函数单元测试卷
- 格式:doc
- 大小:230.00 KB
- 文档页数:3
一、选择题1.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,43.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-4.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >5.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-6.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭7.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞8.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( )A .[]1,4B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦9.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B . ()0,2C .(0,4)D .(,2)-∞10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-311.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,但与b 有关 D .与a 无关,且与b 无关12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.14.函数222421x x y x ++=+的值域为_________. 15.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.16.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.17.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.18.函数y x =+______.19.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.20.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.三、解答题21.已知()f x 是定义域为R +的增函数,且对任意正实数a 和b ,都有()()()1f ab f a f b =+-.(1)证明:当1x >时,()1f x >;(2)若又知1()02f =,解不等式(32)(1)()2f x f x f x -+-<+.22.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-.(1)求函数()f x 的解析式,并作出函数的大致的简图;(作图要求:①列表描点;②先用铅笔作出图象,再用黑色签字笔将图象描黑); (2)根据图象写出函数单调区间;(3)若不等式()21f x m -≥在[1,3]x ∈-上有解,求m 的取值范围. 23.在①()()121f x f x x +=+-,②()()11f x f x +=-且()03f =,③()2f x ≥恒成立且()03f =这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数()f x 的图象经过点()1,2,_________. (1)求()f x 的解析式; (2)求()f x 在[]1,4-上的值域.24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值; (3)求函数()22f x x x =-的所有的“和谐区间”.25.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象过()0,1A ,()1,5B 两点,且它的对称轴的方程为12x =-.(1)求该二次函数的表达式;(2)当26x ≤≤时,函数()22y ax b m x c =+-+的最大值为()G m ,最小值为()H m ,令()()()h m G m H m =-,求()h m 的表达式.26.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.2.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.3.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).4.A解析:A 【分析】利用抽象函数的定义域列不等式判断A ;利用特例法判断BCD. 【详解】因为函数()f x 的定义域为(1,4),由21412x x <<⇒<<或21x -<<-,所以函数()2f x 的定义域为(2,1)(1,2)--⋃,A 正确;1y x =+和1,11,1x x y x x +≥-⎧==⎨--<-⎩,对应法则不同,不表示同一函数,B 错; 偶函数()1f x =在(0,)+∞和(,0)-∞上不具有相反的单调性,C 错;0a b 时,不等式220ax bx ++>恒成立,但280b a -<且0a >不成立,D 错;故选:A. 【点睛】方法点睛:若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出,若已知函数()()f g x 的定义域为[],a b ,则()f x 的定义域为()g x在[],x a b ∈时的值域.5.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.6.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C.【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.7.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.8.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦. 故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.9.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =, 不等式()80f x x ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得20x x <⎧⎨>⎩,解得02x <<, 所以不等式()80f x x->的解集为()0,2.故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2ax =-为对称轴的抛物线, ①当22a -> 或22a-<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调, 此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当022a≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a --,上递增,在[2]2a -, 上递减,且22f f -<()() , 此时2322424a a M m f f a -=---=--()(),故M m - 的值与a 有关,与b 无关③当202a-≤-≤,即04a ≤≤时, 函数f x ()在区间[2]2a -,上递减,在[2]2a --,上递增, 且22f f <-()()此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关 故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】根据题意求得ab 的值可得的解析式分别讨论三种情况结合二次函数图像与性质即可求得结果【详解】由题意得:所以所以解得所以为开口向上对称轴为的抛物线当即时在上单调递减所以当即时在上单调递减在上单调解析:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【分析】根据题意,求得a ,b 的值,可得()f x 的解析式,分别讨论3t <-,31t -≤≤-,1t >-三种情况,结合二次函数图像与性质,即可求得结果. 【详解】由题意得:22(1)(1)(1)121f x a x b x ax a ax bx b +=++++=+++++,所以()()222111223ax a ax bx b ax bx ax a f b x x x f +++++---=++=-=++,所以223ax x a b =⎧⎨+=⎩,解得1,2a b ==,所以22()21(1)f x x x x =++=+,为开口向上,对称轴为1x =-的抛物线, 当21t +<-,即3t <-时,()f x 在[],2t t +上单调递减,所以2()(2)(3)g t f t t =+=+,当12t t ≤-≤+,即31t -≤≤-时,()f x 在[,1)t -上单调递减,在[1,2]t -+上单调递增,所以()(1)0g t f =-=;当1t >-时,()f x 在[],2t t +上单调递增,所以2()()(1)g t f t t ==+,综上:22(3),3()0,31(1),1t t g t t t t ⎧+<-⎪=-≤≤-⎨⎪+>-⎩故答案为:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【点睛】求二次函数在区间[,]a b 上最值时,一般用分类讨论的方法求解,讨论对称轴位于区间的左右两侧,位于区间内,再根据二次函数图像与性质,求解即可,考查分析求解的能力,属中档题.14.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求 解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求.因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4. 【点睛】易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .15.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.16.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.17.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +, 由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.18.【分析】利用换元法将函数换元构造出新函数由新函数的定义域结合二次函数的性质求出最值即可得到值域【详解】设则所以原函数可化为:由二次函数性质当时函数取最大值2由性质可知函数无最小值所以值域为:故答案为 解析:(],2-∞【分析】利用换元法将函数换元构造出新函数,由新函数的定义域结合二次函数的性质求出最值即可得到值域. 【详解】设)0t t =≥,则21x t =-, 所以原函数可化为:()2210y t t t =-++≥,由二次函数性质,当1t =时,函数取最大值2,由性质可知函数无最小值, 所以值域为:(],2-∞. 故答案为:(],2-∞. 【点睛】本题考查换元法求函数值域,当函数解析式中含有根式时,一般考虑换元法,用换元法时要注意一定写出新变量数的取值范围.19.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围. 【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+,所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.20.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .三、解答题21.(1)证明见解析;(2)12x <<. 【分析】(1)计算出(1)f 后由单调性可证;(2)求得(2)2f =,利用定义不等式可化为([(32)(1)](2)f x x f x --<,然后由单调性求解. 【详解】解(1)令1a b ==,代入条件式子得(1)1f =;()f x 在R +上单调递增∴当1x >时,()(1)1f x f >=,得证.(2)令1,22a b ==,代入①式得1(1)()(2)1(2)22f f f f =+-⇒= (32)(1)()2f x f x f x ∴-+-<+(32)(1)()(2)f x f x f x f ⇔-+-<+320,10,0,[(32)(1)]1(2)1x x x f x x f x ->⎧⎪->⎪⇔⎨>⎪⎪--+<+⎩11121(32)(1)223x x x x x x x ⎧>⎧>⎪⎪⇔⇔⇔<<⎨⎨--<<<⎪⎪⎩⎩.【点睛】关键点点睛:本题考查抽象函数的单调性的应用,解关于抽象函数的不等式,关键是利用函数的定义,把不等式转化为12()()f x f x <形式,然后由单调性求解.转化时注意函数的定义域.22.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩,简图答案见解析;(2)单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-;(3)1m .【分析】(1)设0x <,则0x ->,利用()f x f x =--()即可求出0x <时,()f x 的解析式,进而可得函数()f x 的解析式,按步骤列表描点连线即可作出函数图象; (2)根据图象上升和下降趋势即可得单调区间;(3)将原问题转化为max 21m f x ≤-(),利用单调性求出()f x 在区间[1,3]-上的最大值即可求解. 【详解】(1)设0x <,则0x ->,因为f x ()是奇函数所以()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦() 所以222,02,0x x x f x x x x ⎧-≥=⎨--<⎩() , 列表如下:(2)由图知:函数f x ()的单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-(3)不等式21f x m -≥()在1[]3x ∈-,上有解, 等价于在21m f x ≤-()在1[]3x ∈-,有解.可得max 21m f x ≤-(), 由(2)可知f x ()在[11-,)上单调递减,在[1]3,上单调递增, 因为()()()211211f -=---⨯-=,()233233f =-⨯=所以()max 3f x =,所以2312m ≤-=,所以1m 【点睛】方法点睛:求不等式有解问题常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可.23.(1)()223x x x f =-+;(2)[]2,11.【分析】(1)若选①:利用待定系数法并结合()f x 的图象经过点()1,2求解二次函数()f x 的解析式;若选②:根据对称轴方程以及()03f =并结合()f x 的图象经过点()1,2求解二次函数()f x 的解析式;若选③:根据已知条件判断出()1,2为图象的最低点,由此分析出对称轴,则二次函数的解析式可求;(2)根据(1)得到()f x 的解析式,然后利用配方法和整体替换的方法求解出()212x -+的取值范围,则()f x 在[]1,4-上的值域可求.【详解】 解:若选①,(1)设()()20f x ax bx c a =++≠,则()()()()221112f x a x b x c ax a b x a b c +=++++=+++++. 因为()()121f x f x x +=+-,所以()22221ax a b x a b c ax bx c x +++++=+++-,所以221a a b =⎧⎨+=-⎩,解得1a =,2b =-.因为()f x 的图象经过点()1,2,所以()1122f a b c c =++=-+=,所以3c =. 故()223x x x f =-+.若选②,(1)设()()20f x ax bx c a =++≠,则()f x 图象的对称轴方程为2bx a=-. 由题意可得()()120312b a fc f a b c ⎧-=⎪⎪==⎨⎪=++=⎪⎩,解得123a b c =⎧⎪=-⎨⎪=⎩.故()223x x x f =-+.若选③,(1)()()20f x ax bx c a =++≠.因为()03f =,所以3c =.因为()()21f x f ≥=,所以()13212f a b b a ⎧=++=⎪⎨-=⎪⎩,解得1a =,2b =-.故()223x x x f =-+.(2)由(1)可知()()222312f x x x x =-+=-+. 因为14x -≤≤,所以213x -≤-≤,所以()2019x ≤-≤,所以()221211x ≤-+≤. 即()f x 在[]1,4-上的值域为[]2,11. 【点睛】方法点睛:求解函数解析式常用的方法有:(1)换元法:适用于求解已知()()f g x 的解析式求解()f x 的解析式的类型;(2)待定系数法:适用于已知函数的类型求解函数解析式,如已知函数为一次函数可设()()0f x kx b k =+≠或已知函数为二次函数可设()()20f x ax bx c a =++≠; (3)方程组法:适用于已知()(),f x f x -组成的方程求解()f x 的解析式或已知()1,f x f x ⎛⎫ ⎪⎝⎭组成的方程求解()f x 的解析式的类型. 24.(1)[]1,0-、[]0,1、[]1,1-;(2)2;(2)[]1,0-和[]1,3-.【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令312x x -=,解得25x =或2,最后绘出函数图像,结合函数图像即可得出结果; (3)本题可令22x x x -=,解得0x =或3,然后结合函数图像即可得出结果.【详解】(1)函数()3f x x =是增函数,定义域为R , 令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、[]0,1、[]1,1-. (2)因为()312f x x =-,所以()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩, 因为[]()0,0m m >为函数()312f x x =-的一个“和谐区间”, 所以可令312x x -=,解得25x =或2, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当2x =时满足题意,故m 的值为2.(3)函数()22f x x x =-,定义域为R , 令22x x x -=,解得0x =或3,如图所示,绘出函数图像:结合图像易知,函数()f x 的所有“和谐区间”为[]1,0-和[]1,3-.【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.25.(1)2221y x x =++;(2)()22728,5116913,59221255,91322872,13m m m m m h m m m m m m -<⎧⎪⎪-+≤≤⎪=⎨⎪-+<≤⎪⎪->⎩. 【分析】(1)待定系数法求出参数,,a b c ,写出二次函数表达式即可;(2)由(1)知22(22)1y x m x =+-+,即对称轴为12m x -=,讨论12m -与区间[]2,6的位置关系求m 范围及对应()h m .【详解】解:(1)由题可得12215b a c a b c ⎧-=-⎪⎪=⎨⎪++=⎪⎩,解得221a b c =⎧⎪=⎨⎪=⎩,即2221y x x =++; (2)22(2)2(22)1y ax b m x c x m x =+-+=+-+,其图象对称轴的方程为12m x -=. ①当122m -<时,即5m <时,()8512G m m =-,()134H m m =-,()728h m m =-;②当1242m -≤≤时,即59m ≤≤时,()8512G m m =-,221()2m m H m -++=,21169()1322h m m m =-+; ③当1462m -<≤时,即913m <≤时,()134G m m =-,221()2m m H m -++=,2125()522h m m m =-+; ④当162m ->时,即13m >时,()134G m m =-,()8512H m m =-,()872h m m =-.综上,()22728,5116913,59221255,91322872,13m m m m m h m m m m m m -<⎧⎪⎪-+≤≤⎪=⎨⎪-+<≤⎪⎪->⎩. 【点睛】关键点点睛:已知过定点及对称轴,应用待定系数法求二次函数解析式;当对称轴含参数时,研究区间最值需要讨论对称轴与区间的关系确定最值情况.26.(1)(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+;(2)3a >-. 【分析】(1)利用函数的奇偶性,列方程组,求函数的解析式;(2)由(1)知,()()2,[1,)a f x g x x x x∞+=++∈+,方法一,讨论a 的正负,以及函数的单调性,转化为求函数的最小值大于0,求a 的取值范围;方法二,利用参变分离,()22a x x >-+,转化为求函数最大值,即求a 的取值范围.【详解】(1)由已知条件()()2a f x g x x x-=+-——① ①式中以x -代替x ,得()()2a f x g x x x ---=---——② 因为()f x 是奇函数,()g x 是偶函数,故()(),()()f x f x g x g x -=--=②可化为()()2a f x g x x x --=---——③ ①-③,得22()2a f x x x =+故(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+ (2)由(1)知,()()2,[1,)a f x g x x x x ∞+=++∈+ 当0a ≥时,函数()()f x g x +的值恒为正;当0a <时,函数()()2a f x g x x x +=++在[1,)+∞上为增函数 故当1x =时,()f x 有最小值3a +故只需30a +>,解得30a -<<.综上所述,实数a 的取值范围是(3,)-+∞法二:由(1)知,()()2a f x g x x x+=++ 当[1,)x ∈+∞时,()()0f x g x +>恒成立,等价于()22a x x >-+ 而二次函数()222(1)1y x x x =-+=-++在[1,)+∞上单调递减 1x =时,max 3y =-故3a >-【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.。
二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。
第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。
第19章一次函数单元测试卷一、单项选择题(本题共10小题,每小题3分,共30分。
)1.函数中自变量x的取值范围是()A.x>2 B.x<2 C.x≠0 D.x=22.下列函数中,是一次函数的是()A.①②B.①③C.①④D.②③3.已知一次函数y=kx+b(k≠0),若k•b<0,则该函数的图象可能是()A.B.C.D.4.已知将直线y=x-1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )A.经过第一、二、四象限 B.与x轴交于(1,0)C.与y轴交于(0,1) D.y随x的增大而减小5.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里.图中表示小红爷爷离家的时间与外出的距离之间的关系是()A B C D6.一支签字笔单价为1.5元,小美同学拿了100元钱去购买了x(0<x≤66)支该型号的签字笔,则剩余的钱数y与x之间的关系式是()A.y=1.5x B.y=100﹣1.5x C.y=1.5x﹣100 D.y=1.5x+1007.已知点A(﹣4,y1),B(2,y2)都在直线上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较8.在平面直角坐标系中,一次函数132y x=+,当2x<时,对于x的每一个值,正比例函数()0y mx m=≠的值都小于一次函数132y x=+的值,则m的取值范围为()A.2m≤B.2m<C.122m<<D.122m≤≤9.一次函数与在同一平面直角坐标系中的图像如图所示.根据图像有下列五个结论:①;②;③方程的解是;④不等式的解集是;⑤不等式的解集是.其中正确的结论个数是()A.1 B.2 C.3 D.410.地铁给人们带来了快捷、便利的生活,同时也是疏导交通、解决拥堵的最佳方式.现有甲、乙两个工程队分别同时开挖两条600米长的隧道,所挖隧道长度y(米)与挖掘时间x(天)之间的函数关系如图所示,现有下列说法:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前2天完成任务;④当x=2或6时,甲、乙两队所挖隧道长度都相差100米.其中正确的有()A.1个B.2个C.3个D.4个①②③④二、填空题(本题共6小题,每小题3分,共18分.)11.已知y =3x 正比例函数的图象经过点(m ,6),则m 的值为 .12.直线y =kx +b (k ≠0)与x 轴的交点坐标为A (﹣2,0),则关于x 的方程kx +b=0的解是 .13.一次函数y =112x -+图像与坐标轴围成的三角形的面积是 . 14.如图,已知一次函数y =kx +b ,则kx +b <0的解集是 . 第14题图15.如图,点P 从长方形ABCD 的顶点D 出发,沿D →C →B →A 路线以每秒1cm 的速度运动,运动时间x 和△DAP 的面积y 之间构成的函数的图象如图2所示,则长方形ABCD 的面积为 .第14题图 第16题图16.如图,在平面直角坐标系中,一次函数的图象分别交x ,y 轴于点B ,C ,将直线BC 绕点B 按逆时针方向旋转45°,交x 轴于点A ,则直线AB 的函数表达式 .三、解答题(本题共6小题,共52分.)17.如图,一次函数y kx b =+的图像与过点()14A ,和()22B --, (1)求函数解析式;(2)其图像与x 轴,y 轴分别交于点C ,点D ,求线段CD 的长18.设一次函数y 1=(k -1)x+5-2k , y 2=(k+1)x+1-2k .(1)若函数y 1的图象与y 轴交于点(0,-3),求函数y 1的表达式.(2)若函数y 2图象经过第一,二,三象限,求k 的取值范围.(3)当x>m 时,y 1<y 2,求m 的取值范围.19.如图,正比例函数3y x =-的图象与一次函数y kx b =+的图象交于点(,3)P m ,一次函数的图象经过点(1,1)B ,与y 轴的交点为D ,与x 轴的交点为C .(1)求一次函数y kx b =+的表达式;(2)求COP 的面积;(3)不解关于,x y 的方程组300y x y kx b +=⎧⎨--=⎩,直接写出方程组的解. 20.已知一次函数26y x =+,请解答下列问题:(1)按下列步骤在所给的平面直角坐标系中作一次函数26y x =+的图象.①列表:表中=a ,b = ;②描点连线:将上表中两对数值中的x 的值作为一个点的横坐标,对应的y 的值作为这个点的纵坐标,在坐标系中描出这两点,连线作出函数的图象;(2)观察图象,直接写出:①方程260x +=的解;②不等式0266x ≤+<的解集.21.如图,某农业合作社为农户销售草莓,经过测算,草莓销售的销售额1y (元)和销售量x (千克)的关系如射线1l 所示,成本2y (元)和销售量x (千克)的关系如射线2l 所示.(1)当销售量为 千克时,销售额和成本相等;(2)每千克草莓的销售价格是 元;(3)如果销售利润为2000元,那么销售量为多少?22.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m³时,水费按每立方米1.1元收费,超过6m³时,超过部分每立方米按1.6元收费,设每户每月用水量为Xm³,应缴水费x 4- 1- 26y x =+ a b为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?23.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10 500元.请问有几种购买方案?(3)若购买篮球x 个,学校购买这批篮球和足球的总费用为y (元),在(2)的条件下,求哪种方案能使y 最小,并求出y 的最小值.24.如图,在平面直角坐标系xOy 中,直线l 1:y =2x +1与y 轴交于点A ,直线l 2与y 轴,x 轴交于点B ,点C ,l 1与l ,交于点D (1,m ),连接OD ,已知OC 的长为4.(1)求点D 的坐标及直线l 2的解析式;(2)求△AOD 的面积;(3)若直线l 2上有一点P 使得△ADP 的面积等于△ADO 的面积,直接写出点P 的坐标.1.阅读:将一个量,用两种方法分别计算一次,由结果相同构造等式解决问题,这种思维方法称为“算两次”原理.在学习第十七章勾股定理时,我们就是利用“算两次”原理,用不同的方式表示同一图形的面积,探究出了勾股定理.(1)【问题探究】小明尝试用“算两次”原理解决下面的问题:如图1,在中,,求斜边边上的高的值.小明用两种方法表示出的面积:①;②.图1由勾股定理,得斜边的长度为5,由此可以算出.(2)【学以致用】如图2,在矩形中,,点是边上任意一点,过点作,垂足分别为.则可以运用“算两次”原理,用不同的方式表示的面积,求出的值为.图2(3)【拓展延伸】如图3,已知直线与直线相交于点,且这两条直线分别与轴交于点.在线段上有一点,且点到直线的距离为4,请利用以上所学的知识求出点的坐标.图3。
函数单元测试001一.选择题(每小题只有一个答案正确,每小题3分,共36分)1. 下列函数中哪个与函数y x =是同一个函数 ( )A. y x =()2B. y x x=2C. y x =33D. y x =22.若)21(),0(1)]([,21)(22g x x x x f g x x f 则≠-=-=的值为 ( ) A .1B .3C .15D .303.函数y=x|x|的图象大致是 ( )[来源:学+科+网Z+X+X+K]4.若函数y=f(x)的定义域是[2,4],y=f(log21x)的定义域是 ( ) (A )[21,1] (B )[4,16] (C )[41,161] (D )[2,4]6. 三个数313231322323---⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛、、的大小关系是 ( ) A. 323223132313⎛⎝ ⎫⎭⎪<⎛⎝ ⎫⎭⎪<⎛⎝ ⎫⎭⎪--- B. 323223231313⎛⎝ ⎫⎭⎪<⎛⎝ ⎫⎭⎪<⎛⎝ ⎫⎭⎪---C. 233232132313⎛⎝ ⎫⎭⎪<⎛⎝ ⎫⎭⎪<⎛⎝ ⎫⎭⎪---D. 322332231313⎛⎝ ⎫⎭⎪<⎛⎝ ⎫⎭⎪<⎛⎝ ⎫⎭⎪---7. 方程1212⎛⎝ ⎫⎭⎪=-xx 的实数根的个数是 ( )A. 0B. 1C. 2D. 3 8.已知函数⎩⎨⎧≤>=)0(3)0(log )(2x x x x f x,那么)]41([f f 的值为 ( )[来源:] A .9 B .91 C .-9 D .91-9.在同一坐标系内作出的两个函数图像图1所示,则这两个函数为( )(A )y=a x 和y=log a (-x) (B )y=a x 和y=log a x -1 (C )y=a -x 和y=log a x -1 (D )y=a -x 和y=log a(-x)10. 已知函数()f x x ()log 28732=+,那么f ()1等于 ( )A. log 339B. log 315 C . 1 D . 211.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年剩留量为y , 则x 、y 的函数关系是 ( ) A. y=100)9576.0(xB. y=x 100)7576.0(C. y=x)1009576.0(D.y=1-100424.0x12.函数y=x a log 在[2,+)∞上恒有1>y ,则a 的取值范围是 ( )A.)2,1()1,21(⋃ B.)2,1()21,0(⋃ C.)2,1( D.),2()21,0(+∞⋃二、填空题(每小题3分,共12分) 14.函数y=)13(log 282+-x x的定义域是15.若)1(-x f =|x|-|x -2|,则f(log 23)= [来源:Z_xx_]16.函数)(x f 与g(x)=x)21(的图象关于直线y=x 对称,则)(x f 的单调递增区间是 三、解答题(共5小题,共计52分,每小题要有必要的解题过程)17.(1)设3lo g 2=x ,求x x xx ----222233 的值;(2)已知)2lg(2lg lg y x y x -=+,求yx2lo g 的值(8分)18. 判断函数f x x x ()=+2在[)0,+∞上是增函数还是减函数,并根据函数单调性的定义证明你的结论。
函数单元测试卷一:选择题(本大题共10小题,每小题3,共3分)1.下列表示正确的是( )A.}0{∈ΦB.},01{02R x x x ∈=+∈C.}01{12=-∈x xD.}2,1,0{}2,1{∈2. 已知:==)(,)(2x f x f 则π( )A .2πB .πC .πD .不确定3. 函数()f x =3472+++kx kx kx 的定义域为R ,则实数k 的取值范围是( )A .0≤k <43B .0<k <43C .k <0或k >43D .0<k ≤434. 若函数)13(-=x f y 的定义域为[]3,1-,则)1(+=x f y 的定义域为( )(A )[]3,1- (B )[]2,2- (C )[]7,5- (D )[]9,3-5. 函数f (x )={222(03)6(20)x x x x x x -≤≤+-≤≤的值域是( )(A )R (B )[-9,+∞) (C )[-8,1] (D )[-9,1]6.函数)(x f 在),(b a 和),(d c 都是增函数,若),(),,(21d c x b a x ∈∈,且21x x <那么( )A .)()(21x f x f < B .)()(21x f x f > C .)()(21x f x f = D .无法确定7. 若函数2()48f x x kx =--在[5,8]上是单调函数,则实数k 的取值范围是()A .(],40-∞B .[40,64]C .(][),4064,-∞+∞D .[)64,+∞8. 在下列定义域为R 的函数中,一定不存在的是( )(A)既是奇函数又是增函数 (B)既是奇函数又是减函数 (C)既是增函数又是偶函数 (D)既非偶函数又非奇函数9. 已知f (x )为偶函数,且与x 轴有四个不同的交点,则方程f (x )=0的所有实根的和为( )(A)4 (B)2 (C)1 (D)010.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A.增函数且最小值为mB.增函数且最大值为m -C.减函数且最小值为mD.减函数且最大值为m -二.填空题:(把答案填在题中横线上。
第三章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.函数f(x)=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞) C .[1,2) D .[1,2)∪(2,+∞)2.德国数学家狄利克雷在数学上做出了名垂史册的重大贡献,函数D(x)=⎩⎪⎨⎪⎧0,x ∉Q 1,x∈Q是以他名字命名的函数,则D(D(π))=( )A .1B .0C .πD .-13.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x 2-2x +1,则f(-1)=( )A .3B .-3C .2D .-24.若函数y =f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域是( )A .[-4,0]B .[-4,0)C .[-4,-1)∪(-1,0]D .(-4,0)5.若幂函数y =(m 2-3m +3)xm -2的图象不过原点,则m 的取值X 围为( )A .1≤m≤2B .m =1或m =2C .m =2D .m =16.已知函数f(x)是定义在R 上的偶函数,x ≥0时,f (x )=x 2-2x ,则函数f (x )在R 上的解析式是( )A .f (x )=-x (x -2)B .f (x )=x (|x |-2)C .f (x )=|x |(x -2)D .f (x )=|x |(|x |-2)7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值X 围是( )A .(-1,+∞) B.(-∞,-1)C .(-1,4)D .(-∞,1)8.甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2),甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半的时间使用速度v 2,关于甲、乙二人从A 地到达B 地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点),则其中可能正确的图示分析为( )二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( )A .定义域、值域分别是[-1,3],[0,+∞) B.单调增区间是(-∞,1] C .定义域、值域分别是[-1,3],[0,2] D .单调增区间是[-1,1] 10.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)211.关于定义在R 上的函数f (x ),下列命题正确的是( ) A .若f (x )满足f (2 018)>f (2 017),则f (x )在R 上不是减函数 B .若f (x )满足f (-2)=f (2),则函数f (x )不是奇函数C .若f (x )在区间(-∞,0)上是减函数,在区间[0,+∞)也是减函数,则f (x )在R 上是减函数D .若f (x )满足f (-2 018)≠f (2 018),则函数f (x )不是偶函数12.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )满足( )A .f (0)=0B .y =f (x )是奇函数C .f (x )在[m ,n ]上有最大值f (n )D .f (x -1)>0的解集为(-∞,1)三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.14.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.15.定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a ,则a =________,f (-3)=________.(本题第一空2分,第二空3分)16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,3-2a x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X围为________.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=2x -1x +1,x ∈[3,5].(1)判断f (x )在区间[3,5]上的单调性并证明; (2)求f (x )的最大值和最小值.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (-2))的值; (2)若f (a )=32,求a .19.(本小题满分12分)已知幂函数f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z }满足:(1)在区间(0,+∞)上是增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足条件(1)(2)的幂函数f (x )的解析式,并求当x ∈[0,3]时,f (x )的值域.20.(本小题满分12分)设f(x)为定义在R上的偶函数,当x≥0时,f(x)=-(x-2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,某某数k的取值X围.21.(本小题满分12分)如图所示,A、B两城相距100 km,某天然气公司计划在两地之间建一天然气站D给A、B两城供气.已知D地距A城x km,为保证城市安全,天然气站距两城市的距离均不得少于10 km.已知建设费用y(万元)与A、B两地的供气距离(km)的平方和成正比,当天然气站D距A城的距离为40 km时,建设费用为1300万元.(供气距离指天然气站到城市的距离)(1)把建设费用y(万元)表示成供气距离x(km)的函数,并求定义域;(2)天然气供气站建在距A城多远,才能使建设费用最小,最小费用是多少?22.(本小题满分12分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1),f(4),f(8)的值;(2)若有f(x)+f(x-2)≤3成立,求x的取值X围.第三章单元测试卷1.解析:根据题意有⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.答案:D2.解析:∵函数D (x )=⎩⎪⎨⎪⎧0,x ∉Q 1,x ∈Q,∴D (π)=0,D (D (π))=D (0)=1.故选A.答案:A3.解析:令x =1,得f (1)+g (1)=1,令x =-1,得f (-1)+g (-1)=5,两式相加得:f (1)+f (-1)+g (1)+g (-1)=6.又∵f (x )是偶函数,g (x )是奇函数,∴f (-1)=f (1),g (-1)=-g (1).∴2f (-1)=6, ∴f (-1)=3,故选A. 答案:A4.解析:∵y =f (x )的定义域是[0,2],∴要使g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1有意义,需⎩⎪⎨⎪⎧0≤-x2≤2,x +1≠0,∴-4≤x ≤0且x ≠-1.∴g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域为[-4,-1)∪(-1,0].答案:C5.解析:由题意得⎩⎪⎨⎪⎧m -2≤0,m 2-3m +3=1,解得⎩⎪⎨⎪⎧m ≤2,m =1或m =2,∴m =1或m =2.答案:B6.解析:设x <0,则-x >0,f (x )=f (-x )=x 2-2(-x )=x 2+2x .故f (x )=|x |(|x |-2).答案:D 7.解析:f (x )的图象如图.由图知, 若f (x -4)>f (2x -3), 则⎩⎪⎨⎪⎧x -4<0,x -4<2x -3,解得-1<x <4.故实数x 的取值X 围是(-1,4). 答案:C8.解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D.再根据v 1<v 2可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.答案:A9.解析:f (x )=-x 2+2x +3则定义域满足:-x 2+2x +3≥0解得:-1≤x ≤3 即定义域为[-1,3]考虑函数y =-x 2+2x +3=-(x -1)2+4在-1≤x ≤3上有最大值4,最小值0. 在[-1,1]上单调递增,在(1,3]上单调递减.故f (x )=-x 2+2x +3的定义域为[-1,3],值域为[0,2],在[-1,1]上单调递增,在(1,3]上单调递减.故选CD. 答案:CD10.解析:f (2x -1)=(2x -1)2+2(2x -1)+1,故f (x )=x 2+2x +1,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确.故选BD.答案:BD11.解析:由题意,对于A 中,由2 018>2 017,而f (2 018)>f (2 017),由减函数定义可知,f (x )在R 上一定不是减函数,所以A 正确;对于B 中,若f (x )=0,定义域关于原点对称,则f (-2)=f (2)=-f (2),则函数f (x )可以是奇函数,所以B 错误;对于C 中,由分段函数的单调性的判定方法,可得选项C 不正确;对于D 中,若f (x )是偶函数,必有f (-2 018)=f ( 2018),所以D 正确.故选AD.答案:AD12.解析:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,故A 正确;再令y =-x ,代入原式得f (0)=f (x )+f (-x )=0,所以f (-x )=-f (x ),故该函数为奇函数,故B 正确;由f (x +y )=f (x )+f (y )得f (x +y )-f (x )=f (y ),令x 1<x 2,再令x 1=x +y ,x 2=x ,则y =x 1-x 2<0,结合x <0时,f (x )>0,所以f (x 1)-f (x 2)=f (x 1-x 2)>0,所以f (x 1)>f (x 2),所以原函数在定义域内是减函数,所以函数f (x )在[m ,n ]上递减,故f (n )是最小值,f (m )是最大值,故C 错误;又f (x -1)>0,即f (x -1)>f (0),结合原函数在定义域内是减函数可得,x -1<0,解得x <1,故D 正确.故选ABD.答案:ABD13.解析:若a >0,则2a +2=0,得a =-1,与a >0矛盾,舍去;若a ≤0,则a +1+2=0,得a =-3,所以实数a 的值等于-3.答案:-314.解析:由题意,S =(4+x )⎝ ⎛⎭⎪⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:115.解析:由定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a , 可得f (0)=a =0,当x ≥0,f (x )=x 2-2x , 则f (-3)=-f (3)=-(32-2×3)=-3. 答案:0 -316.解析:f (x )=⎩⎪⎨⎪⎧x -12+a -1,x >1,3-2ax -1,x ≤1显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥3-2a ×1-1,解得1≤a <32.答案:⎣⎢⎡⎭⎪⎫1,32 17.解析:(1)函数f (x )在[3,5]上为增函数,证明如下: 设x 1,x 2是[3,5]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1x 1+1-2x 2-1x 2+1=3x 1-x 2x 1+1x 2+1.∵3≤x 1≤x 2≤5,∴x 1-x 2<0,x 1+1>0,x 2+1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[3,5]上为增函数. (2)由(1)知函数f (x )在[3,5]单调递增,所以 函数f (x )的最小值为f (x )min =f (3)=2×3-13+1=54,函数f (x )的最大值为f (x )max =f (5)=2×5-15+1=32.18.解析:(1)因为-2<-1,所以f (-2)=2×(-2)+3=-1, 所以f (f (-2))=f (-1)=2.(2)当a >1时,f (a )=1+1a =32,所以a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,所以a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,所以a =-34>-1(舍去).综上,a =2或a =±22. 19.解析:因为m ∈{x |-2<x <2,x ∈Z }, 所以m =-1,0,1.因为对任意的x ∈R ,都有f (-x )+f (x )=0, 即f (-x )=-f (x ),所以f (x )是奇函数.当m =-1时,f (x )=x 2只满足条件(1)而不满足条件(2); 当m =1时,f (x )=x 0,条件(1)(2)都不满足; 当m =0时,f (x )=x 3,条件(1)(2)都满足. 因此m =0,且f (x )=x 3在区间[0,3]上是增函数, 所以0≤f (x )≤27,故f (x )的值域为[0,27]. 20.解析:(1)若x <0,则-x >0,f (x )=f (-x ) =-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-x -22+2,x ≥0,-x +22+2,x <0.(2)图象如图所示,(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )图象与直线y =k 的交点情况可知,当-2<k <2时,函数y =f (x )图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.21.解析:(1)由题意知D 地距B 城(100-x )km ,则⎩⎪⎨⎪⎧100-x ≥10,x ≥10,∴10≤x ≤90.设比例系数为k ,则y =k [x 2+(100-x )2](10≤x ≤90). 又x =40时,y =1 300,所以1 300=k (402+602),即k =14,所以y =14[x 2+(100-x )2]=12(x 2-100x +5 000)(10≤x ≤90).(2)由于y =12(x 2-100x +5 000)=12(x -50)2+1 250,所以当x =50时,y 有最小值为1 250万元.所以当供气站建在距A 城50 km 时,能使建设费用最小,最小费用是1 250万元. 22.解析:(1)f (1)=f (1)+f (1),所以f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=1+2=3.(2)因为f (x )+f (x -2)≤3, 所以f [x (x -2)]≤f (8),又因为对于函数f (x ),当x 2>x 1>0时,f (x 2)>f (x 1),所以f (x )在(0,+∞)上为增函数,所以⎩⎪⎨⎪⎧x >0,x -2>0,x x -2≤8,解得2<x ≤4.故x 的取值X 围为(2,4].。
人教版九年级上册数学单元测试卷一、选择题(每题3分,共30分)1. 二次函数y = x^2+1的图象的顶点坐标是()A. (0,1)B. (1,0)C. (-1,0)D. (0,-1)2. 二次函数y = -2(x - 3)^2+5的对称轴是()A. x = -3B. x = 3C. x = 5D. x = -53. 二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论正确的是()A. a < 0,b < 0,c > 0B. a < 0,b > 0,c > 0C. a < 0,b < 0,c < 0D. a < 0,b > 0,c < 0(此处可插入一个二次函数图象的简单示意图)4. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x - 2)^2+1B. y = 3(x + 2)^2-1C. y = 3(x - 2)^2-1D. y = 3(x + 2)^2+15. 二次函数y = x^2-4x + 3与x轴的交点坐标为()A. (1,0),(3,0)B. (-1,0),(-3,0)C. (1,0),(-3,0)D. (-1,0),(3,0)6. 对于二次函数y=(x - 1)^2+2的最小值是()A. 2B. 1C. -1D. -27. 已知二次函数y = ax^2+bx + c的图象经过点(0,0),(1,9),( - 1, - 1),则这个二次函数的表达式为()A. y = 4x^2+5xB. y = 5x^2+4xC. y = - 4x^2+5xD. y = - 5x^2+4x8. 二次函数y = kx^2-6x + 3的图象与x轴有交点,则k的取值范围是()A. k < 3B. k < 3且k≠0C. k≤slant3D. k≤slant3且k≠09. 二次函数y = ax^2+bx + c的图象开口向上,对称轴为直线x = - 1,图象经过点(1,0),则a - b + c的值()A. 大于0B. 小于0C. 等于0D. 无法确定。
苏科版八年级数学上册《第六章一次函数》单元测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________考点一函数的概念1.下列图像中,y不是x的函数的是 ( )2.下列式子中,y不是x的函数的是 ( )A.y=x²B.y=x−2x−1C.y=√x−1D.y=±√x3.小红的仰卧起坐成绩y与日期x之间近似为一次函数关系,则该函数表达式为.考点二函数自变量的取值范围及函数值4. 函数y=2+√3x−1中自变量x的取值范围是 ( )A. x≥2B.x≥13C.x≤13D.x≠135. 函数y=1x+3中,自变量x的取值范围是 ( )A. x>-3B. x<3C. x≠-3D. x≠36.已知函数y=√x+2x−3,则自变量 x的取值范围是 .7.按如图所示的程序计算函数y的值,若输入的x值为-3,则输出y的结果为 .考点三函数的图像8.若定义一种新运算:a⊗b={a−b(a≥2b),a+b−6(a<2b),例如:3⊗1=3-1=2;5⊗4=5+4-6=3.则函=(x+2)⊗(x-1)的图像大致是 ( )9.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯内水面的高度h(cm)与注水时间t(min)的函数图像大致为图中的 ( )10.某企业用货车向乡镇运送农用物资,行驶2 小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是 km/h.11.如图为小强在早晨8时从城市出发到郊外所走的路程与时间的变化图像.根据图像回答问题:(1)图像中自变量是,因变量是;(2)9时,10时30分,12 时小强所走的路程分别是千米,千米, 千米;(3)小强中途休息了小时;(4)求小强从休息后直至到达目的地这段时间的平均速度.考点四一次函数的图像与性质12. 已知正比例函数y=kx(k≠0)的图像过点((2,3),把正比例函数y=kx(k≠0)的图像平移,使它过点(1,-1),则平移后的图像大致是 ( )13.在平面直角坐标系中,一次函数y=x+1的图像是 ( )14.若一次函数y=kx+2 的函数值y 随自变量x 增大而增大,则实数k 的取值范围是 15. 一次函数y=-2x+b,且b>0,则它的图像不经过第 象限.16.已知一次函数y=kx+b(k≠0)的图像经过A(1,-1),B(-1,3)两点,则k (填“>”或“<”).17. 已知函数y=(2m+1)x+m-3. (1)若函数图像经过原点,求m 的值;(2)若函数图像在y 轴的截距为-2,求m 的值; (3)若函数的图像平行于直线y=3x-3,求m 的值;(4)若这个函数是一次函数,且y 随着x 的增大而减小,求 m 的取值范围.考点五 三个“一次”之间的关系18. 如图,直线y=kx+b(k 、b 是常数且k≠0)与直线y=2交于点A(4,2),则关于x 的不等式kx+b <2的解集为 .19. 如图,已知函数y=ax+3 和 y=bx+7 的图像交于点 P(2,5),则关于x 、y 的方程组 {ax −y =−3,bx −y =−7的解是 . 20.已知关于x 、y 的二元一次方程组 {y =ax +b,y =kx 的解是 {x =−4,y =2,则一次函数 y=ax+b 和y=kx的图像的交点坐标为 .21. 在平面直角坐标系xOy 中,一次函数y=kx+b(k≠0)的图像由函数y=x 的图像平移得到,且经过点(1,2).(1)求这个一次函数的表达式;(2)当x>1时,对于x 的每一个值,函数y=mx(m≠0)的值均大于一次函数y=kx+b 的值,直接写出m 的取值范围.参考答案1. C2. D3. y=3x+374. B5. C6.x≥-2且x≠37. 188. A9. B 10. 6511.(1)时间路程 (2)4 9 15 (3)0.5(4)4千米/时12. D 13. C 14. k>0 15. 三 16. <17. (1)∵函数图像经过原点,∴m-3=0,且2m+1≠0,解得:m=3. (2)∵函数图像在y轴的截距为-2,∴m-3=-2,且2m+1≠0,解得:m=1. (3)∵函数的图像平行于直线y=3x-3,∴2m+1=3,解得:m=1..(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<−1218. x<4 19.{x=2} 520.(-4,2)21. (1)∵ 一次函数y=kx+b(k≠0)的图像由函数y=x的图像平移得到,∴k=1.将点(1,2)代入:y=x+b,得1+b=2,解得b=1,∴一次函数的表达式为.y=x+1.(2)m≥2。
《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。
函数单元测试卷
一:选择题(本大题共10小题,每小题3,共3分)
1.下列表示正确的是( )
A.}0{∈Φ
B.},01{02R x x x ∈=+∈
C.}01{12=-∈x x
D.}2,1,0{}2,1{∈
2. 已知:==)(,)(2x f x f 则π( )
A .2π
B .π
C .π
D .不确定
3. 函数()f x =347
2+++kx kx kx 的定义域为R ,则实数k 的取值范围是
( )
A .0≤k <43
B .0<k <43
C .k <0或k >43
D .0<k ≤43
4. 若函数)13(-=x f y 的定义域为[]3,1-,则)1(+=x f y 的定义域为( )
(A )[]3,1- (B )[]2,2- (C )[]7,5- (D )[]9,3-
5. 函数f (x )={222(03)
6(20)x x x x x x -≤≤+-≤≤的值域是( )
(A )R (B )[-9,+∞) (C )[-8,1] (D )[-9,1]
6.函数)(x f 在),(b a 和),(d c 都是增函数,若),(),,(21d c x b a x ∈∈,且21x x <那么( )A .)()(21x f x f < B .)()(21x f x f > C .)()(21x f x f = D .无法确定
7. 若函数2()48f x x kx =--在[5,8]上是单调函数,则实数k 的取值范围是(
)
A .(],40-∞
B .[40,64]
C .(][),4064,-∞+∞
D .[)64,+∞
8. 在下列定义域为R 的函数中,一定不存在的是( )
(A)既是奇函数又是增函数 (B)既是奇函数又是减函数 (C)既是增函数又是偶函数 (D)既非偶函数又非奇函数
9. 已知f (x )为偶函数,且与x 轴有四个不同的交点,则方程f (x )=0的所有实根的和为( )(A)4 (B)2 (C)1 (D)0
10.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是
A.增函数且最小值为m
B.增函数且最大值为m -
C.减函数且最小值为m
D.减函数且最大值为m -
二.填空题:(把答案填在题中横线上。
每小题3分,共24分)
11.设A={}R x x y y x ∈+=,1),(,B={}R x x y y x ∈-=,12),(,则=⋂B A .
12.若集合{}
R a x ax x ∈=++,0122中有且只有一个元素,求实数a 的值__________
13.已知}2,1,{2x x ∈,求x =_______
14. 已知x ∈[0,1],则函数y =x x --+122的最大值是_____,最小值是_____
15. 如果二次函数()()215f x x a x =--+在区间1,12⎛⎫ ⎪⎝⎭上是增函数,则()2f 的取值范围是____________________
16. 将长度为l 的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为_______________.
17. 构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值;
18.函数]1,1[)20(32-<<++=在a ax x y 上的最大值是 ,最小值是 .
三.解答题(本大题共4题,共46分。
应写出证明过程或演算步骤)
19.(8分)若{}41≤≤=x x A ,{}a x x B ≥=,
(1)当Φ=⋂B A 时,求实数a 的取值范围;
(2)当B B A =⋃时,求实数a 的取值。
20.(8分)已知函数()f x 在定义域()0,+∞上为增函数,且满足
()()()(),31f xy f x f y f =+=
(1)求()()9,27f f 的值 (2)解不等式()()82f x f x +-<
21. (8分)已知函数()f x 是偶函数,且0x ≤时,()1.1x f x x
+=-.求(1) ()5f 的值,(2) ()0f x =时x 的值;(3)当x >0时,()f x 的解析式.
22. (10分) 作出函数()21y x x =-+的图象,并根据函数的图象找出函数的单调区间.
23. (10分)若非零函数)(x f 对任意实数b a ,均有()()()f a b f a f b +=∙,且当0<x 时,1)(>x f ;(1)求证:()0f x > (2)求证:)(x f 为减函数
(3)当161)4(=
f 时,解不等()()21354f x f x -∙-≤
24.(本小题满分12分)函数x a x x f -=2)(的定义域为]1,0((a 为实数).
(1)当1-=a 时,求函数)(x f y =的值域;
(2)若函数)(x f y =在定义域上是减函数,求a 的取值范围;
(3)函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值.。