;5];
x=inv(A)*b
x =
-1.8060
-0.5373
3.0448
矩阵除法法:
A=[2 3 5;3 7 4;1 -7 1];
b=[10;3;5];
x=A\b
x =
-1.8060
-0.5373
3.0448
矩阵分解法:
A=[2 3 5;3 7 4;1 -7 1];
b=[10;3;5];
[L,U]=lu(A);
x=U\(L\b)
x =
-1.8060
-0.5373
3.0448
(2)方法同(1)
11.
(1)
f=inline('x-sin(x)./x');
x=fzero(f,0.5)
x =
0.8767
(2)
f=inline('(sin(x).^2).*exp(-0.1.*x)-0.5.*abs(x)');
x=fzero(f,1.5)
x =
1.6738
实验八第三题
%第三题
h=6:2:18;
x=6.5:2:17.5;
t1=[18,20,22,25,30,28,24];
t2=[15,19,24,28,34,32,30];
T1=spline(h,t1,x)
T2=spline(h,t2,x)
实验九第三题
绘图
硅谷公司
%第三题
n=input('请输入员工工号:');
h=input('该员工工作时数是:');
if h>120
x=(h-120)*84*(1+0.15)+120*84;
elseif h<60
x=h*84-700;
else
x=h*84;
end
disp([num2str(n),'号员工','的应发工资为',num2str(x)]); 实验三第一题
%第一题程序一
x=[-5.0,-3.0,1.0,2.0,2.5,3.0,5.0];
y=[]; %建立存放所有y值的矩阵for x0=x
if x0<0&x0~=-3
y=[y,x0*x0+x0-6];
elseif x0>=0&x0<5&x0~=2&x0~=3
y=[y,x0*x0-5*x0+6];
else
y=[y,x0*x0-x0-1];
end
end
x %输出所有x
y %输出所有y
%第一题程序二
x=[-5,-3,1,2,2.5,3,5];
y=[];
for a=1:7
if x(a)<0&x(a)~=-3
y=[y,(x(a))^2+x(a)-6];
elseif x(a)>=0&x(a)<5&x(a)~=2&x(a)~=3
y=[y,(x(a))^2-5*x(a)+6];
else
y=[y,x(a)*x(a)-x(a)-1];
end
end。