工程热力学气体和蒸汽的性质
- 格式:ppt
- 大小:7.21 MB
- 文档页数:82
工程热力学-第四版思考题答案(完整版)(沈维道)(高等教育出版社)工程热力学第四版沈维道 思考题 完整版第1章 基本概念及定义1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗?答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么? 答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
工程热力学复习知识点一、知识点基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。
1. 基本概念掌握和理解:热力学系统(包括热力系,边界,工质的概念。
热力系的分类:开口系,闭口系,孤立系统)。
掌握和理解:状态及平衡状态,实现平衡状态的充要条件。
状态参数及其特性。
制冷循环和热泵循环的概念区别。
理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。
2. 热力学第一定律掌握和理解:热力学第一定律的实质。
理解并会应用基本公式计算:热力学第一定律的基本表达式。
闭口系能量方程。
热力学第一定律应用于开口热力系的一般表达式。
稳态稳流的能量方程。
理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。
3. 热力学第二定律掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。
掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。
卡诺循环和卡诺定理。
掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。
理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。
热力系的熵方程(闭口系熵方程,开口系熵方程)。
温-熵图的分析及应用。
理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。
4. 理想气体的热力性质熟悉和了解:理想气体模型。
理解并掌握:理想气体状态方程及通用气体常数。
理想气体的比热。
理解并会计算:理想气体的内能、焓、熵及其计算。
理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。
5. 实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。
例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。
蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。
理解并掌握:绝热节流的现象及特点6. 蒸汽动力循环理解计算:蒸气动力装置流程、朗肯循环热力计算及其效率分析。
1.第一章基本概念及定义2.热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。
3.工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。
4.高温热源:工质从中吸取热能的物系叫热源,或称高温热源。
5.低温热源:接受工质排出热能的物系叫冷源,或称低温热源。
6.热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。
7.闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。
(系统质量不变)8.开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。
(系统体积不变)9.绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。
(无论开口、闭口系统,只要没有热量越过边界)10.孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。
11.表压力:工质的绝对压力>大气压力时,压力计测得的差数。
12.真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。
13.平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。
充要条件是同时到达热平衡和力平衡。
14.稳定状态:系统参数不随时间改变。
(稳定未必平衡)15.准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。
它是无限接近于平衡状态的过程。
16.可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。
可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。
17.准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。
第十章水蒸气热力工程中使用的气体工质包括:气体和蒸汽两类。
蒸汽:是指刚刚脱离液态,或比较接近液态的气体工质,在被冷却或压缩时很容易回到液态。
特点:蒸汽分子之间的作用力和分子本身的体积不能忽略,不能作为理想气体处理。
工业上常用的蒸汽:水蒸气、制冷剂蒸汽等。
水蒸气的特点:①具有良好的热力性质;如比热容大、传热性好。
②价格低廉,对环境无污染。
③适用范围广。
制冷剂蒸汽主要有低沸点的氨和氟利昂,它们的性质与水蒸气类似。
本章以水蒸气为例,分析蒸汽的产生过程和性质,研究对其进行热工计算的方法,同时了解其它物质蒸汽的共性。
第一节基本概念一、汽化物质的液态与气态在一定条件是可以相互转换的。
汽化:物质由液态变为气态的过程称为汽化。
汽化有两种方式:蒸发与沸腾。
蒸发:在液体的自由表面上进行气化过程称为蒸发。
如杯中的水敞口放置一段时间后减少了;湿衣服晾干了等。
蒸发过程:液面附近动能较大的分子克服液体的表面张力,离开页面,并上升到空气中。
由于能量较大的分子的离开,会使液体内分子的平均动能减少,表现为液体温度降低,只有不断加热,才能维持液体的温度不变。
温度越高,蒸发越剧烈。
二、饱和温度、饱和压力在蒸发过程中,液面上方空间里的蒸汽分子总有可能碰液面而返回液体中,即凝结过程与蒸发过程是同时存在的。
一般的蒸发都是在自由空间中进行的,液面上除蒸汽分子外还有大量空气等其他气体,因而蒸汽分子的浓度很小,分压较低,其凝结速度小于蒸发速度,总的来看表现为蒸发过程。
若蒸发发生在封闭的容器中,随着蒸发的进行,液面上方的蒸汽分子越来越多,碰撞液面的机会也越来越多,使凝结速度加快。
当蒸发和凝结的速度相等时,气液两相将达到平衡,这时空间的蒸汽分子浓度不再改变,这种处于两相平的状态称为饱和状态。
饱和温度(t s):饱和状态时所对应的温度称为饱和温度。
饱和压力(p s):饱和状态时液体表面上方蒸汽产生的压力称为饱和压力。
对应于某一饱和温度,必有一个饱和压力与之对应,饱和温度越高,对应的饱和压力就越大。
第3章气体和蒸汽的性质一、选择题1.下面说法中正确的是()。
A.某蒸汽的温度若高于临界温度,则不可能通过改变压力使蒸汽液化B.某蒸汽的温度若高于临界温度,则可以通过改变压力使蒸汽液化C.某蒸汽的温度若低于临界温度,则不可能通过改变压力使蒸汽液化【答案】A2.下列哪些气体近似可看作理想气体?()A.柴油机起动空气瓶中的高压空气B.动力机内的水蒸气C.空调设备中空气所含水蒸气D.冰箱压缩机内的制冷剂气体【答案】C【解析】并不是只要是空气就可以作为理想气体,考察气体是否可近似作为理想气体主要依据其压力,空调设备工作压力和温度不高,其中空气所含水蒸气分压力更低,故可当作理想气体,其他三种状况工质均不宜做理想气体处理。
3.为()。
A.理想气体、闭口系统、可逆过程B.实际气体、开口系统、可逆过程C.任意气体、闭口系统、任意过程D.任意气体、开口系统、任意过程【答案】A【解析】q=△u+w是普遍适用于闭口系的,从q=△u+w导出受到两处制约:,非理想气体的热力学能是温度和比体积的函数,只有理想气体的可逆过程才同时满足这两点要求。
4.理想气体可逆吸热过程,下列哪个参数一定增加的?()A.热力学能B.熵C.压力D.温度【答案】B【解析】人们的直觉认为吸热过程温度必定升高,理想气体的热力学能和温度间有单值关系,所以热力学能也将增大,但事实上任何过程的进行都受第一定律的制约,据q=△u+w,理想气体在可逆吸热过程中△u的变化还要受制于w的大小及正负,若理想气体对外作功大于吸热量,气体热力学能将减小,导致温度下降、压力下降。
但据熵的定义,气体可逆吸热过程的熵必增加。
5.在空气定压加热过程中,加热量()转化为热力学能增加量。
A.37%B.65%C.68.4%D.71.4%【答案】D【解析】理想气体定压加热过程的加热量为,过程中的热力学能变化,将空气作为理想气体,双原子理想气体的比热容取定值时,比热容比为1.4,故。
6.当锅炉内的温度等于该压力对应饱和温度时,锅炉内可能为()。
工程热力学水蒸气的热力性质和过程水蒸气的热力性质和过程是工程热力学中的重要内容,涉及到水蒸气的热力性质、热力过程和水蒸气循环过程等方面。
下面将从水蒸气的热力性质、热力过程和水蒸气循环过程三个方面进行详细介绍,以期更好地了解工程热力学中的水蒸气。
首先,水蒸气的热力性质。
水蒸气是一种理想气体,因此可以采用理想气体状态方程描述其热力性质。
根据理想气体状态方程,水蒸气的体积与压力、温度之间满足以下关系:PV=mRT,其中P是水蒸气的压力,V是体积,m是物质的量,R是气体常数,T是温度。
此外,根据水蒸气的物性数据,可以得到水蒸气的比容、比焓、比熵、比内能等热力性质的计算公式。
其次,水蒸气的热力过程。
热力过程是指物体在一定条件下发生的热态变化过程。
对于水蒸气而言,常见的热力过程有等温过程、等焓过程、等熵过程和绝热过程等。
等温过程是指水蒸气在恒温条件下的热力变化过程,其内能变化为零,熵的变化为常数。
等焓过程是指水蒸气在等焓条件下的热力变化过程,其焓变化为零,温度和熵的变化为常数。
等熵过程是指水蒸气在等熵条件下的热力变化过程,其熵变化为零,温度和焓的变化为常数。
绝热过程是指水蒸气在绝热条件下的热力变化过程,其熵的变化为零,温度和焓的变化均不为常数。
最后是水蒸气循环过程。
水蒸气循环是工程热力学中常用的能量转换循环,广泛应用于电力、化工、航空等工业领域。
常见的水蒸气循环包括朗肯循环、卡诺循环和布雷顿循环等。
朗肯循环是一种理想化的热力循环,由四个连续的基本过程组成:等压加热、等熵膨胀、等压冷凝和等熵压缩。
卡诺循环是一种热力效率最高的循环,由两个等温过程和两个绝热过程组成。
布雷顿循环是一种常用的蒸汽动力循环,由蒸汽锅炉、蒸汽涡轮机和冷凝器等设备组成。
综上所述,水蒸气的热力性质和过程是工程热力学中的重要内容,涉及到水蒸气的热力性质、热力过程和水蒸气循环过程等方面。
通过深入了解水蒸气的热力性质和热力过程,我们可以更好地应用工程热力学的原理和方法,在实际工程中合理利用和控制水蒸气的能量转换过程,提高工程的热力效率。
工程热力学知识点总结工程热力学知识点总结总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以帮助我们总结以往思想,发扬成绩,为此要我们写一份总结。
你想知道总结怎么写吗?下面是小编帮大家整理的工程热力学知识点总结,欢迎大家分享。
第一章、基本概念1、边界边界有一个特点(可变性):可以是固定的、假想的、移动的、变形的。
2、六种系统(重要!)六种系统分别是:开(闭)口系统、绝热(非绝热)系统、孤立(非孤立)系统。
a.系统与外界通过边界:功交换、热交换和物质交换.b.闭口系统不一定绝热,但开口系统可以绝热。
c.系统的取法不同只影响解决问题的难易,不影响结果。
3、三参数方程a.P=B+Pgb.P=B-H这两个方程的使用,首先要判断表盘的压力读数是正压还是负压,即你所测物体内部的绝对压力与大气压的差是正是负。
正用1,负用2。
ps.《工程热力学(第六版)》书8页的系统,边界,外界有详细定义。
第二章、气体热力性质1、各种热力学物理量P:压强[单位Pa]v:比容(单位m^3/kg)R:气体常数(单位J/(kg*K))书25页T:温度(单位K)m:质量(单位kg)V:体积(单位m^3)M:物质的摩尔质量(单位mol)R:8.314kJ/(kmol*K),气体普实常数2、理想气体方程:Pv=RTPV=m*R。
*T/MQv=Cv*dTQp=Cp*dTCp-Cv=R另外求比热可以用直线差值法!第三章、热力学第一定律1、闭口系统:Q=W+△U微元:δq=δw+du (注:这个δ是过程量的微元符号)2、闭口绝热δw+du=03、闭口可逆δq=Pdv+du4、闭口等温δq=δw5、闭口可逆定容δq=du6、理想气体的热力学能公式dU=Cv*dT一切过程都适用。
为什么呢?因为U是个状态量,只与始末状态有关、与过程无关。
U是与T相关的单值函数,实际气体只有定容才可以用6、开口系统ps.公式在书46页(3-12)7、推动功Wf=P2V2-P1V1(算是一个分子流动所需要的微观的能量)a、推动功不是一个过程量,而是一个仅取决于进出口状态的状态量。
1工程热力学知识点1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。
2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用[1]热能:能量的一种形式[2]来源:一次能源:以自然形式存在,可利用的能源。
如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械能等。
[3]利用形式:直接利用:将热能利用来直接加热物体。
如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性[1]过程的方向性:如:由高温传向低温[2]能量属性:数量属性、,质量属性 (即做功能力)[3]数量守衡、质量不守衡[4]提高热能利用率:能源消耗量与国民生产总值成正比。
1. 1 热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。
外界:与系统相互作用的环境。
界面:假想的、实际的、固定的、运动的、变形的。
依据:系统与外界的关系系统与外界的作用:热交换、功交换、质交换。
二、闭口系统和开口系统闭口系统:系统内外无物质交换,称控制质量。
开口系统:系统内外有物质交换,称控制体积。
三、绝热系统与孤立系统绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。
简单可压缩系统:与外界只有热量及准静态容积变化均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。
非均匀系统:由两个或两个以上的相所组成的系统。
单元系统:一种均匀的和化学成分不变的物质组成的系统。
多元系统:由两种或两种以上物质组成的系统。