2009-2010学年度第一学期期末考试八年级数学试题
- 格式:doc
- 大小:149.50 KB
- 文档页数:4
淮滨县县、乡(镇)初中2009--2010学年度上期学业水平测试成绩汇总表(八年级)
八年级 第1页,共8页
淮滨县县、乡(镇)初中2009--2010学年度上期学业水平测试成绩汇总表(八年级)
八年级 第2页,共8页
淮滨县县、乡(镇)初中2009--2010学年度上期学业水平测试成绩汇总表(八年级)
八年级 第3页,共8页
淮滨县县、乡(镇)初中2009--2010学年度上期学业水平测试成绩汇总表(八年级)
八年级 第4页,共8页
淮滨县县、乡(镇)初中2009--2010学年度上期学业水平测试成绩汇总表(八年级)
八年级 第5页,共8页
淮滨县县、乡(镇)初中2009--2010学年度上期学业水平测试成绩汇总表(八年级)
八年级 第6页,共8页
淮滨县县、乡(镇)初中2009--2010学年度上期学业水平测试成绩汇总表(八年级)
八年级 第7页,共8页
淮滨县县、乡(镇)初中2009--2010学年度上期学业水平测试成绩汇总表(八年级)
八年级 第8页,共8页。
板桥二中2010—2011学年度上学期期末考试二八年级数学一、选择题:(本题共10小题;每小题3分,共30分)1.下列图形中,不是..轴对称图形的是( )2.如图,给出下列四组条件:能使ABC DEF △≌△的条件共有( )①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,. A .1组B .2组C .3组D .4组3.下列命题正确的有( )①角平分线上的点到角两边的距离相等。
②在角的内部到角两边距离相等的点一定在角的平分线上。
③三角形三条角平分线交于一点。
④三角形两条高线的交点到三边距离相等。
A 、1个B 、2个C 、3个D 、4个4.在Rt △ABC 中∠C=30°若斜边AC=5cm,则直角边AB 的长为( ) A 、4cm B 、3cm C 、2cm D 、2.5cm 5.若的值为则2y-x 2,54,32==yx( )A 、53 B 、-2 C 、15 D 、56 6.已知1a a -=3,则221a a+的值为( )A 、9B 、7C 、11D 、67.已知一次函数b kx y +=的图象如图所示,则关于x 的不等式kx+b >0的解集是( ) A 、x >1- B 、x <1- C 、x >1 D 、x <18.如图AB =AC,BD =BC ,若∠A =40°,则∠ABD 的度数是( ) A .20B .30C .35D .40第8题A B C DxoyC yxo DxoyB xyA o9.下列图形中,表示一次函数n mx y +=与正比例函数mnx y =(m ,n 为常数,且0≠mn )的图象的是( )10.小明同学骑自行车上学,开始以正常速度匀速行驶,但行驶途中因车出了毛病,只好停下修车,车修好后因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s 关于行驶时间t 的函数图像,那么符合这个同学行驶情况的图像大致为 ( )S s s so t o t o t o t A B C D二、填空题:(本题共9小题,每题3分,共27分)11、从镜子中看到的一串数字是,这串数字应为 .12、函数31-=x y 的自变量x 的取值范围是 . 13、在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,总价y (元)与加油量x (升)的函数关系式是 .14、若︱4a -︱+( 3b -)2=0则A (,)a b 关于y 轴对称点的坐标为15、如图,线段AC 与BD 交于点O ,且OA =OC , 请添加一个条件,使△OAB ≌△OCD ,这个条件是______________________.16、一个等腰三角形的一个外角等于110︒,则这个三角形的顶角应该为 。
五、设函数由方程确定,求.(8分)六、若有界可积函数满足关系式,求。
(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。
(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标.(10分)十、求方程的通解(6分)十一、求证:.(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。
B 3。
D 4。
B 5.D分,共18分)为任意常数),4. 2 , 5。
6。
分 (6)分解:………………3分…………….6分 (8)导 (3)数)…………6分分解:(1)。
……。
.3分 (6)分分=……………6分时有极大值2,有极小值。
在上是凸的,在上是凹的,拐点为(0,0)………10分十、解;…………………..3分设方程(1)的解为代入(1)得………5分…………………….6分十一、证明:令………………1 分又…。
3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。
,所以…………。
5分.(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是( )(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的()(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内()(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。
(A)(B)(C)(D)5.广义积分当( )时收敛。
(A) (B) (C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限.(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型。
(7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。
2008-2009学年度博兴县八年级第一学期期末教学质量检测数学试卷第Ⅰ卷一、选择题(每小题3分,共45分。
选出唯一正确的答案)1.小明从镜子中看到对面电子钟的示数如下图所示,则这时的时刻应是A .21:10B .10:21C .10:51D .12:012.如果))(32(9422M y x y x --=-,则M 表示的式子为A .y x 32+-B .y x 32-C .y x 32--D .y x 32+3.等腰三角形的顶角等于70°。
则它的底角是A .70°B .55°C .60°D .70°或55°4.下列各式中,无意义的是A .23-B .33)3(-C .2)3(-D .)3(--5.已知6=m x ,3=n x ,则n m x -2的值为A .9B .43 C .12 D .346.2)7.0(-的平方根是A .7.0-B .7.0±C .7.0D .7.0±7.一天,小军和爸爸去登山,已知山脚到山顶的路程为100米。
小军先走了一段路程,爸爸才开始出发。
下图中两条线段分别表示小军和爸爸离开山脚登山的路程S (米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时)。
则下列说法错误的是A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快8.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完。
销售金额与卖瓜的千克数之间的关系如下图所示,那么小李赚了A .32元B .36元C .38元D .44元9.若点(1y a ,)和(2y b ,)都在直线53+-=x y 上,若b a >,则下列结论正确的是A .21y y >B .21y y <C .21y y =D .21y y ≤10.已知某函数图像如下图所示,则0>y 时自变量x 的取值范围是A .1-<x 或2>xB .1->xC .21<<-xD .2<x11.已知函数13+=x y ,当自变量增加3时,相应的函数值增加A .10B .9C .3D .812.已知AB ∥CD ,AD ∥BC ,AC 与BD 交于点O ,则图中全等的三角形有A .3对B .5对C .2对D .4对13.一次函数b x y +=1与a x y +=2的图像如下图所示,则下列结论:①0<k ;②0>a ;③0>b ;④当3<x 时21y y <。
期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.下列各式中,无论字母取何实数时,分式都有意义的是( )A.225x x+B.211y y -+C.213x x+D.21ba + 2.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10 000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装个鸡蛋,根据题意下列方程正确的是( ) A .10 00010 0001050x x -=+ B .10 00010 0001050x x -=- C .10 00010 0001050x x -=- D .10 00010 0001050x x-=+ 3.方程22(1)101x x ++=-有增根,则增根是( ) A.x =1 B.x =-1 C.x =±1D.04.如图,已知点A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的( ) A.甲B.乙C.丙D.丁5.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .196.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7.如图所示,四边形ABCD 是平行四边形,E 是边CD 延长线上一点,BE 分别交AC 、AD 于点O 、F ,则图中相似三角形共有( )第6题图第5题图 第4题图A .6对B .5对C .4对D .3对8.举反例说明“一个角的余角大于这个角”是假命题,错误的是( )A.设这个角是45°,它的余角是45°,但45°=45°B.设这个角是30°,它的余角是60°,但30°<60°C.设这个角是60°,它的余角是30°,但30°<60°D.设这个角是50°,它的余角是40°,但40°<50°9.针对甲、乙两组数据:甲组:20,21,23,25,26;乙组:l00,101,103,105,106.下列说法正确的是( )A .乙组比甲组稳定B .甲组比乙组稳定C .甲乙两组的稳定程度相同D .无法比较两组数据的稳定程度10.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.566.5这一小组的频率为( ) A .0.04 B .0.5 C .0.45 D .0.4 11.等式=成立的条件是( )A.1x >B.1x <-C.≥D.≤ 12.24n n 的最小值是( )A.4B.5C.6D.2 二、填空题(每小题3分,共24分)13.若干名游客要乘坐汽车,要求每辆汽车坐的人数相等,如果每辆汽车乘坐30人,那么有一人未能上车;如果少一辆汽车,那么所有游客正好能平均分到各辆汽车上,已知每辆汽车最多容纳40人,则有游客 人. 14.化简262393m m m m +÷+--的结果是 . 15.为了调查不同面额纸币上细菌数量与使用频率之间的关系,某中学研究性学习小组从银行、商店、农贸市场及医院收费处随机采集了5种面额纸币各30张,分别用无菌生理盐水溶液清洗这些纸币,对洗出液进行细菌培养,测得细菌如下表:面额5角1元5元10元100元细菌总数(个/30张) 147 400 381 150 98 800 145 500 12 250(1)计算出所有被采集的纸币平均每张的细菌个数约为 (结果取整数); (2)由表中数据推断出面额为 的纸币的使用频率较高,根据上面的推断和生活常识总结出:纸币上细菌越多,纸币的使用频率 ,看来,接触钱币以后要注意洗手噢!第7题图16.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2009~2013年,这两家公司中销售量增长较快的是 公司.17.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (填“甲”或“乙”).18.不通过计算,比较图中甲、乙两组数据的标准差:s 甲 s 乙.(填“>”“<”或“=”)19.若△ABC 的三边长为a ,b ,c ,其中a ,b 满足22690a b b -+-+=,则c 的取值范围 为________.20.已知a b 、为有理数,m n 、分别表示57-的整数部分和小数部分, 且21amn bn +=,则2a b += . 三、解答题(共60分)21.(6分)(1)计算:12 01112(3)(1)3-⎛⎫-+--- ⎪⎝⎭-1;(2)化简:9352422a a a a -⎛⎫÷+- ⎪--⎝⎭. 22.(6分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(6分)如图,D 是△ABC 的边AB 上一点,连接CD ,若AD =2,BD =4,∠ACD =∠B ,求AC 的长.第23题图第16题图第18题图24.(6分)如图,△OAB 是等腰直角三角形,∠A =90°,AO =AB .以斜边OB 为直角边,按顺时针方向画等腰直角三角形OBC ,再以同样的方法画等腰直角三角形OCD .(1)按照此种要求和顺序画等腰直角三角形ODE 和等腰直角三角形OEF ; (2)在完成(1)后,图中有位似图形吗?若有,请算出较小三角形与较大三角形的位似比.25.(6分)判断下列命题是真命题还是假命题,如果是假命题,举一个反例:(1)两条直线被第三条直线所截,同位角相等; (2)如果>b ,那么c >bc ; (3)两个锐角的和是钝角.26.(6分)如图所示,AD 是△ABC 的高,∠EAB =∠DAC ,EB ⊥AB .试证明:AD •AE =AC •AB .27.(8分)某班参加体育测试,其中100 m 游泳项目的男、女生成绩的频数分布表如下: 男生100 m 游泳成绩的频数分布表 组别(min )1.552.552.553.55 3.554.554.555.55频数 2 12 5 1 女生100 m 游泳成绩的频数分布表组别(min )1.552.552.553.553.554.554.555.555.556.55频数168 41(1)在同一坐标系中画出男、女生100 m 游泳成绩的频数分布折线图. (2)男生成绩小于3.55 min 为合格,女生成绩小于4.55 min 为合格.问男、女生该项目 成绩合格的频数、频率分别为多少? (3)根据所画的频数分布折线图,分析比较男、女生该项目成绩的差异(至少说出两项). 28.(8分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒): 编号类型 一 二 三 四 五 六 七 八 九 十 甲种电子钟 1 -3 -4 4 2 -2 2 -1 -1 2 乙种电子钟4-3-12-21-22-21(1)计算甲、乙两种电子钟走时误差的平均数. (2)计算甲、乙两种电子钟走时误差的方差. (3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:第27题图第24题图第26题图你会买哪种电子钟?为什么? 29.(8分)阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.(1)试求:①671+的值;②nn ++11(n 为正整数)的值.(2+⋅⋅⋅+.期末检测题参考答案1.B 解析:A.当x =0时,分母等于0,没有意义,故选项错误;B.不论y 取何值,210y +>一定成立,故无论字母取何实数时,分式都有意义,故选项正确;C.当x =0时,分母等于0,没有意义,故选项错误;D.当1a =-时,分母等于0,没有意义,故选项错误.故选B .2.B 解析:已知每个甲型包装箱可装个鸡蛋,则每个乙型包装箱可装个鸡蛋,根据题意,得10 00010 0001050x x-=-.故选B . 3.B 解析:方程两边都乘21x -,得22110x x ++-=().∵ 原方程有增根,∴ 最简公分母210x -=,解得x =1或-1.当x =1时,4=0,这是不可能的;当x =-1时,0=0,符合题意.故选B . 4.C 解析:根据题意,△ABC 的三边之比为2︰5︰5,要使△ABC ∽△PQR ,则△PQR 的三边之比也应为2︰5︰5,经计算只有丙点合适,故选C .5.B 解析:如图,根据等腰直角三角形的性质知,AC =BC ,BC =CE =CD ,∴ AC=2CD ,623CD ==,∴ EC 2=22+22,即EC =2. ∴S 1的面积为EC 2=2×2=8.根据等腰直角三角形的性质知S 2的边长为3,∴ S 2的面积为3×3=9,∴S1+S 2=8+9=17.故选 B. 6.A 解析:∵ 小正方形的边长均为1, ∴ △ABC 三边长分别为2,, . 同理:A中各边长分别为:,1,;B 中各边长分别为:1、2,;C 中各边长分别为:,3,; D中各边长分别为:2,,.只有A 项中三角形的三边与已知三角形的三边对应成比例,故选A .7.A 解析:∵ ABCD 是平行四边形,∴ AD ∥BC ,AB ∥DC .∴ △ABO ∽△CEO ,△AOF ∽△COB ,△EFD ∽△EBC ,△ABF ∽△DEF ,△ABF ∽△CEB 五对,还有一对特殊的相似即△ABC ≌△CDA ,∴ 共6对.故选A . 8.B 解析:A.所设的角与它的余角相等,和原结论相符,故A 正确; B.所设的角小于它的余角,和原结论相反,故错误; C.所设的角大于它的余角,和原结论相符,故正确;D.所设的角大于它的余角,和原结论相符,故正确.故选B .9.C 解析:甲组:20,21,23,25,26;乙组:l00,101,103,105,106,根据一组数据第5题答图同时减去或加上同一数据其方差不变,∴ 要求这两组数据的方差,即求:0,1,3,5,6的方差, 故两组数据方差相同,即甲乙两组的稳定程度相同,故选C .10.D 解析:根据题意,可知在64.566.5之间的有8个数据, 故64.566.5这一小组的频率为80.420=.故选D . 11.C 解析:由题意知,≥≥,所以≥ 12.C 解析:∵ ,当=6时, =6,∴ 原式=2=12,∴ 的最小值为6.故选C .13.961 解析:设有辆汽车,少一辆汽车后每辆坐人,根据题意列方程得, 30+1=(-1),整理得301313011x y x x +==+--.∵ 为大于30而不大于40的整数, ∴-1能整除31,∴=2或=32,当=2时,=61(不合题意,舍去);当=32时,=31.因此游客人数为30×32+1=961(人). 14.1 解析:()()262633·139333323m m m m m m m m m m m -++÷=+==+--++-+. 15.5 234 1元 越高 解析:(1)(147 400+381 150+98 800+145 500+12 250)÷(30×5)≈5 234个;(2)面额为1元的纸币的使用频率较高,纸币上细菌越多,纸币的使用频率越高.16.甲 解析:从折线统计图中可以看出:甲公司2013年的销售量约为510辆,2009年约为100辆,则从2009~2013年甲公司增长了510-100=410(辆);乙公司2013年的销售量为400辆,2009年的销售量为100辆,则从2009~2013年,乙公司中销售量增长了400-100=300(辆).故甲公司销售量增长较快.17.乙 解析:由于s 2甲>s 2乙,则成绩较稳定的是乙.18.> 解析:由图可知甲的方差大于乙的方差,所以甲的标准差也一定大于乙的标准差.19.1<c <5 解析:∵ 22690a b b --+=,∴22(3)0a b --=.∵20a -,2(3)0b -≥,∴ 20a -=,30b -=,∴ a =2,b =3.∵ △ABC 的三边长为a ,b ,c ,∴ b a c b a -<<+,即3-2<c <3+2, ∴ c 的取值范围为1<c <5.20.2.5 解析:因为所以,,即,所以,,所以,所以.21.分析:(1)分别根据零指数幂、负整数指数幂的运算法则计算,然后根据实数的运算法则求得计算结果. (2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简. 解:(1)12 01112(3)(1)213113-⎛⎫-+---=+-+= ⎪⎝⎭-1;(2)()()233935452422222a a a a a a a a ----⎛⎫÷+-=÷ ⎪----⎝⎭()()()()()3323223323a a a a a a --=⨯=-+-+.22.分析:设原计划每天铺设管道米,根据题意可列方程求解.解:设原计划每天铺设管道米,则()12030012027120%x x -+=+,解得=10(米), 经检验,=10是原方程的解.答:原计划每天铺设管道10米. 23.分析:可证明△ACD ∽△ABC ,则AC ADAB AC=,即得出AC 2=AD •AB ,从而得出AC 的长. 解:在△ABC 和△ACD 中,∵ ∠ACD =∠B ,∠A =∠A ,∴ △ABC ∽△ACD ,∴AC ADAB AC=, 即AC 2=ADAB =AD (AD +BD )=2×6=12,∴ AC =2.24.解:(1)如图:(2)有,△OAB 与△OEF 是位似图形. 设OA =a ,∵∠A =90°,AO =AB , ∴ OB 22222OA AB a a a ++,同理:OC =222a a =,OD 2222a a =,OE 2224a a =, ∴144OA a OE a ==, ∴ 较小三角形与较大三角形的位似比为1︰4.25.分析:判断是否为真命题,需要分别分析各题设是否能推出结论,如果能推出结论就为真命题,如果不能推出结论就为假命题.解:(1)假命题,两直线不平行时不成立,可通过画图说明; (2)假命题,当c ≤0时不成立,如3>2,但3×0=2×0;(3)假命题,如=20°,=50°,则=70°,不是钝角.26.证明:∵ AD 是△ABC 的高,∴ AD ⊥BC . 又∵ EB ⊥AB ,∴ ∠ADC =∠ABE =90°. 又∵ ∠EAB =∠DAC ,∴ △ABE ∽△ADC ,第24题答图∴AB AEAD AC=,即AD •AE =AC •AB . 27.分析:(1)根据频数分布表正确描点连线; (2)根据频数分布表计算符合条件的频数和,再进一步计算频率; (3)能够根据统计图直观地反映信息. 解:(1)男、女生100 m游泳成绩的频数分布折线图如下:(2)男生该项目成绩合格的频数为14,频率为0.7;女生该项目成绩合格的频数为15,频率为0.75.(3)男生总体成绩好于女生,女生的频数变化较男生平缓等.28.分析:根据平均数与方差的计算公式易得(1)(2)的答案,再根据(2)的计算结果进行判断.解:(1)甲种电子钟走时误差的平均数是:1344222120111--++-+--+=(); 乙种电子钟走时误差的平均数是:43122122101210--+-+-+-+=(). ∴ 两种电子钟走时误差的平均数都是秒. (2)2222[103020110]s =-+--++-=甲()()()110606⨯=; 2222[403010110]s =-+--++-=乙()()()480.1148⨯=.∴ 甲、乙两种电子钟走时误差的方差分别是6和4.8.(3)我会买乙种电子钟,因为平均水平相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优. 29.解:(1)①671+1(76)(76)(76)⨯-=+-76(1)11(1)(1)n n n n n n n n n n +==++++++-第27题答图数学试卷及试题+⋅⋅⋅+(2=。
2009—2010学年度第一学期期末练习一、直接写出得数(18分)11.5÷0.5 38 ÷83 15 -15 ÷2 13 ×12 ÷12 ×131040-104 0.1×0.1 712 ︰2124 40×30%二、填空(24分,每题2分,第2题4分)1、(1)在67 、-3、+5、0、-0.7、9.08这些数中正这些数中正数是( )负数是( )。
2、( )︰12= 0.75 = ( )% = ( )折 =12( )3、行同一段路120米的路,甲需3分钟,乙需2分钟,甲与乙的速度比是( )∶( )。
4、一个圆的半径扩大2倍,周长扩大( )倍,面积扩大( )倍5、把1千克∶50克化成最简整数比是( ),比值是( )。
6、服装店购进一批衣服,每件成本120元,商店打七折出售,这样每( )元。
7、、一件商品降价50%,现价是原价的( )%。
8、为了表示某地区一年内月平均气温变化的情况,可以把月平均气温制成( )9、在一块边长4cm 的正方形硬纸板上剪下一个最大的圆,这个圆的面积是( )cm 2,10、一个三角形三个内角的比是5︰2︰1,这是( )三角形。
11、有一张长3分米,宽2分米的长方形纸,用它剪成一个最大的圆,这个圆的周长是( )分米。
三、选择(把正确的答案的序号填在括号里)10分 1、下列说法错误的是( )A 、负数比0小B 、圆规两脚的距离是圆的半径C 、比的后项可以是0 2、五年级5个班进行乒乓球赛,每两个班赛一场,要赛( )场 A 、4 B 、10 C 、153、长方形、正方形、平行四边形、圆形的周长相等,面积最大是( )A 、长方形B 、正方形C 、平行四边形D 、圆形 4、五(1)班男生与女生人数比是3︰2,男生占全班的( ) A 、150% B 、66.7% C 、60% 5、1、下列图案中,对称轴条数最多的是( )。
人教版八年级数学第一学期期末考试试卷(试卷满分120分,考试时间100分钟)题号 一二三四五六七八 总分 累分人得分祝你考出好成绩!一、精心选一选(请将下列各题唯一正确的选项代号填在题后的括号内.本大题共10小题,每小题3分,共30分.)1、下列运算中,计算结果正确的是 ( )A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2、在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第四象限B. 第三象限C.第二象限D. 第一象限 3、化简:a+b-2(a-b)的结果是 ( ) A.3b-a B.-a-b C.a+3b D.-a+b 4、如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、 E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( ) A .10cm B .12cm C .15cm D .17cm 5、下列多项式中,不能进行因式分解的是 ( ) A. –a 2+b 2 B. –a 2-b 2 C. a 3-3a 2+2a D. a 2-2ab+b 2-16、小明家下个月的开支预算如图所示,如果用于衣服上的支 是200元,则估计用于食物上的支出是 ( ) A. 200元 B. 250元 C. 300元 D. 3507、下列函数中,自变量的取值范围选取错误..的是 ( ) A .y=2x 2中,x 取全体实数 B .y=11x +中,x 取x ≠-1的实数 C .y=2x -中,x 取x ≥2的实数 D .y=13x +中,x 取x ≥-3的实数 得分阅卷人食物30%教育22%衣服20%其他28%图2AB C FED8、下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④ A 、②③④ B 、①②③ C 、①②④ D 、①②④ 9、等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80° 10、如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置 的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是 ( )A B C D二、耐心填一填(本大题共6小题,每小题4分,共24分.)11、32c ab -的系数是 ,次数是 。
高碑店市2009— 2010学年度第一学期期中考试八 年 级 数 学 试 题本试卷共8页,26道小题,总分为120分,考试时间为120分钟.答案用蓝色、黑色钢笔或圆珠笔书写,不能用计算器.一、选一选.(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.把符合题目要求的选项前的字母填在题后相应的括号内.)1. 16的平方根是( )A 、±4B 、-4C 、4D 、±22. 在-2)5(-、2π、4.0、71、0 、311 中无理数个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个3. 以下列各组数据为边长作三角形,其中能组成直角三角形的是 () A 、3、5、3 B 、4、6、8 C 、7、24、25 D 、6、12、134. 矩形具有而平行四边形不具有的性质是( )A 、对角线互相平分B 、两组对边分别相等C 、相邻两角互补D 、对角线相等5.如图(1),等边ΔABC 中,D 为BC 上一点, ΔABD 经过旋转后到达ΔACE 的位置,如果∠BAD=18°,则旋转角等于( )A 、18° B 、 32° C 、60° D 、72°6. 下列各组数的比较中错误的是( ) A 、 - 5 < -2 B 、21 > 215- C 、3> 1.7 D 、π>3.14 7. 甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测:检测后,他们都说窗框是矩形,你认为最有说服力的是 A 、甲量得窗框两组对边分别相等 B 、乙量得窗框的对角线相等C 、丙量得窗框的一组邻边相等。
D 、丁量得窗框的两组对边分别相等且两条对角线也相等。
8.如图2,等腰等形ABCD 中,AD ∥BC ,AD=5, ∠B=60°,BC=8,且AB ∥DE ,ΔDEC 的周长是 ( )A 、 3B 、9C 、15D 、19图29. 一个直角三角形的两条直角边分别为5、12,则斜边上的高为 ( ) A 、512 B 、125 C 、 1360 D 、 6013 10. 如图3,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将ΔBCE 绕点C 顺时针方向旋转90°得到ΔDCF ,连接EF ,若∠BEC=60°,则∠ EFD 的度数为 ( )A 、10°B 、15°C 、20°D 、25°卷Ⅱ二、填一填.(本大题共8个小题,每小题3分,共24分)11. 若38x =-,则x = .12.= 。
天津师范大学考试试卷2009 —2010学年第一 学期期末考试试卷(B 卷)科目: 离散数学学院: 管理学院专业:08信管、物流一、 单项选择题:在每小题的备选答案中选出一个正确答案,并将正确答案的代(每小题 分,本大题共 分)1.谓词公式(∀x)(P(x) ( ∃y)R(y)) → Q(x)中量词(∀x)的辖域是( )。
A. (∀x) (P(x) ( ∃y)R(y))B. P(x)C. P(x) ( ∃y)R(y)D. P(x),Q(x)2. 下列公式中哪些公式不是前束范式( )。
A. x ∀∃y(P(x) q(y))B. ∀x ∀y(P(x) Q(y) ( ∃z)S(z))C.Q(a,b)D. P3. 给定解释N 如下:个体域为自然数D N ;D N 上特定元素a = 0;D N 上特定函数f(x,y) = x+y , g(x,y) = x ∙y ; D N 上特定谓词E(x,y)为x=y ,下列公式为真的是( )。
A. ∀xE(g(x,a),x) B. ∀x ∀y ∀zE(f(x,y),z) C. ∀x ∀yE(f(x,y),g(x,y)) D. ∃x ∃yE(f(x,y),g(x,y))4. 设集合X≠∅,则空关系∅不具备的性质是()。
xA.反自反性B.自反性C.对称性D.传递性5. 下列各式中,哪个不成立()。
A.(∀x) (P(x) Q(x))⇔(∀x) (P(x) (∀x)Q(x))B.(∃x)(P(x) Q(x))⇔(∃x) (P(x) (∃x)Q(x)C.(∀x) (P(x) Q(x))⇔(∀x) (P(x) (∀x)Q(x)D.(∀x) (P(x) Q)⇔(∀x) (P(x) Q)6. 设个体域A={a,b},则∃x(F(x) G(x))消去量词为()。
A. F(a) G(a)B. F(b) G(b)C. ( F(a) G(a) (F(b) G(b)))D. F(a) G(b)7. 给定A={1,2,3,4},A上的关系R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>}满足的性质是()。
2009-2010学年上学期八年级期末模拟考试数 学 试 题一、选择题<本题共10小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填在下面的表中.每小题3分,满分30分,错选、不选或选出的答案超过一个,均记0分.)DOL45jzTsy 1.如果a 的倒数是1,那么a2009等于< ).<A )1<B )1<C )2009<D2.如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是< ). <A )两点之间,直线最短<B )两点确定一条直线<C )两点之间,线段最短 <D )两点确定一条线段3.如果是同类项,那么a ,b 的值分别是< ).<A )1,2 <B )0,2 <C )2,1 <D )1,14.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是< ).<A )(B><C )<D )5.下列说法中,正确的是 < ). (A>近似数精确到十分位(B>将数80360保留2个有效数字是B A 1a 第4题第2题(C>用四舍五入法得到的近似数17.8350精确到0.001 (D>用科学记数法表示的近似数,其原数是606006.下图中几何体从正面看能得到< ).7.如图所示的正方体的展开图是< ).8.下列说法中,错误的是< ).<A )单项式的次数是2<B )整式包括单项式和多项式<C )与是同类项<D )多项式是二次二项式9.已知关于的方程的解是,则的值是< ).<A )2 <B )-2<C )- <D )10.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:DOL45jzTsy ①40m+10=43m -1 ②③④40m+10=43m +1,其中正确的是< ).<A )①② <B )②④ <C )②③ <D )③④二、填空题<每小题3分,共30分)11.一个角是70°9′,它的补角是 .A B C D第6题第7题A B C D北A65°我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十12.如图,点A 位于点O 的 方向上. 13.一个角的补角是这个角的余角的3倍,则这个角为 .14.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元.那么7840000万元用科学记数法表示为 万元. 15.单项式的系数是 ,次数是 .16.如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为__________________.17.运动场的跑道一圈长400m.甲练习骑自行车,平均每分骑350m ;乙练习跑步,平均每分跑250m.两人从同一处同时反向出发,经过 分钟首次相遇.18.已知:线段AC 和BC 在同一条直线上,如果AC=5.4cm ,BC=3.6cm ,线段AC 和BC 中点间的距离是 .DOL45jzTsy 19.若,且,,则.20.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g .DOL45jzTsy三、计算题<第21题每小题4分共16分,第22题每小题5分共10分,满分26分)第16题第20题21.<1) <2)<3)-32-<)3×-6÷<-)3 <4)22. 先化简再求值:<1) ,其中. <2),其中四、解方程<6分)23.五、解答题<第24,25题每题6分,第26,27题每题8分,满分28分)24.请你阅读下面的诗句并解答:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?” DOL45jzTsy25.已知,点C 是线段AB 上的一点,点M 是线段AC 的中点,点N 是线段BC 的中点,<1)如果AB=10cm ,那么MN 等于多少?<2)如果AC:CB=3:2,NB=3.5 cm ,那么AB 等于多少?<要求先根据题意正确画出草图,再列式计算,要有解题过程)26.如图所示,OE ,OD 分别平分∠AOB和∠BOC,且∠AOB=90°; <1)如果∠BOC=40°,求∠EOD的度数;<2)如果∠EOD=70°,求∠BOC的度数.OAEB我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十27.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税,试根据上述纳税的计算方法作答:<1)若王老师获得的稿费为2400元,则应纳税________元,若王老师获得的稿费为4000元,则应纳税________元.<2)若王老师获稿费后纳税420元,求这笔稿费是多少元?初二数学试题参考答案友情提示:批卷前教师务必先做,多种方法只要正确参照评分标准相应得分,本答案谨供参考.一、选择题<本题共10小题,每小题3分,满分30分,错选、不选或选出的答案超过一个,均记0分.)题号1234567891答案BC A C B CD A C D二、填空题<每小题3分,共30分)11.109°51′; 12.北偏西65°; 13.45°; 14.7.84×106 ; 15.2;5; 16.; 17.; 18.0.9cm或4.5cm ; 19.49或1; 20.20.DOL45jzTsy三、计算题<第21题每小题4分共16分,第22题每小题5分共10分,满分26分)21.<1)= …………………………2分=-3-2+6 ………………………………3分=1 ………………………………4分<2)= ……………………2分= ………………………3分= ………………………………4分<3)-32-<)3×-6÷<-)3=-9-×-6÷<-) ………………………2分=-9-+ ………………………3分 =10.5 ………………………4分DOL45jzTsy<4)= ……………2分= …………………………………4分22.解:<1)= ………………………2分= ………………………3分当时,原式= ………………………4分=40 ………………………5分<2)………………………2分………………………3分当时,原式= …………………………4分=16 …………………………5分四、解方程<6分)23.解:……………………2分……………………3分……………………4分……………………5分……………………6分五、解答题<第24,25题每题6分,第26,27题每题8分,满分28分)24.解:设有x棵树,根据题意得 ……………………1分3x+5=5<x-1) ……………………4分解得:x=5 ……………………5分3x+5=15+5=20<只) ……………………6分答:有5棵树,20只鸟.25.解:画对图形得2分<1)MN =CM+CN= ……………3分==5 cm; ……………4分<2)∵NB=3.5 cm,∴BC=7 cm ……………5分DOL45jzTsy ∴AB==17.5cm; ………………6分注意:解答要有过程,没有解题过程的酌情扣1~2分.26.<1)解:根据题意:∠EOB=∠AOB==45° …………………………2分∠BOD=∠BOC==20° …………………………3分所以:∠EOD=∠EOB+∠BOD=65° …………………………4分 <2)解:根据题意:∠EOB=∠AOB==45° …………………………6分∠BOD=∠EOD-∠EOB=70°-45°=25° …………………7分所以:∠BOC=2∠BOD=50° ………………………………8分27.<1)若王老师获得的稿费为2400元,则应纳税 224元, ………2分若王老师获得的稿费为4000元,则应纳税440元. ……4分<2)解:因为王老师纳税420元,所以由<1)可知王老师的这笔稿费高于800元,而低于4000元,设王老师的这笔稿费为x元,根据题意: ………………………5分…………………………………7分…………………………………8分答:王老师的这笔稿费为3800元.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
海南师范大学 物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》 2009—2010学年度第一学期期末考试(A )卷答案与评分标准 注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上 3.考试形式:闭卷 4. 本试卷共五大题,满分100分, 考试时间100分钟一、单项选择题(本题共六小题,每小题3分,共18分。
在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分)1、设B A ,为随机事件, 若4.0)(,6.0)(==B P A P , 则有( D ). A :1)(=B A P ; B :24.0)(=AB P ; C :6.0)(≤B A P ; D: 4.0)(≤AB P .2、设随机变量X 服从正态分布)1 ,0(N , )(x Φ为其分布函数,则}4{2<X P =( A ) . A :1)2(2-Φ ; B :1)4(2-Φ ; C : )2(21Φ-; D :)2(1Φ-.3、己知二维随机变量),(Y X 具有分布函数),(y x F ,则( D ). A :}{),(x X P x F <=+∞; B :1),(=+∞x F ; C :1),(=+∞-∞F ; D :0),(=-∞x F .4、己知随机变量X 服从二项分布)2.0 ,5(B , 则=)(2X E ( C ). A :1; B :0.8; C :1.8; D :0.2.5、设n X X X ,,,21 是来自总体) ,(2σμN 的简单随机样本,则∑==n i i X n X 11服从正态分布( A ). A :) ,(2n N σμ; B :) ,(2σn n N ; C :) ,(2σμN ; D :)1 ,0(N .6、设n X X X ,,,21 是来自总体) ,(2σμN 的简单随机样本,2 σ未知,检验假设 00μμ=:H ,对01μμ≠:H 时,需用到检验统计量是( B ). A :n X Z σμ0-=; B :n S X T 0μ-=; C :222)1(σχS n -=; D :n S X T n 0μ-=. 二、填空题(将答案直接填入栝号内,本题共六小题,每小题3分,共18分) 1、设事件B A 与相互独立,7.0)(,5.0)(==B A P A P ,则=)(B P ( 0.4 ) 第1页(共6页) 第2页(共6页)2、设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它,,0,10,3)(2x x x f X 的概率分布函数为)(x F ,则=)5.0(F ( 0.125 ).3、已知随机变量Y X 与的联合分布律为则概率==}1),{max(Y X P ( 0.6 );4、设随机变量X 的概率密度函数为⎩⎨⎧≤>=-,0,0,0,)(x x e x f x则X e Y 3-=的数学期望=)(Y E ( 41).5、己知随机变量X 的期望,20)(=X E 方差,8)(=X D ,则≤≥-}620{X P ( 92);.6、设n X X X ,,,21 是来自总体),(2σμN 的简单随机样本,2σ未知,X 是样本均值, 2S 是样本均值,则μ的置信度为1-α的单侧置信下限为()三、解答题(本题共 4小题,每小题8分,共32分)1、9.0)(,7.0)(,5.0)(===B A P B P A P ,试计算:)(AB P ,)(B A P -及)(B A A P 的值。
中山市2009–2010学年度上学期期末水平测试试卷八年级数学一、单项选择题(3分×5=15分)1、8的立方根是 ( ) A .2B .2-C .±2D .2、如下书写的四个汉字,其中为轴对称图形的是 ( )A .B . C. D.3、一次函数2y x =-+的图像是 ( )4、若正比例函数的图像经过点(1-,2),则这个图像必经过点 ( ) A .(1,2)B .(1-,2-)C .(2,1-)D .(1,2-)5、下列运算中,不正确...的是 ( ) A .3332a a a +=B .235a a a =· C.329()a a -=D .3222a a a ÷=二、填空题(3分×5=15分)6、4的算术平方根是.7、点P (-2,3)关于x 轴的对称点的坐标是.////////////////////////////////////////////密封线内不要答题 ///////////////////////////////8、已知5m n +=,3mn =,则22m n mn += .9、已知一次函数y kx b =+的图像如图,当0x <时,y 的取值范围是 .10、如图,在Rt△15°,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若3AC =,则BE 的长是 . 三、解答题(共70分,要写出解题过程) 11、(5分)分解因式:2221a b b ---12、(53013、(5分)计算:()()()2312x x x +---DB E A14、(5分)画出函数23y x =-的图像,并根据图像回答下列问题: (1)函数图像不经过第 象限. (2)y <0时,x 的取值范围是 .15、(5分)在△ABC 中,用直尺和圆规作出∠B 的平分线(不写作法,保留作图痕迹)16、(6分)给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.AB17、(6分)如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB AD =..18、(6分)如图,ABC △和DCE △都是边长为2的等边三角形,点B C E 、、在同一条直线上,连接BD ,求ABD ∠的度数.A D CB 12A DBC E19、(6分)如图,P 是∠BAC 内的一点,PE AB PF AC ⊥⊥,,垂足分别为点E F ,,AF AE =.求证:点P 在∠BAC 的平分线上.20、(6分)一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h )时,汽车与甲地的距离为y (km ),y 与x 的函数关系如图所示.根据图像信息,解答下列问题:(1)求汽车返程时y 与x 之间的函数解析式; (2)求这辆汽车从甲地出发4h 时与甲地的距离.21、(7分)如图,在ABC △中,AB AC =,40BAC ∠=︒,分别以AB AC 、为边作两个等腰直角三角形,使90BAD CAE ∠=∠=︒. (1)求DBC ∠的度数;(2)求证:BE CD =.22.(8分)一次函数y kx b =+的图像与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D , P 为OB 上一动点,求PC +PD 取得最小值时P 点的坐标.A B C ED。
2009~2010年度八年级上学期学科竞赛数 学 试 卷题号 一 二 三 四 五总分 21 22 23 24 25 26 27 28 29 得分(说明:全卷共8页,满分120分)一、选择题(本题共10小题,每小题3分,共30分,每小题给的四个答案中,有且只有一个是正确的,将你认为正确的选项填在题后的括号内)1.在227,8,–3.1416 ,π,25,0.61161116……,39中无理数有( )A .2个B .3个C .4个D .5个 2.下列说法不正确的是 ( )A 、51251±的平方根是;B 、0.2的算术平方根是0.02;C 、的一个平方根是819- ;D 、3273-=-3.如图在所示的象棋盘上,建立适当的平面直角坐标系,使帅位于点(-1,0)上、相位于点(1,0)上,则炮位于点( ) A 、(-3,3) B 、(0,3) C 、(-4,3)D 、(4,3)4.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( ) A 、矩形 B 、三角形 C 、梯形 D 、菱形5. 函数y =-2x-5的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6.下列图形中,是中心..对称图形的是( ) 学校:班级:座号:姓名:密封线内不要答题○帅 ○相 ○炮12-3-210-13A7.若532+y x b a 与x y b a 2425-是同类项,则( ) A 、⎩⎨⎧==2,1y x B 、⎩⎨⎧-==1,2y x C 、⎩⎨⎧==2,0y x D 、⎩⎨⎧==1,3y x8.下列各组条件中,能判定四边形ABCD 为矩形的是( )A 、∠A+∠B=900B 、AB ∥CD ,AB=CD ,AC=BDC 、AB ∥CD ,AD=BC ,AC=BD D 、AC=BD ,∠A=9009.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而减小,则一次函数k x y +=的图象大致是( ).xyxyxyxyOOOOA B C D 10.如图,在菱形ABCD 中,∠BAD=700,AB 的垂直平分线交对角线AC于点F ,E 为垂足,连结DF ,则∠CDF 等于( ) A. 600B. 700C. 750D. 85二、填空题(本题共10小题,每小题3分,共30分,请把你认为正确的答案写在横线上)11.比较实数的大小:————.12.计算:3123-= .13.已知⎩⎨⎧==1,2y x 方程2x -ay=5的一个解,则a = ,14.如图所示:数轴上点A 所表示的数为a ,则a 的值是______. (14题图) 15. 一个正数的两个平方根分别是2m-1和 4-3m,则这个正数是_____________.F ED CBA16. 若点A (-2,3)先向右平移3个单位,在向下平移1个单位,得到的点的坐标为_______. 17.正方形切去一角后,所得多边形的内角和为 . 18.将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形关于_______对称。
2009-2010学年度第一学期期中学模拟试卷八 年 级 数 学时间:120分钟、总分:150分一、精心选一选(每小题3分,计24分,请将每题答案填在答纸相应的表格内) 1.9的算术平方根是( )A. ±3B. 3C. -3D. 32.右图中,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N3.如图,左边是一个正方形,右边是一个直角三角形,则此正方形 的面积是( )A .1cm 2B .3cm 2C .6cm 2D .9cm 24.下列图案都是由宁母“m”经过变形、组合而成的.其中不是中心对称图形的是( )5.等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cmB .12cmC .15cmD .12cm 或15cm6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会 自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又 出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消 失,你可以将图形 进行以下的操作( )A .先逆时针旋转90︒,再向左平移B .先顺时针旋转90︒,再向左平移C .先逆时针旋转90︒,再向右平移D .先顺时针旋转90︒,再向右平移 7.下列判断中错误..的是( ) A .平行四边形的对边平行且相等.B .四条边都相等且四个角也都相等的四边形是正方形.C .对角线互相垂直的四边形是菱形.D .对角线相等的平行四边形是矩形8.对于四舍五入得到的近似数41000.1⨯,下列说法正确的是( ).A .有3个有效数字,精确到百位B .有5个有效数字,精确到个位C .有2个有效数字,精确到万位D .有3个有效数字,精确到百分位 二、细心填一填(每小题3分,计30分) 9.、81-的立方根是 ,81的平方根是 . 10.已知x 、y 为实数,且()0212=-+-y x ,则=-y x 的值为11.如图,∆OAB 绕点O 逆时针旋转80º到∆OCD 的位置,已知∠AOB =45º,则∠AOD 等于 ;1 02 3 4N M Q PABCD12.在数轴上与表示3的点距离最近的整数点所表示的数 是 . 13.在镜子中看到时钟显示的是则实际时间是_______14.在边长为1的正方形ABCD 中,对角线AC ,BD 相交于点O ,OE ⊥BC ,垂足为E ,则OE = .15.如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =DE =1,则□ABCD 的周长等于 .16.在数3,5,12,13四个数中,构成勾股数的三个数是 . 17.如图,在四边形ABCD 中,已知AB =4,BC =3,AD =12,DC =13,∠B =90°,则四边形ABCD 的面积为 .18.如图,已知四边形ABCD 是菱形,∠A =72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度. 三、解答题(本大题共10道题,96分.解答时写出必要的计算或说明过程.并把解答过程填写在答题卷相应的位置上.) 19.(本题满分6分) (1)-(21)2-811+41-(π-2)0 (2)、()32-×16 +3-43 -81 —21-20.(每小题6分,共12分)求下列各式中的x :(1)4x 2=9; (2)1-(x +1)3=1001;21.(本题满分8分)24.如图,在⊿ABC 中,∠ACB=900,AB=5cm ,BC=3cm ,CD ⊥AB 与D 。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”2009~2010学年度第一学期期中考试八年级数学试卷说明:1.可以使用计算器,但未注明精确度的计算问题不得采取近似计算,建议根据题型特点把握好使用计算器的时机.2.本试卷满分100分,在100分钟内完成.相信你一定会有出色的表现!一、选择题 每小题2分,共16分. 请将唯一正确答案的序号填在题后括号内.1.36的平方根是………………………………………………………………( )A .±6B .6C .-6D .± 62.在-2,0.3,17,2,3-27,-π六个数中,无理数有…………………( )A .2个B .3个C .4个D .5个 3.国家体育场“鸟巢”建筑面积达258000m 2,将这个数用科学记数法表示(结果保留2个有效数字)约为( ) A .26×104m 2 B .2.6×105m 2 C .2.6×104m 2D .2.6×106m 24. 下列各组数中,不是勾股数的一组是隐若现………………………………( ) A .5,12,13 B .7,24,25 C .8,12,15 D .3k,4k,5k(k 为正整数) 5.如下所示的4组图形中,左边图形与右边图形成中心对称的有…………( )A..6.下列条件中,能说明四边形ABCD 是平行四边形的是……………………( ) A .∠A=30°,∠B=150°,∠C=30°,∠D=150° B .∠A=60°,∠B=60°,∠C=120°,∠D=120°5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
天津师范大学考试试卷2009 —2010 学年第一 学期期末考试试卷(A 卷)科目: 离散数学学院: 管理学院专业:08信管、物流一、 单项选择题:在每小题的备选答案中选出一个正确答案,并将正确答案的代(每小题2分,本大题共20分)1.下面说法中不正确的是( )。
A. 在命题逻辑中,任何命题公式的主合取范式都是存在的,并且是唯一的。
B. 在命题逻辑中,命题公式的等价关系具有自反,对称和传递性。
C. 非空集合A 上的恒等关系既是A 上的等价关系,也是A 上的偏序关系。
D. 非空集合A2. 设A={1,2,3,4,5},下面( )集合等于A 。
A.{1,2,3,4}B.{x|x 是整数,且x 2≤25} C.{x|x 是正整数x ≤5} D.{x|x 3. 设A={1,2,4},B={1,3,{2}},下列各式成立的是( )。
A.{2}∈A B. {2}∈B C.{2}⊆B D. ∅∈A4. 已知集合A={a,b,c},A 上的两个二元关系:R 1={<a,b >,<a,c >,<b,c >},R 2={<a,b >,<a,a >},则R 1◦R 2=( )。
A. ∅B. {<a,b >,<a,c >,<b,c >}C. {<a,b >,<a,c >}D. {<a,b >,<a,a5.公式()()()()y x Q y x P x ,∃→∀的前束范式为( )。
A. ()()()()()y x Q x P y x ,→∀∀ B. ()()()()()y u Q x P y x ,→∃∃ C. ()()()()()y x Q x P y x ,→∀∃ D. ()()()()()y x Q x P y x ,→∃∃6. 将命题“若m 是奇数,则2m 是偶数”符号化为( )。
北京四中2009~2010学年度第一学期初二期末数学试卷一、选择(本题共30分,每小题3分) 1.下列说法正确的是( ).A .4的平方根是2B .9的算术平方根是C .8的立方根是D .的立方根是2.计算的结果是( ).A .B .C .21D .3.下列图形中,轴对称图形的个数是( ).A .1B .2C .3D .44.下列变形正确的是( ).A .B .C .D .5.若函数(k ≠0)的图象如图所示,则关于x 的不等式≤0的解集在数轴上表示正确的是( ).6.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB 的两边上分别取点M 、N ,使OM =ON ,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP .可证得△POM ≌△PON ,OP 平分∠AOB .以上依画法证明△POM ≌△PON 根据的是( ).A .SSSB .SASC .AASD .HL7.若将直线(k ≠0)的图象向上平移3个单位后经过点(2,7),则平移后直线的解析式为( ).A .B .C .D .8.如图,等边三角形ABC 中,D 为BC 的中点,BE 平分∠ABC 交AD 于E ,若△CDE 的面积等于1,则△ABC 的 面积等于( ).A .2B .4C .6D .129.已知一次函数,其中,则所有符合条件的一次函数的图象一定都经过( ).A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限10.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为( ).A .1B .1.5C .2D .2.5二、填空(本题共18分,第15题4分,其余每小题各2分) 11.函数2-=x y 中,自变量x 的取值范围是_________.12.在,,,327这四个实数中,无理数是_________.13.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____.14.若直线(k ≠0)经过点(1,3),则该直线关于x 轴对称的直线的解析式为____15.Rt △ABC 中,∠C =90°,∠A =30°,P 为AC 边上一点,PC =2,∠PBC =30°.(1)若PD ⊥AB 于D ,在图中画出线段PD ;(2)点P 到斜边AB 的距离等于_________.16.下图是按一定规律排列的一组图形,依照此规律,第n 个图形中的个数为_____.(n 为正整数)17.如图,钝角三角形纸片ABC 中,∠BAC =110°,D 为AC 边的中点.现将纸片沿过点D 的直线折叠,折痕与BC 交于点E ,点C 的落点记为F .若点F 恰好在BA 的延长线上,则∠ADF =_________°.18.对于三个数a 、b 、c ,用}c b min{、、a 表示这三个数中最小的数, 例如,,那么观察图象,可得到的最大值为_________.三、(本题共17分,第19、21题各5分,第20题3分,第22题4分)19.因式分解:(1);(2).20.计算:.21.先化简再求值:,其中x=3.22.解分式方程:.四、(本题共11分,第23题6分,第24题5分)23.已知:如图,D为△ABC内一点,AC=BC,CD平分∠ACB.求证:∠ABD=∠BAD.24.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.解:(1)画法:(2)答:AM+AN_________BM+BN.(填“>”、“=”或“<”)五、(本题共12分,每小题6分)25.在平面直角坐标系xOy中,一动点从点出发,在由,四点组成的正方形边线上(如图①所示),按一定方向匀速运动.图②是点P 运动的路程s与运动时间t(秒)之间的函数图象,图③是点P的纵坐标y与点P运动的路程s之间的函数图象的一部分.请结合以上信息回答下列问题:(1)图②中,s与t之间的函数关系式是_________(t≥0);(2)与图③中的折线段相对应的点P的运动路径是→_________→_________→_________;(填“A”、“B”、“C”、“D”、“M”或“N”)(3)当4≤s≤8时,直接写出y与s之间的函数关系式,并在图③中补全相应的函数图象.26.某中学初二年级300名同学在“爱心包”活动中,集资购买一批学习用品(书包和文具盒),捐赠给灾区90名学生,所买的书包每个54元,文具盒每个12元.现每名同学只购买一种学习用品,而且每2人合买一个文具盒,每6人合买一个书包.若x名同学购买书包,全年级共购买了y件学习用品.(1)求y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)若捐赠学习用品的总金额超过2300元,且灾区90名学生每人至少得到一件学习用品,问:同学们如何设计购买方案,才能使所购买的学习用品件数最多?学习用品最多能买多少件?六、解答题(本题共12分,每小题6分)27.已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为,,P 为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=P A,点M落在第四象限.(1)求直线AB的解析式;(2)用m的代数式表示M点的坐标;(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.28.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG、AF与FG的数量关系并证明你的结论.(1)证明:(2)答:线段BG、AF与FG的数量关系为_________.证明:参考答案一、选择(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 D D B B B D A C B A二、填空(本题共18分,第15题4分,其余每小题各2分)11.x≥2.12..13.20.14..15.(1)答案见图1;(2)2.16..17.40.18.1.三、计算(本题共17分,第19、21题各5分,第20题3分,第22题4分)19.(1)解:.(2)解:.20.解:.21.解:.当x= 3时,原式=.22.解:去分母,得.2x=2.x=1.经检验,x=1是原方程的解.所以,原方程的解为x=1.四、认真做一做(本题共11分,第23题6分,第24题5分)23.证法一:如图2-1.∵CD平分∠ACB,∴∠1=∠2.在△ACD与△BCD中,∴△ACD≌△BCD.∴AD=BD.∴∠ABD=∠BAD.证法二:如图2-2.延长CD交AB于点E.∵AC=BC,CD平分∠ACB,∴CE垂直平分AB.∵点D在CE上,∴AD=BD.∴∠ABD=∠BAD.24.解:(1)答案图如图3所示.画法:1.作点M关于射线OP的对称点,连结交OP于点A.2.作点N关于射线OQ的对称点,连结交OQ于点B.(2)=.五、仔细想一想(本题共12分,每小题6分)25.(1)(2)M→D→ A→ N;(3)26.解:(1).(2)由题意得解得<x≤180.又因为x为6的倍数,所以x等于168,174,180.因为随x的增大而减小,所以当x等于168,即168名同学购买书包,132名同学购买文具盒时,所购买的学习用品件数最多.因为时,,所以最多可买94件学习用品.此时168名同学购买书包,132名同学购买文具盒。
2010-2011学年第一学期初二数学期末复习试卷(一)(试卷满分:120分)一、精心选一选(本大题共有8小题,每小题3分,共24分.)1、下列4个图案中,既是轴对称图形又是中心对称图形的有 ( )A .1个B .2个C .3个D .4个2、给出下列长度的四组线段:①1,2,2;②5,13,12;③6,7,8;④3,4,5.其中能组成直角三角形的有 ( )A .①②B .②③C .②④D .③④3、八年级(1)班的10名同学的期末体育测试成绩如下: 80,86,86,86,86,87,88,89,89,95,这些成绩的众数是( ) A .85 B .86 C .86.5 D .904、若点P 关于x 轴的对称点的坐标是(2,3),则点P 关于原点的对称点的坐标是( )A .(-3,-2)B .(2,-3)C .(-2,-3)D .(-2,3) 5、已知等腰三角形的两边长分别为2cm 和4cm ,则它的周长为( )A .6cmB .8cmC .10cmD .8cm 或10cm 6、下列判断错误..的是( ) A .对角线互相垂直的平行四边形是正方形 B .四个角都相等的四边形是矩形 C .四条边都相等的四边形是菱形 D .一组对边平行且一组对角相等的四边形是平行四边形7、直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A .x >-1B .x <-1C .x <-2D .无法确定8、如图,直线l 是一条河,P 、Q 两地相距8千米,P 、Q 两地到l 的距离分别为2千米、5千米,欲在l 上的某点M 处修建一个水泵站,向P 、Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )二、细心填一填(本大题共有10小题,每小题3分,共30分.) 9、25的平方根为 ;9的算术平方根是 ; 的立方根为-2. 10、2010年“元旦”期间无锡市旅游人数达136 000人次,数据“136 000”用科学记数法表示 人. 11、已知点P 1(a ,3)与P 2(-2,b )关于y 轴对称,则ab 的值为 . 12、如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,∠A =30°,则∠CBD = °.13、在某校艺术节舞蹈比赛中,六名评委对八(1)班舞蹈队打分如下:7.5分,8.3分,7.7分,9.2分,8.1分, 7.9分,去掉一个最高分和一个最低分后的平均分是___________分.14、一次函数y =-2x +6与x 轴的交点坐标是________,与y 轴的交点坐标是________,与坐标轴围成的三角形的面积为 . 15、直角三角形三边长分别为3,4,m ,则m= .16、如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3,则图中阴影部分的面积为 . 17、在△ABC 中,∠A =50°,当∠B 的度数= 时,△ABC 是等腰三角形.18、如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AB =4cm ,AD =18cm ,..P Q l (第8题图) A . .l M .P Q .l M .P Q P ′ B . .l M .PQ C . .l M .P Q D . O xy y =k 1x +by =k 2x(第7题图) -1 -2 A B C D F OE (第16题)(第18题)DA CB (第12题) D AC E BBC =21cm ,点P 从点A 出发,沿边AD 向点D 以2cm/s 的速度移动,点Q 从点C 出发沿边CB 向点B 以6cm/s 的速度移动,P 、Q 同时出发,若有一点运动到端点时,另一点也随之停止.则①CD =_____cm ;②经过______秒后,PQ=CD .三、认真答一答(本大题共6小题,共54分.)19、(本小题满分8分)如图,正方形网格中的每个小正方形边长都是1.(利用网格线进行画图)⑴在图1中画出以格点为顶点面积为5的正方形;⑵在图2中已知线段AB 、CD ,画线段EF ,使它与AB 、CD 组成轴对称图形; ⑶在图3中①画出一个以格点为端点直角边长为2、3的直角△ABC (∠C =90°);②在AB 上找一点D ,使得D 到CB 、CA 的距离相等; ③在射线CD 上找一点E 到三角形某两点的距离相等.(友情提醒:别忘了标上字母噢!)20、(本小题满分8分)一家公司对A 、B 、C 三名应聘者进行了创新、综合知识和语言三项素质测试,他们的成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,你选谁?请说明理由; (2)根据实际需要,广告公司给出了选人标准:将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩.你选谁?请说明理由.21、(本小题满分8分)已知,如图,四边形ABCD 中∠B =90°,AB =9,BC =12,AD =8,CD =17.试求:(1)AC 的长;(2)四边形ABCD 的面积;22、(本小题满分10分)温度与我们的生活息息相关,你仔细观察过温度计吗?如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(°F),设摄氏温度为x (℃),华氏温度为y (°F),且y 是x 的一次函数. (1)仔细观察图中数据,试求出y 与x 之间的函数表达式; (2)当摄氏温度为零下15℃时,求华氏温度为多少?测试项目 测试成绩 A B C 创新 72 85 67 综合知识 50 74 70 语言884567(第22题图)DC BA(第21题图) (图3) (图1) (图2) A D C B(第19题图)23、(本小题满分10分)如图,在Rt △ABC 中,∠ABC =90°将Rt △ABC 绕点C 顺时针方向旋转60°得到△DEC 点E 在AC 上,再将Rt △ABC 沿着AB 所在直线翻转180°得到△ABF 连接AD .(1)求证:四边形AFCD 是菱形;(2)连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?24、(本小题满分10分)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km ),下图中的折线分别表示S 1、S 2与t 之间的函数关系. (1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.四、实践与探索(本大题只有1小题,满分12分.)25、(本小题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元. (销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA 、AB 、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升. 15日:进油4万升,成本价4.5元/升.五月份销售记录CB D AEF G(第23题图) Ox(万升)y (万元)CB A4 5.5 10 (第25题图)参考答案一、精心选一选1、A ;2、C ;3、B ;4、D ;5、C ;6、A ;7、B ;8、A. 二、细心填一填9、±5;3;-8 10、1.36×105 11、6 12、30° 13、814、(3,0);(0,6);9 15、5或716、317、65°或50°或80°18、5;3或49三、认真答一答 19、20、(1)根据三项测试的平均成绩计算:A 的最后成绩为(72+50+88)÷3=70;同理B 的最后成绩为68;C 的最后成绩为68,∵68=68<70,录用A . (2)按4:3:1的比例确定各人的测试成绩:A 的最后成绩为818883508472⨯+⨯+⨯=65.75;同理B 的最后成绩为75.875;C 的最后成绩为68.125,∵65.75<68.125<75.875,录用B .21、(1)∵△ABC 中,∠B =90°,∴AB 2+BC 2=AC 2, ∵AB =9,BC =12, ∴AC =15.(2)∵AC 2=225,AD 2=64,CD 2=289, ∴AC 2+AD 2=CD 2, ∴∠DAC =90°,∴四边形ABCD 的面积=DAC ABC S S ∆∆+=21×9×12+21×8×15=114.22、(1)设y =kx +b (k ≠0),由题意:当x =0时,y =32;当x =20时,y =68;∴⎩⎨⎧+==b k b 206832,解得⎩⎨⎧==325/9b k ,∴3259+=x y ;(2)在3259+=x y 中,令x =-15时,y =5(°F ) 23、(1)证明:Rt △DEC 是由Rt △ABC 绕C 点旋转60°得到,∴AC =DC ,∠ACB =∠ACD =60°, ∴△ACD 是等边三角形, ∴AD =DC =AC又∵Rt △ABF 是由Rt △ABC 沿AB 所在直线翻转180°得到, ∴AC =AF ,∠ABF =∠ABC =90°, ∴∠FBC 是平角∴点F 、B 、C 三点共线 ∴△AFC 是等边三角形 ∴AF =FC =AC∴AD =DC =FC =AF∴四边形AFCD 是菱形. (2)四边形ABCG 是矩形.证明:由(1)可知:△ACD 是等边三角形,DE ⊥AC 于E ∴AE =ECC BD AE E'F(F')EDC B A∵AG ∥BC∴∠EAG =∠ECB ,∠AGB =∠EBC , ∴△AEG ≌△CEB ∴AG =BC∴四边形ABCG 是平行四边形,而∠ABC =90°, ∴四边形ABCG 是矩形.24、(1)8km ,2km ;(2)由题意,第二组学生的速度为(8+2)÷1=10km/h ∴第二组由甲地出发首次到达乙地所用的时间为: 8÷10=0.8小时第二组由乙地到达丙地所用的时间为: 2÷10=0.2小时(3)由题意A (0.8,0)、B (1,2) 设线段AB 为S 2=kt +b 则⎩⎨⎧+=+=b k b k 28.00,解得⎩⎨⎧-==810b k∴S 2=10t -8.(0.8≤t ≤1)25、(1)根据题意,当销售利润为4万元,销售量4÷(5-4)=4(万升)答:销售量x 为4万升时,销售利润为4万元。
2009-2010学年度第一学期期末考试八年级数学试题
1、下列各数为无理数的是 ①-3.14159 ②∙
5.2 ③π2 ④9.0 ⑤5
11 ⑥31-
A 、①②③
B 、②③④⑤
C 、①③④
D 、③④
2、在一次函数b kx y +=,满足0>kb 且y 随x 的增大而减小,则此函数的图象不经过
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
3、如图,ABC ∆
是等边三角形,
D 为
BC 边上的点,
︒
=∠15
BAD ,ABD ∆经旋转后到达ACE ∆
的位置,那么旋转了 A 、︒75 B
、︒60 C 、︒
45 D 、︒15 4、下列说法错误的是
A 、-3是9的平方根
B 、-1的立方根是-1
C 、2是2的平方根
D 、1的平方根是1
5、下列的数能满足勾股定理的是
A 、6,8,9
B 、7,15,17
C 、6,12,13
D 、7,24,25
6、下列表达式不正确的是 A 、a a =33 B 、a a =33 C 、a a =2 D 、a a =2)(
7、下列各组数的比较中错误的是 A 、25-<- B 、7.13> C 、2
1521->
D 、14.3>π
8、a -为有理数,则a 是一个
A 、有理数
B 、完全平方数的相反数
C 、完全平方数
D 、负的实数 9、将图形270度后的图形是 A 、、11、一个多边形的内角和等于它的外角和的3倍,则它是几边形 A 、八边形 B 、七边形 C 、六边形 D 、九边形
12、在下列大写的22个英文字母中,是中心对称图形的有( )个
E F G H I J K L M N O P Q R S T U V W X Y Z
A 、6个
B 、5个
C 、7个
D 、8个 二、填空题(每题3分,共18分)
13、如果一个四边形绕对角线的交点旋转︒90后,所得图形与原来的图形重合,那么这个四边形一定是________________。
14、一个边长为4的正三角形ABC ∆,在如图的直角坐标下点A
15、某种大米的价格是2.2元/千克,若购买x 则y 与x 的表达式是_________________。
16、已知点P 关于x 轴的对称点为)3,2(1P ,那么点P 关于原点的
对称点2P 的坐标是_________。
17、小明从家里出发向正东方向走了50米,接着向正南方向走了家的距离是__________米。
18、数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8中的中位数是____,众数是_____。
三、解答题(满分66分) 19、(8分)解下列二元一次方程组 (1)⎩⎨
⎧-=--=+-16
232562017154y x y x (2)⎩⎨
⎧-=-=+11
522153y x y x
(2)在(1)的条件下,设20名学生测试成绩的众数是a ,中位数是b ,求
5
2b
a -
的
值。
21、(12分)小文家与学校相距1000米,某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校,下图是小文与家的距离y(米)关于时间x(分钟)的函数图象。
请你根据图象中给出的信息,解答下列问题:
(1)小文走了多远才返回家拿书?
(2)求线段AB 所在直线的函数解析式;
(3)当x=8分钟时,求小文与家的距离。
22、(8分)如图所示,在边长为1的网格中作出ABC ∆绕点A 按逆时针方向旋转︒90,再向下平移2格后的图形C B A '''∆。
23、(8分)如图,一块草坪的形状为四边形ABCD ,其中︒=∠90B ,AB=3cm ,BC=4cm ,CD=12cm ,AD=13cm ,求这块草坪的面积。
分钟)
A B C
D
24、(10分)某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的每间可住5人,该校198个住宿生恰好住满这30间宿舍,问大小宿舍各多少间?
25、(12分)如图平行四边行ABCD中,AE平分BAD
∠交BC于E,EF∥AB交AD于F,试问:(1)四边形ABEF是什么图形?请说明理由;
(2)若︒
B,四边形AECD
∠60
=。