九年级数学上册 复习材料 苏科版
- 格式:doc
- 大小:367.00 KB
- 文档页数:5
)的方程两边直接开平方而转化为两个一元一次方程的方③化二次项系数为方,即方程两边都加上一次项系数的一半的平方;化原方程为可以用两边开平方来求出方程的解;如果公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二±因式分解的方法:提公因式、公式法、十字相乘法。
.一元二次方程的注意事项:、一个四边形的四个顶点都在同一个圆上,这个四边形叫做圆的内接四边形。
、圆内接四边形的对角互补。
x n,我们把n个数的算术平均数,简称平通常,平均数可以用来表示一组数据的并不总是相同的,有时有些数据比其他的更重要.所以,我们在计算这组数据的平均数时,往往根据其重要程度,分别给每个数据一个”n个数据,个数据的权数,则称为这组数据的加权平均数.将一组数据按从小到大排列,处于中间位置的数(奇数个数时)或中间两个数的平均数(偶数个数时)叫做这组数据的中位数.在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际选择。
)如何理解众数是指一组数据中出现次数最多的那个数据,它的大小只与一组一组数据中的部分数据有关,一组数据的众数可能有一个或几个,也可能没有。
.描述一组数据的离散程度可采取许多方法,在统计中常先求这组数据的平均数,再求这组数据与平均数的差的平方和的平均数,用这个平均数来衡量这组数据的波动大小-)-)-)-)(二)通常,一组数据的方差越小,这组数据的离散程度越小,这组数据也就越稳定..标准差:有些情况下,需用到方差的算术平方根,即,一般地,设一个试验的所有可能发生的结果有中的一个结果出现.如果每个结果出现的机会均等,那么我们说这出现的机会都一样,那么我们就称这个试验的结果具有等可能性.表示一次试验所有等可能出现的结果数)树状图它可以帮助我们不重复、不遗漏地列出所有可能出现的结果。
小结:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不。
【单元复习】第1章一元二次方程知识精讲第1章一元二次方程一、一元二次方程的概念1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于和的代数式的值,如④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。
第一章教学内容:证明(二)重点:直角三角形,线段垂直平分线与角平分线的证明难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解易错点:线段的垂直平分线和角平分线的定理及逆定理的判别第二章教学内容:一元一次方程重点:用配方法,公式法,分解因式法解一元一次方程难点:黄金分割点的理解,用配方法解方程易错点:利用因式分解法和公式法解方程第三章教学内容:证明(三)重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定难点:特殊的平行四边形的证明易错点:各定理之间的判别第四章教学内容:视图与投影重点:某物体的三视图与投影难点:理解平行投影与中心投影的区别易错点:三视图的理解,中心投影与平行投影的区别第五章教学内容:反比例函数重点:反比例函数的表达式,反比例函数的图像的概念与性质难点:反比例函数的运用,猜想,证明与拓展易错点:主要区别反比例函数与 x轴和与y轴无限靠近第六章教学内容:频率与概率定义和命题:频率与概率的概念难点:理解用频率去估计概率易错点:频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章图形与证明(二)1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
苏科版初三数学知识点梳理(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!苏科版初三数学知识点梳理失败乃成功之母,重复是学习之母。
苏科版九年级数学上册全册知识点归纳一元二次方程一.一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
二.一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x=-a+b2x=-a-b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=(b2-4ac≥0)。
步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。
苏教九年级数学上册知识点一、有理数与整式1. 整数的概念与性质2. 有理数的概念与性质3. 有理数的比较与运算4. 有理数的应用二、方程与不等式1. 一元一次方程的概念与性质2. 解一元一次方程的方法3. 解一元一次方程的应用4. 一元一次不等式的概念与性质5. 解一元一次不等式的方法6. 解一元一次不等式的应用三、几何图形与相似1. 平面直角坐标系2. 平面几何的基本概念3. 平行线与平行四边形4. 相似三角形的概念与性质5. 判断两个三角形相似的判定方法四、数据的收集与整理1. 统计图的制作与分析2. 组织数据的方法3. 数据的描述与分析4. 概率的概念与计算五、平面直角坐标系1. 平面直角坐标系的表示方法与性质2. 根据坐标求距离与中点3. 平面图形的基本性质与运动六、函数与图像1. 函数的概念与性质2. 正比例函数与反比例函数3. 一次函数与二次函数4. 利用函数图像解决实际问题七、三角形与勾股定理1. 三角形的角度与边长关系2. 三角形的内部与外部3. 勾股定理的概念与应用八、数列与等差数列1. 数列的定义与性质2. 等差数列的概念与性质3. 求等差数列的前n项和与通项九、实数与实数运算1. 实数集的划分与性质2. 实数运算的性质与法则3. 实数的大小比较与运算十、平面向量与向量运算1. 向量的概念与表示2. 向量的运算与性质3. 平面向量的应用以上是苏教九年级数学上册的知识点概述。
通过系统学习这些知识点,我们能够提高数学解题与分析能力,为高中数学的学习打下坚实的基础。
希望同学们能够认真学习,掌握这些知识,取得优异的成绩。
祝愿大家数学学习顺利!。
苏教版九年级上册数学重难点突破知识点梳理及重点题型巩固练习一元二次方程及其解法(一)直接开平方法—知识讲解(提高)【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是否关于x的一元二次方程:(1)a2(x2-1)+x(2x+a)=3x+a;(2)m2(x2+m)+2x=x(x+2m)-1.【答案与解析】(1)经整理,得它的一般形式(a2+2)x2+(a-3)x-a(a+1)=0,其中,由于对任何实数a都有a2≥0,于是都有a2+2>0,由此可知a2+2≠0,所以可以判定:对任何实数a,它都是一个一元二次方程.(2)经整理,得它的一般形式(m2-1)x2+(2-2m)x+(m3+1)=0,其中,当m≠1且m≠-1时,有m2-1≠0,它是一个一元二次方程;当m=1时方程不存在,当m=-1时,方程化为4x=0,它们都不是一元二次方程.【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数的限定条件是m≠±1.例如,一个关于x的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-4≠0,即m≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x的一元二次方程(a-1)x2+(2a+1)x+a2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”.类型二、一元二次方程的一般形式、各项系数的确定2. 已知关于y的一元二次方程m2(y2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m的取值范围.【答案与解析】将原方程整理为一般形式,得(m2-8)y2-(3m-1)y+m3-1=0,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件m2-8≠0,即 m≠±.可知它的各项系数分别是a=m2-8(m≠±),b=-(3m-1),c=m3-1.参数m的取值范围是不等于±的一切实数.【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.举一反三:【388447:一元二次方程的系数与解—练习1(3)】【变式】关于x的方程的一次项系数是-1,则a .【答案】原方程化简为x2-ax+1=0,则-a=-1,a=1.类型三、一元二次方程的解(根)3. (2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定【思路点拨】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【答案】B ;【解析】解:∵x 0是方程ax 2+2x+c=0(a ≠0)的一个根,∴ax 02+2x 0+c=0,即ax 02+2x 0=﹣c ,则N ﹣M=(ax 0+1)2﹣(1﹣ac ) =a 2x 02+2ax 0+1﹣1+ac=a (ax 02+2x 0)+ac =﹣ac+ac =0, ∴M=N , 故选:B .【总结升华】本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键. 举一反三:【388447:一元二次方程的系数与解——练习2】 【变式】(1)x=1是的根,则a= .(2)已知关于x 的一元二次方程 22(1)210m x x m -++-=有一个根是0,求m 的值.【答案】(1)当x=1时,1-a+7=0,解得a=8. (2)由题意得类型四、用直接开平方法解一元二次方程4.解方程(x-3)2=49.【答案与解析】把x-3看作一个整体,直接开平方,得 x-3=7或x-3=-7. 由x-3=7,得 x=10. 由x-3=-7,得 x=-4.所以原方程的根为x=10或x=-4.【总结升华】应当注意,如果把x+m 看作一个整体,那么形如(x+m)2=n(n ≥0)的方程就可看作形如x 2=k 的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n 可成为任何一元二次方程变形的目标.举一反三:【变式】解方程: (1) (2014秋•宝安区期末)(3x+2)2=4(x ﹣1)2;(2) (2014•锡山区期中) (x-2)2=25.【答案】解:(1) 3x+2=±2(x ﹣1),∴3x+2=2x ﹣2或3x+2=﹣2x+2, ∴x 1=﹣4;x 2=0.(2) (x-2)=±5∴x-2=5或x-2=-5 ∴x 1=7,x 2=-3.苏教版九年级上册数学重难点突破知识点梳理及重点题型巩固练习一元二次方程及其解法(一)直接开平方法—巩固练习(提高)【巩固练习】一、选择题1. (2015•泰安模拟)方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根,则a 的值是( ). A .0 B .1 C .2 D . 32.若2530ax ax -+=是一元二次方程,则不等式360a +>的解集应是( ). A .12a >B .a <-2C .a >-2D .a >-2且a ≠0 3.(2016•重庆校级三模)若关于x 的一元二次方程ax 2+bx +6=0的一个根为x=﹣2,则代数式6a ﹣3b +6的值为( )A .9B .3C .0D .﹣3 4.已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ).A .abB .abC .a+bD .a-b 5.若290x -=,则2563x x x -+-的值为( ).A .1B .-5C .1或-5D .06.对于形如x 的方程2()x m n +=,它的解的正确表达式是( ).A .用直接开平方法解得x =.当0n ≥时,x m =C .当0n ≥时,x m =D .当0n ≥时,x =二、填空题7.如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是 . 8.(2014秋•东胜区校级期中)若关于x 的一元二次方程(m ﹣2)x 2+3x+m 2﹣4=0的常数项为0,则m 的值等于 .9.已知x =1是一元二次方程20x mx n ++=的一个根,则222m mn n ++的值为________. 10.(1)当k________时,关于x 的方程22(1)(1)10k x k x ---+=是一元二次方程; (2)当k________时,上述方程是一元一次方程.11.已知a 是方程2104x x +-=的根,则354321a a a a a -+--的值为 .12.已知a 是关于x 的一元二次方程2201210x x -+=的一个根,则22201220111a a a -++的值为 .三、解答题13. (2016•乌鲁木齐校级月考)一元二次方程a (x ﹣1)2+b (x ﹣1)+c=0化为一般形式后为2x 2﹣3x ﹣1=0,试求a ,b ,c 的值.14.用直接开平方法解下列方程.(1)(2014·沧浪区校级期中)(x+1)2=4; (2) (2015·岳池县模拟)(2x-3)2=x 2.15.已知△ABC 中,AB =c ,BC =a ,AC =6,x 为实数,且6a b +=,29x ab =-. (1)求x 的值;(2)若△ABC 的周长为10,求△ABC 的面积ABC S △.【答案与解析】 一、选择题 1.【答案】C ;【解析】∵方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根,∴(a+1)x+a+1=0, 解得x=﹣1,当x=﹣1时,a=2,故选C .2.【答案】D ;【解析】解不等式得a >-2,又由于a 为一元二次方程的二次项系数,所以a ≠0.即a >-2且a ≠0. 3.【答案】D【解析】∵关于x 的一元二次方程ax 2+bx +6=0的一个根为x=﹣2,∴a ×(﹣2)2+b ×(﹣2)+6=0, 化简,得 2a ﹣b +3=0,∴2a ﹣b=﹣3, ∴6a ﹣3b=﹣9,∴6a ﹣3b +6=﹣9+6=﹣3, 故答案为:D .4. 【答案】D ;【解析】由方程根的定义知,把x a =-代入方程得20a ab a -+=,即(1)0a a b -+=,而0a ≠, ∴ 1a b -=-. 5.【答案】B ;【解析】本题主要考查的是利用一元二次方程的解来探索使分式有意义的值.由290x -=,得3x =±,由分式有意义,可得x ≠3,所以3x =-.当3x =-时,25653x x x -+=--,故选B . 6.【答案】C ;【解析】因为当n 是负数时,在实数范围内开平方运算没有意义,当n 是非负数时,直接开平方得,解得x m =,故选C .二、填空题 7.【答案】p=-3,q=2;【解析】∵ x =2是方程x 2+px+q =0的根,∴ 22+2p+q =0,即2p+q =-4 ①同理,12+p+q =0,即p+q =-1 ②联立①,②得24,1,p q p q +=-⎧⎨+=-⎩ 解之得:3,2.p q =-⎧⎨=⎩8.【答案】m=-2;【解析】由题意得:m 2﹣4=0,解得:m=±2,∵m ﹣2≠0,∴m≠2,∴m=﹣2 9.【答案】1;【解析】将x =1代入方程得m+n =-1,两边平方得m 2+2mn+n 2=1. 10.【答案】(1)≠±1 ; (2)=-1.【解析】(1)k 2-1≠0,∴ k ≠±1. (2)由k 2-1=0,且k-1≠0,可得k =-1. 11.【答案】20; 【解析】由题意可知2104a a +-=,从而得214a a +=,214a a =-. 于是23543232232111111444411()()()(1)44a a a a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫------- ⎪ ⎪-⎝⎭⎝⎭===+--+-+--255555544201111144444a a a a a a a a a ---====⎛⎫----- ⎪⎝⎭.12.【答案】2011.【解析】因为a 是方程的根,所以2201210a a -+=,所以212012a a +=,220121a a =-,所以22201220111a a a -++2202012a a a a a =--+=+-20122011a aa-==.三、解答题13.【答案与解析】解:一元二次方程a (x ﹣1)2+b (x ﹣1)+c=0化为一般形式后为ax 2﹣(2a ﹣b )x ﹣(b ﹣a ﹣c )=0,一元二次方程a (x ﹣1)2+b (x ﹣1)+c=0化为一般形式后为2x 2﹣3x ﹣1=0,得,解得.14.【答案与解析】解:(1)两边直接开平方得:x+1=±2,得x+1=2,x+1=-2,解得:x 1=1,x 2=-3. (2) 两边直接开平方得,得2x-3=±x ,∴x 1=3,x 2=1.15.【答案与解析】解:(1)6a b =-代入29x ab =-中得22(3)0x b +-=,∵ 20x ≥,2(3)0b -≥,∴ 0x =,3b =.(2)由(1)知3a b ==,∴ 1064c =-=,142ABC S =⨯=△.苏教版九年级上册数学重难点突破知识点梳理及重点题型巩固练习一元二次方程的解法(二)配方法—知识讲解(提高)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。
苏科版数学九年级全册知识点梳理第一章图形与证明(二)1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
判定——从边:1两组对边分别平行的四边形是平行四边形。
2一组对边平行且相等的四边形是平行四边形。
3两组对边分别相等的四边形是平行四边形。
从角:两组对角分别相等的四边形是平行四边形。
对角线:对角线互相平分的四边形是平行四边形。
矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。
定理1:矩形的4个角都是直角。
定理2:矩形的对角线相等。
定理:直角三角形斜边上的中线等于斜边的一半。
判定:1有三个角是直角的四边形是矩形。
2对角线相等的平行四边形是矩形。
菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。
定理1:菱形的4边都相等。
定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。
判定:1四条边都相等的四边形是菱形。
2对角线互相垂直的平行四边形是菱形。
正方形的性质与判定:正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。
正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。
判定:1有一个角是直角的菱形是正方形。
初三复习材料(1)
姓名分数
1.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直
=+(b为常数)线CM∥x轴(如图7所示).点B与点A关于原点对称,直线y x b
经过点B,且与直线CM相交于点D,联结
(1)求b的值和点D的坐标;
∆是
(2)设点P在x轴的正半轴上,若POD
等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的
圆P与圆O外切,求圆O的半径.
2.已知︒=∠90BAC ,2=AB ,3=BC ,AD ∥BC . P 为线段BD 上的动点,点Q 在射线AB 上,且满足
PQ AD
PC AB
=
(如图8所示). (1)当2=AD 时,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP ,当2
3
=
AD ,且点Q 在线段AB 上时,设点B 、Q 之间的距离为x ,
APQ PBC
S y S ∆∆=,其中APQ S ∆表示APQ ∆的面积,PBC S ∆表示PBC ∆的面积,
求y 关于x 的函数解析式,并写出函数的定义域.
(3)当AB AD <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大
小.
A
B
C D
P
Q 图8
A
C
D
P
(Q )
图9
A
B
C
D
P Q
图10
相关概念:
1.圆和圆的位置关系
外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))
外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))
相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))
内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))
内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例. (图(6))
2.设两圆半径分别为R和r.圆心距为d,
两圆的位置关系数量关系及其识别方法
外离d>R+r
外切d=R+r
相交R-r<d<R+r
内切d=R-r (R>r)
内含0≤d<R-r (R>r)
初三复习材料(1)答案
姓名 分数 1. 解:(1)∵点A 的坐标为(1,0),点B 与点A 关于原点对称, ∴点B 的坐标为(-1,0),…………………………………………1分 ∵直线b x y +=经过点B ,∴01=+-b ,得1=b .……………1分
∵点C 的坐标为(0,4),直线CM ∥x 轴,∴设点D 的坐标为(x ,4)……1分
∵直线1+=x y 与直线CM 相交于点D ,∴3=x ,∴D 的坐标为(3,4)…1分 (2)∵D 的坐标为(3,4),∴5=OD .…………………1分 当5==OD PD 时,点P 的坐标为)0,6(;………………1分 当5==OD PO 时,点P 的坐标为)0,5(;………………1分 当PD PO =时,设点P 的坐标为)0,(x (0>x ),
∴224)3(+-=
x x ,得625=
x ,∴点P 的坐标为)0,6
25
(……1分 综上所述,所求点P 的坐标是)0,6(,)0,5(,)0,6
25
(.…………1分
(3)当以PD 为半径的圆P 与圆O 外切时,
若点P 的坐标为(6,0),则圆P 的半径5=PD ,圆心距6=PO ,所以圆O 的半径1=r .……………………………………………………2分
若点P 的坐标为)0,5(,则圆P 的半径52=PD ,圆心距5=PO , ∴圆O 的半径525-=r .……………………………2分 综上所述,所求圆O 的半径等于1或525-.
2. 解:(1)∵AD ∥BC ,∴DBC ADB ∠=∠.
∵2==AB AD ,∴ADB ABD ∠=∠.∴DBC ABD ∠=∠.
∵︒=∠90ABC ,∴︒=∠45PBC .………………………………1分
∵
PQ AD
PC AB
=
,AB AD =,点Q 与点B 重合,∴==PQ PB PC . ∴︒=∠=∠45PBC PCB .………………………………1分 ∴︒=∠90BPC . …………………………………………1分
在BPC Rt ∆中,2
2
345cos 3cos =
︒⨯=⋅=C BC PC .……1分 (2)过点P 作BC PE ⊥,AB PF ⊥,垂足分别为E 、F .…………1分 ∴ABC PEB PFB ∠=︒=∠=∠90.∴四边形FBEP 是矩形. ∴PF ∥BC ,PF PE =. ∵AD ∥BC ,∴PF ∥AD .∴
AB
AD
BF PF =
.
∵23=AD ,2=AB ,∴4
3=BF PF .…………………………1分 ∵x QB AB AQ -=-=2,3=BC ,∴PF x S APQ 22-=∆,PE S PBC 2
3
=∆ .
∴
4
2x
S S PBC
APQ -=
∆∆,即42x y -=.…………………………2分
函数的定义域是8
7
0≤
≤x .…………………………1分 (3)过点P 作BC PM ⊥,AB PN ⊥,垂足分别为M 、N .…………1分 易得四边形PNBM 是矩形,∴PN ∥BC ,BN PM =,︒=∠90MPN .
∵AD ∥BC ,∴PN ∥AD .∴AB AD BN PN =.∴AB
AD
PM PN =
. ∵PQ AD PC AB =,∴PC
PQ PM PN =.………………………1分 又∵︒=∠=∠90PNQ PMC ,∴PCM Rt ∆∽PQN Rt ∆.………………1分 ∴QPN CPM ∠=∠.……………………………1分
∵︒=∠90MPN ,∴︒=∠=∠+∠=∠+∠90MPN QPM QPN QPM CPM , 即︒=∠90QPC .…………………………1分。