高考模拟复习试卷试题模拟卷158
- 格式:doc
- 大小:1.65 MB
- 文档页数:20
2023年高考全国考前模拟卷语文试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。
古代诗文创作发达,亦有各种创作范式。
在各种范式中,至今仍被很多人奉为圭臬的是主张苦心孤诣,所谓“语不惊人死不休”(杜甫)、“一诗千改始心安”(袁枚)、“为文须千斟万酌,以求一是”(郑燮)。
然而,还有一种与此完全相反的范式,其反对精心酝酿构思,反对千番推敲、万般润色,反对苦心布置经营,总之,反对一切理性思维主导下的绸缪和创造。
这种创作范式可用“直出即是”四字提要钩玄,其中包含着文学创作的源始范式和后起的一种颇有深意的创作理念。
萧子显为“直出即是”创作范式的实践者和倡导者之一。
他言自己创作的情形:“每有制作,特寡思功,须其自来,不以力构。
”萧子显因何主张“直出即是”?值得关注的是其背后的文学观念和逻辑。
《南齐书·文学传论》:“文章者,盖情性之风标,神明之律吕也。
”萧子显主于“情”的文章观可上溯到儒家的文学本体论——“诗言志”。
与这种文学本体论相应的文学发生论,以“感物”为创作灵感、创作冲动产生的原因。
感物过程中萌生的情思因于物、因于观物者之心,情思之所因会随时空的变换而变换,甚至转瞬便不再,因而,从感物到下笔成文不能有理性思维的过程。
惟有“直出”,文章才会成为“情性之风标,神明之律吕”。
由此可见,“直出即是”实为儒家文学本体论内在要求的创作范式。
如何“直出即是”?“感物”既为创作冲动产生的原因,对世界敞开怀抱、观世界就是必要的主体活动。
至于观照的世界,儒家文学论偏重人伦社会,如《诗大序》中的“明乎得失之迹,伤人伦之废,哀刑政之苛”;萧子显则偏重于自然风光,如其描述的催生创作冲动的感物:“若乃登高目极,临水送归,风动春朝,月明秋夜,早雁初莺,开花落叶,有来斯应,每不能已也。
模拟高考各科试题及答案一、语文试题及答案1. 阅读下面一段文言文,完成(1)-(3)题。
(1)下列词语解释不正确的一项是:A. 觥筹交错(酒杯和酒筹相互错杂)B. 箪食瓢饮(用瓢盛水喝)C. 夙兴夜寐(早起晚睡)D. 箪食壶浆(用壶盛酒)答案:D(2)下列句子中,加点词的意义和用法相同的一项是:A. 吾谁与归B. 吾从子游C. 吾与点也D. 吾谁欺答案:A(3)翻译文中划线的句子。
句子:不以物喜,不以己悲。
翻译:不因为物质的得失而感到高兴或悲伤。
2. 现代文阅读,回答问题。
(1)文章中“他”为什么坚持要回家?答案:因为他思念家乡和亲人。
(2)文章中“她”对“他”的态度是怎样的?答案:她对“他”既关心又有些无奈。
(3)文章的主题是什么?答案:文章的主题是思乡之情。
二、数学试题及答案1. 已知函数f(x)=2x^2-3x+1,求f(2)的值。
答案:f(2)=2*(2^2)-3*2+1=52. 解方程:x^2-5x+6=0。
答案:x=2或x=33. 计算定积分:∫(0到1) (2x+3)dx。
答案:(2/2)x^2+3x | 0到1 = 2+3-0 = 5三、英语试题及答案1. 根据句意,选择填空。
I don't think it is necessary to ________ the matter.A. look intoB. look upC. look outD. look over答案:A2. 翻译句子。
句子:他决定去旅行,放松一下。
翻译:He decided to go on a trip to relax.3. 阅读理解,回答问题。
(1)文章中提到了哪些旅游目的地?答案:文章提到了巴黎、伦敦和纽约。
(2)作者对旅游的态度是什么?答案:作者认为旅游是一种放松和学习的方式。
四、物理试题及答案1. 已知一个物体的质量为2kg,受到的重力为19.6N,求物体的加速度。
答案:a=F/m=19.6N/2kg=9.8m/s^22. 一个电容器的电容为4μF,通过它的电流为2A,求电容器的电压。
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.题型三函数y =Asin(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象()(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点最近的对称中心.5A =,32ππωϕ+=,5362ππωϕ+=,1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π43.(·重庆卷) 将函数f(x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.4.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值..5.(·福建卷) 已知函数f(x)=2cos x(s in x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π43.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6 C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称 6.将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.7.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.8.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会从实际情境中抽象出一元二次不等式模型;2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 【热点题型】题型一 一元二次不等式的解法 例1、求下列不等式的解集: (1)-x2+8x -3>0; (2)ax2-(a +1)x +1<0.解 (1)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x2+8x -3=0有两个不相等的实根x1=4-13,x2=4+13. 又二次函数y =-x2+8x -3的图象开口向下, 所以原不等式的解集为{x|4-13<x<4+13}.当a =0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1a };当a =1时,解集为∅;当a>1时,解集为{x|1a <x<1}.【提分秘籍】含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)对方程的根进行讨论,比较大小,以便写出解集. 【举一反三】(1)若不等式ax2+bx +2>0的解为-12<x<13,则不等式2x2+bx +a<0的解集是________. (2)不等式x -12x +1≤0的解集是________.答案 (1)(-2,3) (2)(-12,1]题型二 一元二次不等式的恒成立问题 例2、设函数f(x)=mx2-mx -1.(1)若对于一切实数x ,f(x)<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f(x)<-m +5恒成立,求m 的取值范围. 解 (1)要使mx2-mx -1<0恒成立, 若m =0,显然-1<0;若m≠0,则⎩⎪⎨⎪⎧m<0,Δ=m2+4m<0⇒-4<m<0.所以-4<m≤0.(2)要使f(x)<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法二 因为x2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m(x2-x +1)-6<0,所以m<6x2-x +1.因为函数y =6x2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m<67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m|m<67.【提分秘籍】(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【举一反三】(1)若不等式x2-2x +5≥a2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞) C .(-∞,-1]∪[4,+∞) D .[-2,5](2)已知a ∈[-1,1]时不等式x2+(a -4)x +4-2a>0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞) D .(1,3)答案 (1)A (2)C解析 (1)x2-2x +5=(x -1)2+4的最小值为4, 所以x2-2x +5≥a2-3a 对任意实数x 恒成立, 只需a2-3a≤4,解得-1≤a≤4.(2)把不等式的左端看成关于a 的一次函数,记f(a)=(x -2)a +(x2-4x +4), 则由f(a)>0对于任意的a ∈[-1,1]恒成立, 易知只需f(-1)=x2-5x +6>0, 且f(1)=x2-3x +2>0即可, 联立方程解得x<1或x>3.题型三 题型三 一元二次不等式的应用例3、某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f(x),并写出定义域; (2)若再要求该商品一天营业额至少为10260元,求x 的取值范围.【提分秘籍】求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果. 【举一反三】某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.答案 20 解析 由题意得,3860+500+[500(1+x%)+500(1+x%)2]×2≥7000, 化简得(x%)2+3·x%-0.64≥0,解得x%≥0.2,或x%≤-3.2(舍去).∴x≥20,即x 的最小值为20. 【高考风向标】1.【高考广东,文11】不等式2340x x --+>的解集为.(用区间表示) 【答案】()4,1-【解析】由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.2.(·全国卷)设集合M ={x|x2-3x -4<0},N ={x|0≤x≤5},则M∩N =() A .(0,4] B .[0,4) C .[-1,0) D .(-1,0] 【答案】B【解析】因为M ={x|x2-3x -4<0}={x|-1<x<4},N ={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.3.(·新课标全国卷Ⅱ] 设函数f(x)=3sin πx m ,若存在f(x)的极值点x0满足x20+[f(x0)]2<m2,则m 的取值范围是()A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 【答案】C【解析】函数f(x)的极值点满足πx m =π2+kπ,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k0使之满足不等式m2⎝⎛⎭⎫k0+122+3<m2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m2+3<m2成立即可,即m2>4,解得m>2或m<-2,故m 的取值范围是(-∞,-2)∪(2,+∞).4.(·安徽卷)已知一元二次不等式f(x)<0的解集为x<-1或x>12,则f(10x)>0的解集为() A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2} 【答案】D【解析】根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x<12,解得x<-lg 2. 5.(·广东卷)不等式x2+x -2<0的解集为________. 【答案】{x|-2<x<1}【解析】x2+x -2=(x +2)(x -1)<0,解得-2<x<1.故不等式的解集是{x|-2<x<1}.6.(·四川卷)已知f(x)是定义域为R 的偶函数,当x≥0时,f(x)=x2-4x ,那么,不等式f(x +2)<5的解集是________.【答案】(-7,3)7.(高考全国新课标卷Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧-x2+2x ,x≤0,ln x +1,x>0.若|f(x)|≥ax ,则a 的取值范围是()A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]解析:当x≤0时,f(x)=-x2+2x =-(x -1)2+1≤0,所以|f(x)|≥ax 化简为x2-2x≥ax ,即x2≥(a +2)x ,因为x≤0,所以a +2≥x 恒成立,所以a≥-2;当x>0时,f(x)=ln(x +1)>0,所以|f(x)|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a≤0,综上,当-2≤a≤0时,不等式|f(x)|≥ax 恒成立,选择D.【答案】D 【高考押题】1.函数f(x)=1-xx +2的定义域为( ) A .[-2,1]B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞) 答案 B 解析1-x x +2≥0⇔x -1x +2≤0 ⇔⎩⎪⎨⎪⎧x -1x +2≤0,x +2≠0⇔⎩⎪⎨⎪⎧-2≤x≤1,x≠-2⇔-2<x≤1. 2.设函数f(x)=⎩⎪⎨⎪⎧x2-4x +6,x≥0,x +6,x<0,则不等式f(x)>f(1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3) 答案 A解析 由题意得⎩⎪⎨⎪⎧ x≥0,x2-4x +6>3或⎩⎪⎨⎪⎧x<0,x +6>3,解得-3<x<1或x>3.3.设a>0,不等式-c<ax +b<c 的解集是{x|-2<x<1},则a ∶b ∶c 等于( ) A .1∶2∶3B .2∶1∶3 C .3∶1∶2D .3∶2∶1 答案 B解析 ∵-c<ax +b<c ,又a>0, ∴-b +c a <x<c -ba .∵不等式的解集为{x|-2<x<1}, ∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎨⎧b =a2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.4.若不等式mx2+2mx -4<2x2+4x 对任意x 都成立,则实数m 的取值范围是( )A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2] 答案 A5.若集合A ={x|ax2-ax +1<0}=∅,则实数a 的值的集合是( ) A .{a|0<a<4}B .{a|0≤a<4} C .{a|0<a≤4}D .{a|0≤a≤4} 答案 D解析 由题意知a =0时,满足条件.a≠0时,由⎩⎪⎨⎪⎧a>0,Δ=a2-4a≤0得0<a≤4,所以0≤a≤4.6.已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x|x<-1或x>12,则f(10x)>0的解集为________.答案 {x|x<-lg2}解析 由已知条件0<10x<12,解得x<lg 12=-lg2.7.若0<a<1,则不等式(a -x)(x -1a )>0的解集是________________. 答案 {x|a<x<1a }解析 原不等式即(x -a)(x -1a )<0, 由0<a<1得a<1a ,∴a<x<1a .8.已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x2-4x ,则不等式f(x)>x 的解集用区间表示为________________.答案 (-5,0)∪(5,+∞)解析 由已知得f(0)=0,当x<0时,f(x)=-f(-x)=-x2-4x ,因此f(x)=⎩⎪⎨⎪⎧x2-4x ,x≥0,-x2-4x ,x<0.不等式f(x)>x 等价于⎩⎪⎨⎪⎧ x≥0,x2-4x>x ,或⎩⎪⎨⎪⎧x<0,-x2-4x>x.解得:x>5,或-5<x<0.9.已知f(x)=-3x2+a(6-a)x +6. (1)解关于a 的不等式f(1)>0;(2)若不等式f(x)>b 的解集为(-1,3),求实数a 、b 的值.10.某农贸公司按每担200元收购某农产品,并每100元纳税10元(又称征锐率为10个百分点),计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x(x≠0)个百分点,预测收购量可增加2x 个百分点.(1)写出降税后税收y(万元)与x 的函数关系式;(2)要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x 的取值范围. 解 (1)降低税率后的税率为(10-x)%, 农产品的收购量为a(1+2x%)万担, 收购总金额为200a(1+2x%)万元. 依题意得y =200a(1+2x%)(10-x)% =150a(100+2x)(10-x)(0<x<10). (2)原计划税收为200a·10%=20a(万元). 依题意得150a(100+2x)(10-x)≥20a×83.2%, 化简得x2+40x -84≤0,解得-42≤x≤2.又∵0<x<10,∴0<x≤2.即x的取值范围为(0,2].高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
湖北省部分高中重点中学2024年高考化学试题模拟精编大考卷(全国版)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题只有一个选项符合题意)1、N A代表阿伏加德罗常数的值。
下列有关说法中正确的是A.60 g乙酸分子中所含共价键的数目为8N AB.标准状况下,11.2LCHCl3中含有的原子总数为2.5N AC.高温下,1mol Fe与足量水蒸气反应,转移电子数的目为3 N AD.将1molCl2通入水中,所得溶液中HClO、Cl-、ClO-粒子数之和为2N A2、高铁酸钾(K2FeO4)是一种新型非氯高效消毒剂,微溶于KOH溶液,热稳定性差。
实验室制备高铁酸钾的原理为3Cl2+2Fe(OH)3+10KOH==2K2FeO4+6KCl++8H2O。
下列实验设计不能达到实验目的的是A.用图所示装置制备并净化氯气B.用图所示装置制备高铁酸钾C.用图所示装置分离出高铁酸钾粗品D.用图所示装置干燥高铁酸钾3、NaHCO 3和 NaHSO 4 溶液混合后,实际参加反应的离子是( ) A .CO 32﹣和 H + B .HCO 3﹣和HSO 4﹣ C .CO 32﹣和HSO 4﹣D .HCO 3﹣和 H +4、下图为一定条件下采用多孔惰性电极的储氢电池充电装置(忽略其他有机物)。
已知储氢装置的电流效率生成目标产物消耗的电子数转移的电子总数η=×100%,下列说法不正确...的是A .采用多孔电极增大了接触面积,可降低电池能量损失B .过程中通过C-H 键的断裂实现氢的储存C .生成目标产物的电极反应式为C 6H 6+6e -+6H +===C 6H 12D .若η=75%,则参加反应的苯为0.8mol5、不同条件下,用O 2氧化a mol/L FeCl 2溶液过程中所 测的实验数据如图所示。
2023-2024学年高三新高考语文模拟试题卷含参考答案一、论述类文本阅读阅读下面的文字,完成小题。
“气氛”是什么?我们的很多感受都源于空间中的气氛,气氛需要我们通过感官系统去感知,而我们的心情(内在因素)也会对感受气氛的结果有所影响。
我们其实并不需要一个准确的词汇去定义气氛,它更像一个信号,被捕捉、被感知。
有时艺术家并没有用语言对作品进行一些解释,但人们依旧能通过他的作品感知他所想表达的内容,而这更像是一种默契,属于人与人之间或人与自然之间的默契。
位于德国门兴格拉德巴赫的艺术作品“Hausur”就是解释“气氛”一词很好的例子。
“Hausur”是一栋由葛雷格·施奈德在1985年精心改造的房屋。
对于观者而言,建筑内的房间已经不再是正常意义上的房间了,因为只有运用全部的感官才能体会每个空间,体会独属于作品的唯一的气氛。
每件艺术品、每场艺术展都有着唯一性,不同的场地、不同的氛围都会让观者有不同的感受,而观者也无时无刻不在用其感官勾勒着自己眼中的世界。
艺术作品释放的信息通过感官传递到我们的大脑,大脑再综合所有信号,将这种气氛转化为我们的感受。
这是一个很有意思且值得思考的过程,但这种信息的传递不仅仅是单向的,我们也可以把我们的感受再用某种形式传回某个空间,使其转化为另一种气氛,从而再次被发现、被感受。
气氛是属于自然的固定组成部分,艺术家通过自己的方式将这种气氛转化为感受。
这种方式即艺术方法,它常以特殊的方式引起我们注意,这种方式和艺术家的生活息息相关,它不会被拘束,但同时基于他们对自然的理解。
反过来观察,气氛对于自然也有着极其独特的意义,因为它不同于科学技术那样有着清晰的理解方式。
综上来看,气氛可以认为是一种媒介并以媒介的形式参与到艺术中。
感官是气氛的创造与体味的桥梁。
例如听觉。
声音的传播快速、直接,情感的传递也十分高效。
在法国艺术家塞菜斯特·布谢·穆日诺名为《无题》的声音装置作品中,他运用设备使媒介间有不同的运动状态,从而以声音来表达视觉的信息。
试卷类型:A2024山东新高考联考试题高三英语本卷满分150分,考试时间120分钟注意事项:1.答题前,考生先将自己的学校、姓名、班级、座号、考号填涂在相应位置。
2.选择题答案必须使用2B铅笔(按填涂样例)正确填涂:非选择题答案必须使用0.5毫米黑色签字笔书写,绘图时,可用2B铅笔作答,字体工整、笔迹清楚。
3.请按照题号在各题目的答题区城内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效。
保持卡面清洁,不折叠、不破损。
第一部分阅读(共两节,满分30分)该部分分为第一、第二两节。
注意:回答听力部分时,请先将答案标在试卷上。
听力部分结束前,你将有两分钟的时间将你的答案转涂到答题卡上。
第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.When will the speakers leave for their holiday?A.Tomorrow.B.The day after tomorrow.C.Three days later.2.H ow do the speakers feel?A.Tired.B.R elaxed.C.Careless.3.W hat is the man's current issue?A.H e hurts his leg.B.H e's starvingC.He has a fever.A.P lay a sportB.Study science.C.Do homework.5.W hat kind of chocolate biscuits does Tom usually buy?A.W hite.B.M ilk.C.Dark.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
湖南省2024年高考语文模拟试卷及答案35分)现代文阅读Ⅰ历史是人类精神的基本构造,是人类的思维形式,离开了历史就不会有人类的思维。
历史是对过去的讲述,无比巨大、混沌一团的过去中被赋予了秩序和意义并且被讲述出来的那很小很小的一部分,才是我们所说的历史。
从过去中选择原料、组织模型和生产历史,是人类最古老、最基本的智力活动,而对历史的生成、演变、发展和应用这个过程进行考察的学科就是历史学。
既然我们无时无刻不在使用历史,对所使用的历史本身进行考察,确保历史知识的正确与准确,适当地使用而不是滥用或错用历史,就关乎人类的精神健康与心智发育,这正是历史学家的职责。
确保这一职责得以履行的,就是历史学家的美德。
什么是历史学家的美德?一般人首先想到的是“求真”。
然而求真不是美德,求真是历史的本性。
没有人会说他讲述的历史不够真实,所有人在使用历史时都深信或至少宣称这个历史是真实的。
这是由历史在人类精神活动中的本质属性决定的,讲述真实的过去、忠诚于事实,是历史唯一的特性。
当然,许多曾经被认为真实的历史,后来逐渐被排除在历史之外,而归入神话、伪史或编造。
历史学的历史表明,太多的历史都已被剔除在历史之外,过去的许多历史知识现在已经被归入神话或伪史。
各个文化、各个时代的大多数历史学家都秉持求真的职业精神,然而他们还是会自觉不自觉地制造神话与伪史。
求真几乎可以等同于历史学的职业本身,还不能说是一种品德。
那么什么是历史学家的美德呢?历史学家有三大美德:批判、怀疑和想象力。
因为历史如此有用,生产伪史、篡改历史、制造遗忘,以及滥用或错用历史,就是历史应用的基本形态之一。
过去当然是确定无疑的、已经发生的、唯一的,但事实上人们总是因眼前的需要而把过去那个“唯一”改写为“多种”。
我们所知道的过去就是多种多样的、非常复杂的,充满了可能性,是基于一代又一代、一群又一群人的需要而反复改写的结果。
从古至今积累了巨量的历史知识库,今天研究历史、写历史的人,主要是面对这个巨量的知识库重新选择和组织素材,赋予目的和意义,这样就写出了新的历史。
湖南省2024-2025学年高三高考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,速度变为原来的2倍,该质点的加速度为( )A .2s tB .22s tC .223s tD .232s t 2、如图,两束单色光A 、B 分别沿半径方向由空气射入半圆形玻璃砖,出射时合成一束复色光P ,下列说法正确的是A .A 光的频率小于B 光的频率B .在玻璃砖中A 光的传播速度小于B 光的传播速度C .玻璃砖对A 光的折射率大于对B 光的折射率D .两种单色光由玻璃射向空气时,A 光的临界角较小3、在一大雾天,一辆小汽车以30m/s 的速度行驶在高速公路上,突然发现正前方30m 处有一辆大卡车以10m/s 的速度同方向匀速行驶,小汽车紧急刹车,刹车过程中刹车失灵。
如图所示a 、b 分别为小汽车和大卡车的v -t 图像,以下说法正确的是( )A .因刹车失灵前小汽车已减速,不会追尾B .在t =5s 时追尾C .在t =2s 时追尾D.若刹车不失灵不会追尾4、如图所示,薄纸带放在光滑水平桌面上,滑块放在薄纸带上,用水平恒外力拉动纸带,滑块落在地面上A点;将滑块和纸带都放回原位置,再用大小不同的水平恒外力拉动纸带,滑块落在地面上B点。
2024年江苏省高考全真演练物理模拟卷一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,以O为圆心、半径为R的圆形区域内存在垂直圆面向外、磁感应强度大小为B的匀强磁场。
圆上有A、C、D三点,从A点沿半径AO方向射入一个带电粒子(不计重力),入射速度为v1时,粒子恰好从C点离开磁场。
已知粒子的比荷为k,且∠AOC=90°,∠AOD=120°,下列说法正确的是( )A.粒子在磁场中的运动时间为B.圆形区域的半径为C.要使粒子从D点离开磁场,入射速度为D.若只改变入射速度方向,粒子不可能经过O点第(2)题如图所示,一定量的理想气体从状态A开始,经历两个过程,先后到达状态B和C。
有关A、B和C三个状态温度和的关系,正确的是( )A.B.C.D.第(3)题燃气灶支架有很多种规格和款式。
如图所示,这是a、b两款不同的燃气灶支架,它们都是在一个圆圈底座上等间距地分布有五个支架齿,每一款支架齿的简化示意图在对应的款式下方。
如果将含有食物的球面锅置于两款支架上,假设锅和锅内食物的总重量总是维持不变,则( )A.如果锅的尺寸越大,则a款每个支架齿受到的压力越大B.如果锅的尺寸越大,则a款每个支架齿受到的压力越小C.如果锅的尺寸越大,则b款每个支架齿受到的压力越大D.如果锅的尺寸越大,则b款每个支架齿受到的压力越小第(4)题真空中有两个静止的点电荷,它们之间的作用力为F,若它们的带电量都增大为原来的2倍,距离也增大为原来的2倍,则它们之间的作用力变为( )A.B.F C.D.第(5)题假如有一颗在赤道上的苹果树,长到了月亮的高度。
请你根据苹果的运动状态进行受力分析,在下图中的树枝上选出一个长势符合物理规律的苹果。
()A.B.C.D.第(6)题甲、乙两汽车在两条并排平直公路上行驶的v-t图象如图所示,已知t=0时刻,两车间距为x0,且甲车在前,乙车在后,若t0时刻,甲、乙两车相遇,下列说法正确的是( )A.乙车刹车的加速度大小为B.0~2t0时间内乙车平均速度的大小是甲车平均速度大小的2倍C.2t0时刻两车相距最远,最大距离为D.3t0时刻两车不可能再次相遇第(7)题以下关于物理学史和物理方法叙述中,正确的是( )A.伽利略探究物体下落规律的过程使用的科学方法是:问题→猜想→数学推理→实验验证→合理外推→得出结论B.安培通过多年的研究,发现了电流周围存在磁场C.卡文迪许利用扭称实验得出万有引力与距离平方成反比的规律D.牛顿根据理想斜面实验,提出力不是维持物体运动的原因第(8)题单晶硅太阳能发电原理是光线照射到单晶硅太阳能板上,会激发电子形成电流。
2023年新高考卷仿真模拟卷语文试题含参考答案一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1~5题。
材料一:2011年以来,伴随4G技术的发展和上网资费的下调,人类社会迈入了移动互联网时代。
智能手机作为人体感官的延伸,愈发紧密地嵌入到人们的生活之中。
它一方面具有传统纸质媒体难以比拟的信息存储密度,其自身重量并不会因信息量的增长而增加;另一方面,媒介技术的进步促使手机向智能化、小型化的方向发展——两厢耦合的结果是手机贴身性和便携性优势的获取。
不仅如此,借助移动客户端,手机摆脱了单一的通讯工具的定位,已转型为集人际传播、群体传播、组织传播和大众传播于一体的复合型媒介。
这些传播类型并非一成不变、相互孤立,相反,它们相互交织,在一定条件下可以相互转化。
视频由此成为一种类似文字的言说方式。
人们不仅能够随时随地拍摄,还能即时分享——互联网传播跨过WEB1.0时代的聚合传播和WEB2.0时代的社交传播,进入场景传播的新时代,这一嬗变的背后蕴含的是城乡间“知沟”弥合的可能。
“知沟”理论是由美国学者蒂诺奇提出的,依据该理论,社会经济地位低的人在接收信息速度方面比社会经济地位高的人慢,大众传播媒介输送的信息越多,两者间的知识差距越大。
蒂诺奇分析了造成“知沟”扩大的五个变量:传播技能上的差异,已有知识存储量的差异,社交范围的差异,信息的选择性接触、理解和记忆的因素以及大众传播媒介的性质。
如若对五个变量做进一步抽象提炼,“知沟”在相当程度上是下述两大因素合力的结果:人们能否快速获取信息(包括传播技能上的差异,社交范围的差异,信息的选择性接触、理解和记忆的因素三个变量)以及能否理解信息(包括已有知识存储量的差异和大众传播媒介的性质两个变量)。
在以印刷媒介为主的大众传播时代,由于媒介使用门槛较高(使用者必须具备一定的读写能力)和不同圈层间信息交流的相对固化,存在于不同社会阶层间的“知沟”的弥合难度颇高。
高考模拟复习试卷试题模拟卷【考情解读】1.以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面平行、面面平行的有关性质与判定定理,并能够证明相关性质定理;2.能运用线面平行、面面平行的判定及性质定理证明一些空间图形的平行关系的简单命题.【重点知识梳理】1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b 2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α考点一有关线面、面面平行的命题真假判断【例1】 (1)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【变式探究】 (1)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是() A.b⊂α B.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α(2)给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β; ②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n. 其中真命题的个数为( ) A .3 B .2 C .1 D .0考点二 直线与平面平行的判定与性质【例2】 如图,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD. (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC.【变式探究】 如图,直三棱柱ABC -A′B′C′,∠BAC =90°,AB =AC =2,AA′=1,点M ,N 分别为A′B 和B′C′的中点.(1)证明:MN ∥平面A′ACC′; (2)求三棱锥A′-MNC 的体积. 考点三 平面与平面平行的判定与性质【例3】 如图,四棱柱ABCD -A1B1C1D1的底面ABCD 是正方形,O 是底面中心,A1O ⊥底面ABCD ,AB =AA1= 2.(1)证明:平面A1BD ∥平面CD1B1; (2)求三棱柱ABD -A1B1D1的体积.【变式探究】 如图,在三棱柱ABC -A1B1C1中,E ,F ,G ,H 分别是AB ,AC ,A1B1,A1C1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA1∥平面BCHG. 考点四 平行关系中的探索性问题【例4】 (·四川卷)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形. (1)若AC ⊥BC ,证明:直线BC ⊥平面ACC1A1;(2)设D ,E 分别是线段BC ,CC1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A1MC ?请证明你的结论.【变式探究】 如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求三棱锥A -PDE 的体积;(2)AC 边上是否存在一点M ,使得PA ∥平面EDM ?若存在,求出AM 的长;若不存在,请说明理由. 【真题感悟】1.【高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂()A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m2.【高考浙江,文18】(本题满分15分)如图,在三棱锥111ABCA B C 中,11ABC 90AB AC 2,AA 4,A ∠====,在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:11D A BC A ⊥平面;(2)求直线1A B 和平面11B C B C 所成的角的正弦值.1.(·安徽卷)如图1-5,四棱柱ABCD - A1B1C1D1中,A1A ⊥底面ABCD ,四边形ABCD 为梯形,AD ∥BC ,且AD =2BC.过A1,C ,D 三点的平面记为α,BB1与α的交点为Q.图1-5(1)证明:Q 为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD =2,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小. 2.(·北京卷)如图1-3,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P - ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H.(1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长. 图1-33.(·湖北卷)如图1-4,在棱长为2的正方体ABCD-A1B1C1D1中,E ,F ,M ,N 分别是棱AB ,AD ,A1B1,A1D1的中点,点P ,Q 分别在棱DD1,BB1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.图1-44.(·新课标全国卷Ⅱ)如图1-3,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.图1-35.(·山东卷)如图1-3所示,在四棱柱ABCD -A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.图1-3(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【押题专练】1.若直线ɑ平行于平面α,则下列结论错误的是()A.ɑ平行于α内的所有直线B.α内有无数条直线与ɑ平行C.直线ɑ上的点到平面α的距离相等D.α内存在无数条直线与ɑ成90°角2.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是 ()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面3.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β4.已知m,n为两条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是 ()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊥α,则m∥nC.若α∥β,m∥n,m∥α,则n∥βD.若α⊥γ,β⊥γ,则α∥β5.在四面体ABCD中,截面PQMN是正方形,则在下列结论中,错误的是 ()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°6.设a,b是两条直线,α,β是两个不同的平面,则α∥β的一个充分条件是 ()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α7.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③ B.②③ C.①④ D.②④8.棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.9.如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.10.设α,β,γ是三个平面,a,b是两条不同直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).11.如图,在正四棱柱A1C中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1(请填上你认为正确的一个条件).12.如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.13.一个多面体的直观图及三视图如图所示(其中M,N分别是AF,BC的中点).(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.14.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A′EF位置,使得A′C=2 6.(1)求五棱锥A′-BCDFE的体积;(2)在线段A′C上是否存在一点M,使得BM∥平面A′EF?若存在,求A′M;若不存在,请说明理由.高考模拟复习试卷试题模拟卷高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。