郑君里《信号与系统》第3版笔记课后习题考研真题详解
- 格式:pdf
- 大小:383.94 KB
- 文档页数:3
第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。
本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。
通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。
一、信号概述
1.信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2.典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3.信号的运算(见表1-1-3)
表1-1-3信号的运算
4.阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。
具体见表1-1-4及表1-1-5。
(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5.信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。
表1-1-6信号的分解
二、系统
1.系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。
表1-1-8不同系统特性
1.2课后习题详解
1-1分别判断图1-2-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?
(a)
(b)
(c)
(d)
(e)
(f)。
目 录第一部分 名校考研真题第7章 离散时间系统的时域分析第8章 z变换、离散时间系统的z域分析第9章 离散傅里叶变换以及其他离散正交变换第10章 模拟与数字滤波器第11章 反馈系统第12章 系统的状态变量分析第二部分 课后习题第7章 离散时间系统的时域分析第8章 z变换、离散时间系统的z域分析第9章 离散傅里叶变换以及其他离散正交变换第10章 模拟与数字滤波器第11章 反馈系统第12章 系统的状态变量分析第三部分 章节题库第7章 离散时间系统的时域分析第8章 z变换、离散时间系统的z域分析第9章 离散傅里叶变换以及其他离散正交变换第10章 模拟与数字滤波器第11章 反馈系统第12章 系统的状态变量分析第四部分 模拟试题第一部分 名校考研真题 说明:本部分从指定郑君里主编的《信号与系统》(第3版)为考研参考书目的名校历年考研真题中挑选最具代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。
第7章 离散时间系统的时域分析一、填空题1.周期分别为3和5的两个离散序列的卷积和的周期性为______。
[北京航空航天大学2007研]【答案】7【解析】对于线性卷积,若一个周期为M,另一个周期为N,则卷积后周期为M+N-1,所以。
2.某线性时不变(L TI)离散时间系统,若该系统的单位阶跃响应为则该系统的单位脉冲响应为______。
[北京交通大学研]【答案】【解析】本题考查离散时间系统的单位脉冲响应。
用表示单位阶跃响应,由于利用线性和时不变特性可得二、判断题一个离散时间信号实际上就是一组序列值的结合{x(n)}。
( )[南京大学2010研]【答案】√【解析】离散时间函数,只有在某些离散时给出函数值,只是在某些离散瞬时给出函数值。
因此,它是时间不连续的“序列”的。
三、选择题1.信号的周期是( )。
第11章 反馈系统11.1 复习笔记反馈系统的研究是利用分解与互联概念而获得成功的典型范例。
本章的应用背景着重于控制工程,考察连续时间信号与系统的反馈系统模型并了解系统特性及应用,本章重点在于反馈系统框图及其系统特性。
通过本章学习,读者应掌握:反馈系统框图与系统函数的互求、根据系统函数画根轨迹图、开环特性稳定条件下的奈奎斯特判断依据以及信号流图与系统函数的互求。
一、反馈系统1.反馈效应的产生利用系统的输出去控制或调整系统自身的输入即可产生反馈效应。
(1)连续时间信号反馈系统模型如图11-1-1所示。
图11-1-1 连续时间信号反馈系统模型反馈系统的系统函数为:H(s)=Y(s)/X(s)=A(s)/[1+F(s)A(s)]。
(2)离散时间信号反馈系统模型如图11-1-2所示。
反馈系统的系统函数为:H(z)=Y(z)/X(z)=A(z)/[1+F(z)A(z)]。
图11-1-2 离散时间信号反馈系统模型【注】①若反馈信号与输入信号作相减运算,则称为负反馈或非再生反馈;②若反馈信号与输入信号作相加运算(即图11-1-1中加法器下面的符号改为正号),则称为正反馈或再生反馈。
2.反馈系统的特性及应用(见表11-1-1)表11-1-1 反馈系统的特性及应用3.利用反馈系统产生自激振荡(见表11-1-2)表11-1-2 反馈系统产生自激振荡二、根轨迹根轨迹是指闭环系统函数式中某种参量变动时,特征方程的根(极点)在s 平面内移动的轨迹(路径)。
1.根轨迹法的模量条件和幅角条件(1)模量条件1111||||||n n k k k k mm ii i i s pM K s z N ====-==-∏∏∏∏(2)幅角条件110π 0m ni k i k K r r K r ϕθ==>⎧-=⎨<⎩∑∑时为奇数时为偶数2.作图规则①根轨迹具有几条分支;②根轨迹始于开环系统函数A (s )F (s )的极点,止于A (s )F (s )的零点;③根轨迹对s 平面的实轴呈镜像对称;④若有一段实轴,在它右边的实轴上A (s )F (s )的极点与零点总数是奇数,则此段实轴是根轨迹的一部分;⑤两支根轨迹的交点可由方程d [()()]0d A s F s s=求出;⑥根轨迹为虚轴变点可由s =jω代入特征方程求出:1+A (jω)F (jω)=0;⑦当k→∞时,根轨迹各分支趋向A (s )F (s )的零点,其中有m 个分支趋于有限零点,另有(n -m )个分支各自沿“渐近线”趋向无穷远处零点,渐近线与实轴交角为lπ/(n -m ),其中l =1,3,5···,共有(n -m )个正奇数;⑧渐近线会交于实轴上的一点,此点称为渐近线重心,其坐标为:12120()()n m p p p z z z n mδ+++-+++=-L L 3.开环特性稳定条件下的奈奎斯特判断依据当ω由-∞到+∞改变时,在A (jω)F (jω)平面中的奈奎斯特图顺时针绕(-1+j0)点的次数等于系统函数分母G (s )=1+F (s )A (s )在s 右半平面内的零点数(即系统函数H (s )的极点数),此奈奎斯特图若不包围(-1+j0)点,则系统稳定,否则系统不稳定。
第3章傅里叶变换[视频讲解]3.1本章要点详解本章要点■周期信号的傅里叶级数分析■典型周期信号的傅里叶级数■傅里叶变换■典型非周期信号的傅里叶变换■冲激函数和阶跃函数的傅里叶变换■傅里叶变换的基本性质■卷积特性■周期信号的傅里叶变换■抽样信号的傅里叶变换■抽样定理重难点导学一、引言傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的,这方面的问题又称为傅里叶分析(频域分析)。
频域分析将时间变量变换成频率变量,揭示了信号内在的频率特性以及信号时间特性与其频率特性之间的密切关系,从而引出了信号的频谱、带宽以及滤波、调制和频分复用等重要概念。
二、周期信号的傅里叶级数分析1.三角函数形式的傅里叶级数(1)三角函数集是一个完备的正交函数集,其中t 在一个周期内,n =0,1,···,∞。
(2)级数形式周期函数()f t 可以由三角函数的线性组合来表示。
若()f t 的周期为1T ,角频率为112T πω=,频率为111f T =,则傅里叶级数展开表达式为0111121210111()cos()sin()cos(2)sin(2)...[cos()sin()]n n n f t a a t b t a t b t a a n t b n t ωωωωωω∞==+++++=++∑其中,直流分量为010011()t T t a f t dt T +=⎰余弦分量的幅度为010112()cos()t T n t a f t n t dt T ω+=⎰正弦分量的幅度为010112()sin()t T n t b f t n t dt T ω+=⎰其中。
(3)其他形式余弦形式为正弦形式为满足狄里赫利条件的周期信号才能进行傅里叶级数展开。
任何周期信号只要满足狄里赫利条件就可以分解成直流分量及许多正弦、余弦分量。
2.指数形式的傅里叶级数(1)复指数正交函数集(2)级数形式(3)系数011011()t T jn t n t F f t e dt T ω+-=⎰3.两种系数之间的关系及频谱图(1)系数关系(2)幅频、相频关系幅频关系相频关系(3)频谱图4.总结(1)周期信号f(t)的傅里叶级数形式有两种:①三角函数形式②指数形式(2)两种频谱图的关系(3)三个性质:收敛性、谐波性、唯一性。
第9章离散傅里叶变换以及其他离散正交变换[视频讲解]9.1本章要点详解本章要点■傅里叶变换的离散性与周期性■从离散傅里叶级数到离散傅里叶变换■离散傅里叶变换的性质■离散傅里叶变换与z变换重难点导学一、引言1.DFT是重要的变换(1)分析有限长序列的有用工具;(2)在信号处理的理论上有重要意义;(3)在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。
2.DFT是现代信号处理桥梁DFT要解决两个问题:(1)离散与量化;(2)快速运算。
二、傅氏变换的离散性与周期性1.连续时间、连续频率—傅里叶变换可见,时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱密度函数。
2.连续时间、离散频率—傅里叶级数可见时域连续函数造成频域是非周期的谱,而频域的离散对应时域是周期函数。
3.离散时间、连续频率—序列的傅里叶变换可见时域的离散化造成频域的周期延拓,而时域的非周期对应于频域的连续。
4.离散时间、离散频率—离散傅里叶变换可见一个域的离散造成另一个域的周期延拓,因此离散傅里叶变换的时域和频域都是离散的和周期的。
5.四种傅里叶变换形式的归纳表9-1三、从离散傅里叶级数到离散傅里叶变换(DFT)为N 的有限长序列,为周期为N 的周期序列,则称为的主值序列;称为的周期延拓。
同样,X (k )也是一个N 点的有限长序列,则有限长序列的DFT 正变换和反变换为10()[()]()01-===≤≤-∑N N nk n X k DFT x n x n W k N101()[()]()01--===≤≤-∑N N nk k x n IDFT X k X k W n N N或10()()()()()01-===≤≤-∑ N N nk N N n X k x n W R k X k R k k N 101()()()()()01--===≤≤-∑ N N nk N N k x n X k W R n x n R n n N N其中:2π-=j N NW e 。
第8章z变换、离散时间系统的z域分析[视频讲解]8.1本章要点详解本章要点■z变换定义及典型序列的z变换■z变换的收敛域■逆z变换■z变换的基本性质■z变换与拉普拉斯变换的关系■离散系统的系统函数■序列的傅里叶变换(DTFT)■离散时间系统的频率响应重难点导学一、z变换的定义及典型序列的z变换1.z变换定义单边z变换为双边z变换为2.典型序列的z变换(1)单位样值序列(2)单位阶跃序列(3)斜变序列(4)指数序列①右边序列②左边序列()z X z z az a =<-(5)正弦与余弦序列二、z 变换的收敛域1.收敛域的定义对于任意给定的序列x (n ),能使收敛的所有z值之集合为收敛域。
即满足的区域。
2.两种判定法(1)比值判定法若有一个正项级数,令,则:①ρ<1,收敛;②ρ=1,可能收敛也可能发散;③ρ>1,发散。
(2)根值判定法令正项级数的一般项的n次根的极限等于ρ,,则:①ρ<1,收敛;②ρ=1,可能收敛也可能发散;③ρ>1,发散。
3.讨论几种情况(1)有限长序列的收敛域(2)右边序列的收敛当收敛,且有(3)左边序列的收敛()(1)1=---≤-n x n a u n n 1()()--=-∞=-∑n n n X z a z 令=-m n 0010010()()()1()1()1lim(1())/(1∞∞∞---===∞+→∞==-=-+=-=-=---∑∑∑∑m m m mm m m m m m m m m X z a z a z a z a z z z z a a a 当||1<z a,即||||<z a 时收敛1()11:||||1=-=-=<---a z X z ROC z a z a z z aa(4)双边序列的收敛若,则。
4.总结(1)有限长序列的z 变换收敛域至少为0z <<∞,且可能还包括z=0和z=∞,由序列x(n)形式决定;(2)右边序列的z 变换收敛域是半径为R x1的圆外部分,如果序列“起点”n 1≥0,则还要包括z=∞;(3)左边序列的z 变换收敛域是半径为R x2的圆内部分,如果序列“终点”n 1≤0,则收敛域包括z=0;(4)双边序列z 变换的收敛域通常是环形,即12x x R z R <<。
考研专业课《信号与系统》考研复习笔记及真题精选郑君里《信号与系统》(第3版)考研真题精选1下列信号属于功率信号的是()。
[中国传媒大学2017研]A.e-tε(t)B.cos(2t)ε(t)C.te-tε(t)D.Sa(t)【答案】B查看答案【解析】如果信号f(t)的能量有界(0<E<∞,P=0),称f(t)为能量有限信号,简称为能量信号。
如果信号f(t)的功率有界(0<P<∞,E=∞),称f(t)为功率有限信号,简称为功率信号。
ACD三项的能量均为有限值,因此为能量信号。
B 项,cos(2t)ε(t)是单边周期信号,因此能量无界,但是功率为有限值,因此B为功率信号。
2下列信号中,选项()不是周期信号,其中m,n是整数。
[山东大学2019研] A.f(t)=cos2t+sin5tB.f(t)=f(t+mT)C.x(n)=x(n+mN)D.x(n)=sin7n+e iπn【答案】D查看答案【解析】A项,cos2t的周期为T1=2π/2=π,sin5t的周期为T2=2π/5,由于T1/T2=5/2,是有理数,因此为周期信号,且周期为T=2T1=5T2=2π。
BC两项,一个连续信号满足f(t)=f(t+mT),m=0,±1,±2,…,则称f(t)为连续周期信号,满足上式条件的最小的T值称为f(t)的周期。
一个离散信号f(k),若对所有的k均满足f(k)=f(k+mN),m=0,±1,±2,…,则称f(k)为连续周期信号,满足上式条件的最小的N值称为f(k)的周期。
D项,sin7n的周期N1=2π/7,e iπn的周期为N2=2π/π=2,N1/N2=π/7为无理数,因此为非周期信号。
3下列关于单位冲激函数或单位样本函数的表达式,选项()不正确。
[山东大学2019研]A.B.δ(t)*f(t)=f(t)C.D.【答案】D查看答案【解析】冲激函数的极限形式的定义式应该为4下列叙述正确的有()。
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解
攻重浩精研学习网提供资料
第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。
本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。
通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。
一、信号概述
1信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3信号的运算(见表1-1-3)
表1-1-3信号的运算
4阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。
具体见表1-1-4及表1-1-5。
(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。
表1-1-6信号的分解
二、系统
1系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。
表1-1-8不同系统特性。