函数单元测试
- 格式:doc
- 大小:139.50 KB
- 文档页数:4
第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。
函数单元测试题及答案一、选择题1. 函数f(x) = x^2 + 3x + 2的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个2. 若函数f(x) = 2x - 1在区间[1, 3]上是增函数,则f(2)与f(1)的大小关系是:A. f(2) > f(1)B. f(2) < f(1)C. f(2) = f(1)D. 不能确定二、填空题3. 函数y = 3x + 5的斜率为______。
4. 若函数f(x) = ax^2 + bx + c的顶点坐标为(-1, -4),则a的值为______。
三、简答题5. 描述函数y = x^3 - 6x^2 + 9x的单调性。
6. 给定函数f(x) = x^2 + 2x + 1,求它的反函数。
四、计算题7. 求函数f(x) = 4x^3 - 3x^2 + 2x - 1在x = 2处的导数。
8. 已知函数f(x) = ln(x),求f(x)在区间[1, e]上的定积分。
五、证明题9. 证明函数f(x) = x^3是奇函数。
10. 证明函数f(x) = sin(x)在区间[0, π]上是增函数。
答案:一、选择题1. C2. A二、填空题3. 34. -1三、简答题5. 函数y = x^3 - 6x^2 + 9x在x = 3处取得极小值,当x < 3时单调递减,当x > 3时单调递增。
6. 反函数为f^(-1)(x) = (-1 - √(1 - 4x))/2。
四、计算题7. 导数为12x^2 - 6x + 2,代入x = 2得导数为28。
8. 定积分为1。
五、证明题9. 令f(x) = x^3,计算f(-x) = (-x)^3 = -x^3 = -f(x),因此f(x)是奇函数。
10. 计算导数f'(x) = cos(x),当x ∈ [0, π]时,cos(x) ≤ 1,因此f(x)在此区间上单调递增。
第三章 、函数的应用单元测试 一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项只有一项是符合题目要求的)1. 已知函数()y f x =有反函数,则方程()0f x = ( )A .有且仅有一个根B .至多有一个根C .至少有一个根 D.以上结论都不对2.如果二次函数2(3)y x mx m =+++有两个不同的零点,则m 的取值范围是( )A .(-2,6) B. [-2,6]C .{-2,6}D .(,2)(6,)∞∞ --+3.求函数3()231f x x x =-+零点的个数为( )A .1 B.2 C .3 D.44.某种动物繁殖量y(只)与时间x (年)的关系为2log (1)y a x =+,设这种动物第1年有100只,到第7年它们发展到( )A .300 只 B.400只 C .500只 D .600只5.方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)6.下列函数中增长速度最快的是( )A .1100x y e = B .100ln y x = C. 100y x = D. 1002x y =• 7.实数a 、b 、c 是图象连续不断的函数()y f x =定义域中的三个数,且满足,a b c <<()(),f a f b o ⋅<()(),f b f c o ⋅<则函数()y f x =在区间(a ,c )上零点个数为( )A .2 B.奇数 C .偶数 D.至少是28.在x g 浓度为a %的盐水中,加人y g 浓度为b %的盐水,浓度变为c %,则x 与y 的函数关系式为( ) A. c a y x c b -=- B. c a y x b c -=- C. a c y x b c -=- D. b c y x c a-=- 9.已知函数()y f x =的图象是连续不断的,有如下的对应值表:则函数()y f x =在区间[1,6]上的零点至少有( )A .2个 B. 3个 C .4个 D.5个10.储油303m 的油桶,每分钟流出334m 的油,则桶内剩余油量3()Q m 以流出时间t (分)为自变量的函数的定义域为( )A .[0,)+∞ B. 450,2⎡⎤⎢⎥⎣⎦ C .(],40-∞ D.[ 0,40 ] 11.某商店把原定价每台为2640元的彩电以九折优惠售出时,仍可获利20%,那么这种彩电每台的进价是( )A .1980元B .2000元C .2112元 D. 2200元12.某工厂一年中十二月份的产量是一月份产量的m 倍,那么该工厂一年中的月平均增长率是( )A. 11mB. 12m C. 11 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设函数()y f x =的图象在[ a, b ]上连续,若满足 ,方程()0f x =在[ a, b ]上有实根.14.某工厂1992年底某种产品年产量为a ,若该产品的年平均增长率为x ,2008年底该厂这种产品的年产量为y ,那么y 与x 的函数关系式是 .15.长为4,宽为3的矩形,当长增加x 且宽减少2x 时的面积最大,此时x= ,面积S= . 16.在不考虑空气阻力的情况下,火箭(除燃料外)的质量m kg,,火箭的最大速度m s υ /和燃料的质量M kg 的函数关系是2000ln(1).M mυ=+ 当燃料质量是火箭质量的 倍时,火箭的最大速度可达12/.km s三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知函数f(x)=x -1+21x 2-2,试利用基本初等函数的图象判断f(x)有几个零点;并利用零点存在性法则确定各零点所在的范围(各区间长度不超过1).18.设函数f(x)=x 3+3x -5,其图象在(-∞,+∞)上是连续不断的.先求值:f(0)=________,f(1)=________,f(2)=________,f(3)=________.可参考条件:f(x)在(-∞,+∞)上是增函数,且f(1.125)<0,f(1.187 5)>0.19.对于函数f(x)=ax 2+(b+1)x+b-2(a≠0),若存在实数x 0,使f(x 0)=x 0成立,则称x 0为f(x)的不动点.(1)当a=2,b=-2时,求f(x)的不动点;(2)若对于任何实数b ,函数f(x)恒有两个相异的不动点,求实数a 的取值范围.20. 设函数)7()7(),2()2(),()(x f x f x f x f x f +=-+=-+∞-∞上满足在,且在闭区间[0,7]上,只有.0)3()1(==f f(Ⅰ)试判断函数)(x f y =的奇偶性;(Ⅱ)试求方程0)(=x f 在闭区间[-2005,2005]上的根的个数,并证明你的结论。
浙江省某校高一(上)数学单元测试:函数一.选择题(每小题6分,共36分。
)1. 下列各组f(x)与g(x)是同一函数的为()lg x2A.f(x)=x,g(x)=(√x)2B.f(x)=lg|x|,g(x)=123C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=√x32. 温州市市区出租车起步价为10元(起步价内行驶的里程是4Km)以后每1Km价为1.5元,则乘坐出租车的费用y(元)与行驶的里程x(Km)之间的函数图象大致为()A. B.C. D.)x的图象只可能是()3. 二次函数y=ax2−bx与函数y=(abA. B.C. D.4. 如果奇函数f(x)在区间[3, 7]上是增函数且最小值为5,那么f(x)在区间[−7, −3]上是()A.增函数且最小值为−5B.增函数且最大值为−5C.减函数且最小值为−5D.减函数且最大值为−5的值域是()5. 函数y=1−x21+x2A.{y|−1≤y≤1}B.{y|−1≤y<1}C.{y|−1<y≤1}D.{y|0<y≤1}6. 已知f(x2+1)=x4+4x2,则f(x)在其定义域内的最小值为()A.−4B.0C.−1D.1二.填空题(每小题6分,共24分。
)的定义域是________.函数y=lg(2−x)+1x−10.82,20.8,log0.82,log20.8按照从小到大的顺序排列为________.已知f(x),g(x)都是定义域内的非奇非偶函数,而f(x)⋅g(x)是偶函数,写出满足条件的一组函数,f(x)=________;g(x)=________.使log2(−x)<x+1成立的x的取值范围是________.三.解答题(第一小题8分,第二、三小题16分,共40分。
)已知函数f(x)=2x2+2x(x≥−1),求f(x)的反函数.(a>0且a≠1)是奇函数.已知f(x)=log a1−kxx−1(1)求k的值,并求该函数的定义域;(2)根据(1)的结果,判断f(x)在(1, +∞)上的单调性;(3)解关于x的不等式f(x2+2x+2)+f(−2)>0.医学上为研究某种传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表.已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)(参考数据:lg2=0.3010,lg3=0.4771)参考答案与试题解析浙江省某校高一(上)数学单元测试:函数一.选择题(每小题6分,共36分。
第三章 函数的概念与性质同步单元必刷卷(基础卷)一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1.(2019·南通市海门实验学校高一月考)下列每组函数是同一函数的是( ) A .0()1,()f x g x x ==B .24(),()22x f x g x x x -==+-C .2()|3|,()(3)f x x g x x =-=-D .()(1)(3),()13f x x x g x x x =--=--2.(2019·长沙市南雅中学高一月考)函数()224f x x x =--+的值域是( )A .[]22-,B .[]1,2C .[]0,2D .2,2⎡⎤-⎣⎦3.(2021·蚌埠田家炳中学高二月考(文))如果函数2()(1)3f x x a x =+-+在区间[]1,4上是单调函数,那么实数a 的取值范围是( ) A .9a ≥或3a ≤ B .7a ≥或3a ≤ C .9a >或3a <D .39a ≤≤4.(2021·河南高三开学考试(文))已知()21f x ax bx =++是定义在[]1,2a a -上的偶函数,那么()y f x =的最大值是( ) A .1B .13C .43D .31275.(2021·湖北高三开学考试)已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()()22101x x f x g x a a a a -+=-+>≠,,则()1f =( )A .1-B .0C .1D .26.(2021·乾安县第七中学高二月考(文))已知二次函数()f x 满足()212f x x x +=-+,若()3f x x m >+在区间[]1,3-上恒成立,则实数m 的范围是( ) A .m <-5 B .m >-5C .m <11D .m >117.(2021·贵州贵阳·高三开学考试(文))已知函数()f x 在(),-∞+∞上单调递减,且为奇函数,若12f ,则满足()222f x -≤-≤的x 的取值范围是( )A .[]22-,B .[]1,1-C .[]1,3D .[]0,48.(2021·全国高一课前预习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()t n (单位:小时)大致服从的关系为()000,,t n N n t n t n N N ⎧<⎪⎪=⎨⎪≥⎪⎩(0t 、0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为( ) A .16小时 B .11小时 C .9小时 D .8小时二、多项选择题:本题共4小题,每小题满分5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求。
函数单元测试卷一:选择题(本大题共10小题,每小题3,共3分)1.下列表示正确的是( )A.}0{∈ΦB.},01{02R x x x ∈=+∈C.}01{12=-∈x xD.}2,1,0{}2,1{∈2. 已知:==)(,)(2x f x f 则π( )A .2πB .πC .πD .不确定3. 函数()f x =3472+++kx kx kx 的定义域为R ,则实数k 的取值范围是( )A .0≤k <43B .0<k <43C .k <0或k >43D .0<k ≤434. 若函数)13(-=x f y 的定义域为[]3,1-,则)1(+=x f y 的定义域为( )(A )[]3,1- (B )[]2,2- (C )[]7,5- (D )[]9,3-5. 函数f (x )={222(03)6(20)x x x x x x -≤≤+-≤≤的值域是( )(A )R (B )[-9,+∞) (C )[-8,1] (D )[-9,1]6.函数)(x f 在),(b a 和),(d c 都是增函数,若),(),,(21d c x b a x ∈∈,且21x x <那么( )A .)()(21x f x f < B .)()(21x f x f > C .)()(21x f x f = D .无法确定7. 若函数2()48f x x kx =--在[5,8]上是单调函数,则实数k 的取值范围是()A .(],40-∞B .[40,64]C .(][),4064,-∞+∞D .[)64,+∞8. 在下列定义域为R 的函数中,一定不存在的是( )(A)既是奇函数又是增函数 (B)既是奇函数又是减函数 (C)既是增函数又是偶函数 (D)既非偶函数又非奇函数9. 已知f (x )为偶函数,且与x 轴有四个不同的交点,则方程f (x )=0的所有实根的和为( )(A)4 (B)2 (C)1 (D)010.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A.增函数且最小值为mB.增函数且最大值为m -C.减函数且最小值为mD.减函数且最大值为m -二.填空题:(把答案填在题中横线上。
第三章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.函数f(x)=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞) C .[1,2) D .[1,2)∪(2,+∞)2.德国数学家狄利克雷在数学上做出了名垂史册的重大贡献,函数D(x)=⎩⎪⎨⎪⎧0,x ∉Q 1,x∈Q是以他名字命名的函数,则D(D(π))=( )A .1B .0C .πD .-13.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x 2-2x +1,则f(-1)=( )A .3B .-3C .2D .-24.若函数y =f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域是( )A .[-4,0]B .[-4,0)C .[-4,-1)∪(-1,0]D .(-4,0)5.若幂函数y =(m 2-3m +3)xm -2的图象不过原点,则m 的取值X 围为( )A .1≤m≤2B .m =1或m =2C .m =2D .m =16.已知函数f(x)是定义在R 上的偶函数,x ≥0时,f (x )=x 2-2x ,则函数f (x )在R 上的解析式是( )A .f (x )=-x (x -2)B .f (x )=x (|x |-2)C .f (x )=|x |(x -2)D .f (x )=|x |(|x |-2)7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值X 围是( )A .(-1,+∞) B.(-∞,-1)C .(-1,4)D .(-∞,1)8.甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2),甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半的时间使用速度v 2,关于甲、乙二人从A 地到达B 地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点),则其中可能正确的图示分析为( )二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( )A .定义域、值域分别是[-1,3],[0,+∞) B.单调增区间是(-∞,1] C .定义域、值域分别是[-1,3],[0,2] D .单调增区间是[-1,1] 10.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)211.关于定义在R 上的函数f (x ),下列命题正确的是( ) A .若f (x )满足f (2 018)>f (2 017),则f (x )在R 上不是减函数 B .若f (x )满足f (-2)=f (2),则函数f (x )不是奇函数C .若f (x )在区间(-∞,0)上是减函数,在区间[0,+∞)也是减函数,则f (x )在R 上是减函数D .若f (x )满足f (-2 018)≠f (2 018),则函数f (x )不是偶函数12.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )满足( )A .f (0)=0B .y =f (x )是奇函数C .f (x )在[m ,n ]上有最大值f (n )D .f (x -1)>0的解集为(-∞,1)三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.14.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.15.定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a ,则a =________,f (-3)=________.(本题第一空2分,第二空3分)16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,3-2a x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X围为________.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=2x -1x +1,x ∈[3,5].(1)判断f (x )在区间[3,5]上的单调性并证明; (2)求f (x )的最大值和最小值.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (-2))的值; (2)若f (a )=32,求a .19.(本小题满分12分)已知幂函数f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z }满足:(1)在区间(0,+∞)上是增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足条件(1)(2)的幂函数f (x )的解析式,并求当x ∈[0,3]时,f (x )的值域.20.(本小题满分12分)设f(x)为定义在R上的偶函数,当x≥0时,f(x)=-(x-2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,某某数k的取值X围.21.(本小题满分12分)如图所示,A、B两城相距100 km,某天然气公司计划在两地之间建一天然气站D给A、B两城供气.已知D地距A城x km,为保证城市安全,天然气站距两城市的距离均不得少于10 km.已知建设费用y(万元)与A、B两地的供气距离(km)的平方和成正比,当天然气站D距A城的距离为40 km时,建设费用为1300万元.(供气距离指天然气站到城市的距离)(1)把建设费用y(万元)表示成供气距离x(km)的函数,并求定义域;(2)天然气供气站建在距A城多远,才能使建设费用最小,最小费用是多少?22.(本小题满分12分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1),f(4),f(8)的值;(2)若有f(x)+f(x-2)≤3成立,求x的取值X围.第三章单元测试卷1.解析:根据题意有⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.答案:D2.解析:∵函数D (x )=⎩⎪⎨⎪⎧0,x ∉Q 1,x ∈Q,∴D (π)=0,D (D (π))=D (0)=1.故选A.答案:A3.解析:令x =1,得f (1)+g (1)=1,令x =-1,得f (-1)+g (-1)=5,两式相加得:f (1)+f (-1)+g (1)+g (-1)=6.又∵f (x )是偶函数,g (x )是奇函数,∴f (-1)=f (1),g (-1)=-g (1).∴2f (-1)=6, ∴f (-1)=3,故选A. 答案:A4.解析:∵y =f (x )的定义域是[0,2],∴要使g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1有意义,需⎩⎪⎨⎪⎧0≤-x2≤2,x +1≠0,∴-4≤x ≤0且x ≠-1.∴g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域为[-4,-1)∪(-1,0].答案:C5.解析:由题意得⎩⎪⎨⎪⎧m -2≤0,m 2-3m +3=1,解得⎩⎪⎨⎪⎧m ≤2,m =1或m =2,∴m =1或m =2.答案:B6.解析:设x <0,则-x >0,f (x )=f (-x )=x 2-2(-x )=x 2+2x .故f (x )=|x |(|x |-2).答案:D 7.解析:f (x )的图象如图.由图知, 若f (x -4)>f (2x -3), 则⎩⎪⎨⎪⎧x -4<0,x -4<2x -3,解得-1<x <4.故实数x 的取值X 围是(-1,4). 答案:C8.解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D.再根据v 1<v 2可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.答案:A9.解析:f (x )=-x 2+2x +3则定义域满足:-x 2+2x +3≥0解得:-1≤x ≤3 即定义域为[-1,3]考虑函数y =-x 2+2x +3=-(x -1)2+4在-1≤x ≤3上有最大值4,最小值0. 在[-1,1]上单调递增,在(1,3]上单调递减.故f (x )=-x 2+2x +3的定义域为[-1,3],值域为[0,2],在[-1,1]上单调递增,在(1,3]上单调递减.故选CD. 答案:CD10.解析:f (2x -1)=(2x -1)2+2(2x -1)+1,故f (x )=x 2+2x +1,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确.故选BD.答案:BD11.解析:由题意,对于A 中,由2 018>2 017,而f (2 018)>f (2 017),由减函数定义可知,f (x )在R 上一定不是减函数,所以A 正确;对于B 中,若f (x )=0,定义域关于原点对称,则f (-2)=f (2)=-f (2),则函数f (x )可以是奇函数,所以B 错误;对于C 中,由分段函数的单调性的判定方法,可得选项C 不正确;对于D 中,若f (x )是偶函数,必有f (-2 018)=f ( 2018),所以D 正确.故选AD.答案:AD12.解析:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,故A 正确;再令y =-x ,代入原式得f (0)=f (x )+f (-x )=0,所以f (-x )=-f (x ),故该函数为奇函数,故B 正确;由f (x +y )=f (x )+f (y )得f (x +y )-f (x )=f (y ),令x 1<x 2,再令x 1=x +y ,x 2=x ,则y =x 1-x 2<0,结合x <0时,f (x )>0,所以f (x 1)-f (x 2)=f (x 1-x 2)>0,所以f (x 1)>f (x 2),所以原函数在定义域内是减函数,所以函数f (x )在[m ,n ]上递减,故f (n )是最小值,f (m )是最大值,故C 错误;又f (x -1)>0,即f (x -1)>f (0),结合原函数在定义域内是减函数可得,x -1<0,解得x <1,故D 正确.故选ABD.答案:ABD13.解析:若a >0,则2a +2=0,得a =-1,与a >0矛盾,舍去;若a ≤0,则a +1+2=0,得a =-3,所以实数a 的值等于-3.答案:-314.解析:由题意,S =(4+x )⎝ ⎛⎭⎪⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:115.解析:由定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a , 可得f (0)=a =0,当x ≥0,f (x )=x 2-2x , 则f (-3)=-f (3)=-(32-2×3)=-3. 答案:0 -316.解析:f (x )=⎩⎪⎨⎪⎧x -12+a -1,x >1,3-2ax -1,x ≤1显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥3-2a ×1-1,解得1≤a <32.答案:⎣⎢⎡⎭⎪⎫1,32 17.解析:(1)函数f (x )在[3,5]上为增函数,证明如下: 设x 1,x 2是[3,5]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1x 1+1-2x 2-1x 2+1=3x 1-x 2x 1+1x 2+1.∵3≤x 1≤x 2≤5,∴x 1-x 2<0,x 1+1>0,x 2+1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[3,5]上为增函数. (2)由(1)知函数f (x )在[3,5]单调递增,所以 函数f (x )的最小值为f (x )min =f (3)=2×3-13+1=54,函数f (x )的最大值为f (x )max =f (5)=2×5-15+1=32.18.解析:(1)因为-2<-1,所以f (-2)=2×(-2)+3=-1, 所以f (f (-2))=f (-1)=2.(2)当a >1时,f (a )=1+1a =32,所以a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,所以a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,所以a =-34>-1(舍去).综上,a =2或a =±22. 19.解析:因为m ∈{x |-2<x <2,x ∈Z }, 所以m =-1,0,1.因为对任意的x ∈R ,都有f (-x )+f (x )=0, 即f (-x )=-f (x ),所以f (x )是奇函数.当m =-1时,f (x )=x 2只满足条件(1)而不满足条件(2); 当m =1时,f (x )=x 0,条件(1)(2)都不满足; 当m =0时,f (x )=x 3,条件(1)(2)都满足. 因此m =0,且f (x )=x 3在区间[0,3]上是增函数, 所以0≤f (x )≤27,故f (x )的值域为[0,27]. 20.解析:(1)若x <0,则-x >0,f (x )=f (-x ) =-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-x -22+2,x ≥0,-x +22+2,x <0.(2)图象如图所示,(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )图象与直线y =k 的交点情况可知,当-2<k <2时,函数y =f (x )图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.21.解析:(1)由题意知D 地距B 城(100-x )km ,则⎩⎪⎨⎪⎧100-x ≥10,x ≥10,∴10≤x ≤90.设比例系数为k ,则y =k [x 2+(100-x )2](10≤x ≤90). 又x =40时,y =1 300,所以1 300=k (402+602),即k =14,所以y =14[x 2+(100-x )2]=12(x 2-100x +5 000)(10≤x ≤90).(2)由于y =12(x 2-100x +5 000)=12(x -50)2+1 250,所以当x =50时,y 有最小值为1 250万元.所以当供气站建在距A 城50 km 时,能使建设费用最小,最小费用是1 250万元. 22.解析:(1)f (1)=f (1)+f (1),所以f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=1+2=3.(2)因为f (x )+f (x -2)≤3, 所以f [x (x -2)]≤f (8),又因为对于函数f (x ),当x 2>x 1>0时,f (x 2)>f (x 1),所以f (x )在(0,+∞)上为增函数,所以⎩⎪⎨⎪⎧x >0,x -2>0,x x -2≤8,解得2<x ≤4.故x 的取值X 围为(2,4].。
函数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个是Python中定义函数的关键字?A. defB. ifC. whileD. for2. 在Python中,函数的返回值是通过哪个关键字实现的?A. returnB. printC. inputD. yield3. 以下哪个选项是正确的函数调用方式?A. my_function()B. my_functionC. my_function = callD. call my_function4. 如果函数没有返回值,Python将返回什么?A. NoneB. TrueC. FalseD. Error5. 以下哪个是Python中函数的参数默认值的正确用法?A. def func(a, b=5)B. def func(a=5, b)C. def func(a, b=5)D. def func(a=5, b=5)6. 可变参数在Python函数中是如何定义的?A. *argsB. &argsC. args*D. *&args7. 关键字参数在Python函数中是如何定义的?A. *kwargsB. argsC. &kwargsD. params8. 下列哪个是Python中装饰器的基本语法?A. @decoratorB. #decoratorC. $decoratorD. %decorator9. 在Python中,如何使用函数的文档字符串?A. print(func.__doc__)B. print(func.doc())C. print(func())D. print(func)10. 下列哪个选项是Python中匿名函数的表示方式?A. anonymous()B. lambda x: xC. def anonymous(x): xD. anonymous = x答案:1. A2. A3. A4. A5. C6. A7. A8. A9. A10. B二、简答题(每题5分,共20分)1. 简述Python中函数的作用。
人教高中数学函数概念与性质一、单选题1.下列函数中,在其定义域内既是增函数又是奇函数的是( )A.y=x2B.y=―log2x C.y=3x D.y=x3+x 2.若幂函数f(x)=xα的图象经过点(3,3),则α的值为( )A.2B.-2C.12D.―123.若f[g(x)]=6x+3且g(x)=2x+1,则f(x)的解析式为( )A.3B.3x C.3(2x+1)D.6x+14.已知函数y=f(x+2)的定义域为(0,2),则函数y=f(log2x)的定义域为( )A.(﹣∞,1)B.(1,4)C.(4,16)D.(14,1)5.下列各组函数中,表示同一函数的是( )A.f(x)=x和g(x)=(x)2B.f(x)=|x|和g(x)=3x3C.f(x)=x|x|和g(x)={x2(x>0)―x2(x<0)D.f(x)=x2―1x―1和g(x)=x+1,(x≠1)6.已知函数f(x)={2x+1,x≤0|ln x|,x>0,则方程f[f(x)]=3的实数根的个数是( )A.2B.3C.4D.57.连续函数f(x)是定义在(―1,1)上的偶函数,当x≠0时,x f′(x)>0.若f(a+1)―f(2a)>0,则a的取值范围是( )A.(―13,1)B.(―12,0)C.(―12,1)D.(―13,0)8.已知函数f(x)是定义在R上的偶函数,且在(―∞,0)上单调递减,若a=f(log215),b=f( log24.1),c=f(20.8),则a,b,c的大小关系是( )A.a<b<c B.b<a<c C.c<a<b D.c<b<a二、多选题9.下列函数中既是奇函数又在定义域上是单调函数的有( )A.y=1x2B.y=―x3C.y=x|x|D.y=x+1x10.给出定义:若m―12<x≤m+12(m∈Z),则称m为离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x―{x}|的四个结论,其中正确的是( )A.函数y=f(x)的定义域为R,值域为[0,12]B.函数y=f(x)的图象关于直线x=k2(k∈Z)对称C.函数y=f(x)是偶函数D.函数y=f(x)在[―12,12]上单调递增11.设函数f(x)=ln|x+2|―ln|x―2|,则( )A.f(x)的定义域为(―∞,―2)∪(2,+∞)B.f(x)的值域为RC.f(x)在(―∞,―2)单调递增D.f(x)在(2,+∞)单调递减12.定义:若对于定义域内任意x,总存在正常数a,使得f(x+a)>f(x)恒成立,则称函数f(x)为“a距”增函数,以下判断正确的有( )A.函数f(x)=3x(x∈R)是“a距”增函数B.函数f(x)=2x―x(x>0)是“1距”增函数C.若函数f(x)=x3―14x+4(x∈R)是“a距”增函数,则a的取值范围是(0,1)D.若函数f(x)=2x2+k|x|(x∈(―1,+∞))是“2距”增函数,则k的取值范围是(―2,+∞)三、填空题13.幂函数f(x)图象过(2,4),则幂函数f(x)= .14.已知函数f(x)= 2x―3x+1的图象关于点P中心对称,则点P的坐标是 .15.设函数g(x)满足g(x+2)=2x+3,则g(x)的解析式为 .16.设函数f(x)= {1,x≥0―1,x<0,g(x)= x2e2f(x﹣1),则函数g(x)的递增区间是 .四、解答题17.已知f(x)为二次函数,且f(x)的两个零点为1和3,g(x)为幂函数,且y=f(x)和y=g(x)都经过点(4,2).(1)求函数y=g(f(x))的定义域;(2)当x∈[1,16]时,求函数y=f(g(x))的值域.18.已知函数f(x)=x2+ax+bx(a,b∈R).(1)若函数f(x)为奇函数,求实数a的值;(2)当a=2,b=1时,求函数f(x)在区间(0,+∞)上的最小值.19.已知f(x)=x|x﹣a|+2x﹣3,其中a∈R(1)当a=4,2≤x≤5时,求函数f (x )的最大值和最小值,并写出相应的x 的值.(2)若f (x )在R 上恒为增函数,求实数a 的取值范围.20.已知二次函数f (x )=ax 2+bx+1,(a >0), F (x )={f (x ),x >0―f (x ),x <0 若f (﹣1)=0且对任意实数x 均有f (x )≥0成立(1)求F (x )的表达式;(2)当x ∈[﹣2,2]时,g (x )=f (x )﹣kx 是单调函数,求k 的取值范围. 21.某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x 个月的利润 f (x )={1(1≤x ≤20,x ∈N ∗)110x (21≤x ≤60,x ∈N ∗) (单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x 个月的当月利润率 g (x )=第x 个月的利润第x 个月前的资金总和 ,例如: g (3)=f (3)81+f (1)+f (2) . (1)求g (10);(2)求第x 个月的当月利润率g (x );(3)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率. 22.已知定义域为 R 的函数 f (x )=ℎ(x )+n ―2ℎ(x )―2是奇函数, ℎ(x ) 为指数函数且 ℎ(x ) 的图象过点 (2,4) .(1)求 f (x ) 的表达式;(2)若对任意的 t ∈[―1,1] .不等式 f (t 2―2a )+f (at ―1)≥0 恒成立,求实数 a 的取值范围; (3)若方程 f (|x 2+3x |)+f (―a |x ―1|)=0 恰有2个互异的实数根,求实数 a 的取值集合.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】C5.【答案】D6.【答案】D7.【答案】D8.【答案】D9.【答案】B,C10.【答案】A,B,C11.【答案】B,D12.【答案】A,B,D13.【答案】x 214.【答案】(﹣1,2)15.【答案】g (x )=2x ―116.【答案】(﹣∞,0],[1,2]17.【答案】(1)解:设 f (x )=a (x ―1)(x ―3) ,( a ≠0 ) 又 y =f (x ) 过点 (4,2) ,∴2=a (4―1)(4―3) ,∴a =23 ,∴f (x )=23(x ―1)(x ―3) ,设 g (x )=x α ,由 y =g (x ) 都经过点 (4,2) 知, 2=4α ,∴α=12 ,∴g (x )=x ,y =g (f (x ))=23(x ―1)(x ―3) ,∴23(x ―1)(x ―3)≥0 ,∴x ≥3 或 x ≤1 ,∴函数的定义域为 (―∞,1]∪[3,+∞) .(2)令 t =g (x )=x ,∵x ∈[1,16] ,∴t ∈[1,4] ,所以 y =f (g (x ))=23(t 2―4t +3)=23[(t ―2)2―1] ,当 t =2 时, y min =―23 ; t =4 时, y max =2 ,所以函数的值域为[―23,2].18.【答案】(1)解:函数f(x)=x2+ax+bx的定义域为{x|x≠0},若函数f(x)为奇函数,则f(―x)=―f(x)成立,即(―x)2+a(―x)+b―x=―x2+ax+bx,即2ax=0恒成立,因为x≠0,所以a=0;(2)解:当a=2,b=1时,函数f(x)=x2+2x+1x =x+1x+2,因为x>0,所以f(x)=x+1x +2≥2x⋅1x+2=4,当且仅当x=1x,即x=1时等号成立,则函数f(x)取得最小值为4.19.【答案】(1)解:∵f(x)=x|x﹣a|+2x﹣3,∴当a=4时,f(x)=x|x―4|+2x―3={―x2+6x―3,2≤x≤4x2+2x―3,4<x≤5;作图如下:由图知,当x=5时,f(x)max=f(5)=52﹣2×5﹣3=12;当x=2或4时,f(x)min=f(2)=f(4)=﹣22+6×2﹣3=5,(2)解:f(x)={―x2+(a+2)x―3,x≤ax2+(2―a)x―3,x>a,∵f(x)在R上恒为增函数,∴{a+22≥aa―22≤a,解得﹣2≤a≤2.∴实数a的取值范围是[﹣2,2].20.【答案】(1)解:∵f(x)=ax2+bx+1(a>0),f(﹣1)=0且对任意实数x均有f(x)≥0成立;∴x=﹣b2a=﹣1,且a﹣b+1=0;即{b=2aa―b+1=0,解得{a=1b=2;∴f(x)=x2+2x+1,∴F(x)= {x2+2x+1(x>0)―x2―2x―1(x<0)(2)解:∵f(x)=x2+2x+1,∴g(x)=f(x)﹣kx=x2+(2﹣k)x+1,∵g(x)在[﹣2,2]上是单调函数,∴x= ―(2―k)2应满足:―(2―k)2≥2,或―(2―k)2≤﹣2,即k≥6,或k≤﹣2;∴k的取值范围是{k|k≤﹣2,或k≥6}21.【答案】(1)解:由题意得:f(1)=f(2)=f(3)=…═f(9)=f(10)=1g(x)=f(10)81+f(1)+⋯f(9)= 181+1+⋯+1= 190(2)解:当1≤x≤20时,f(1)=f(2)═f(x﹣1)=f(x)=1∴g(x)=f(x)81+f(1)+⋯f(x―1)= 181+1+⋯+1= 181+(x―1)=1x+80.当21≤x≤60时,g(x)=f(x)81+f(1)+⋯+f(20)+f(21)+⋯+f(x―1)=110x81+f(1)+⋯f(x―1)=110x81+20+2110+⋯+x―110=110x101+12(2110+x―110)(x―21)=110x101+(x―21)(x+20)20=2xx2―x+1600∴当第x个月的当月利润率g(x)={1x+80(1≤x≤20,x∈N∗)2xx2―x+1600(21≤x≤60,x∈N∗)(3)解:当1≤x≤20时,g(x)=1x+80是减函数,此时g(x)的最大值为g(1)=181当21≤x≤60时,g(x)=2xx2―x+1600=2x+1600x―1≤221600―1=279当且仅当x=1600x时,即x=40时,g(x)max=279,又∵279>181,∴当x=40时,g(x)max=279所以,该企业经销此产品期间,第40个月的当月利润率最大,最大值为279 22.【答案】(1)由题意,设ℎ(x)=a x,因为ℎ(x)过点(2,4),可得a2=4,解得a=2,即ℎ(x)=2x,所以f(x)=2x+n―2x+1―2,又因为f(x)为奇函数,可得f(0)=0,即f(0)=20+n―2―2=0,解答n=―1,经检验,符合f(x)=―f(―x),所以f(x)=―2x+12x+1+2.(2)由函数f(x)=―2x+12x+1+2=―12+12x+1,可得f(x)在R上单调递减,又因为f(x)为奇函数,因为f(t2―2a)+f(at―1)≥0,即f(t2―2a)≥f(1―at),所以t2―2a≤1―at,即t2+at―1―2a≤0,又因为对任意的t∈[―1,1],不等式f(t2―2a)+f(at―1)≥0恒成立,令g(t)=t2+at―1―2a,即g(t)≤0对任意的t∈[―1,1]恒成立,可得{g(―1)≤0g(1)≤0,即{(―1)2+a×(―1)―1―2a≤012+a―1―2a≤0,解得a≥2,所以实数a的取值范围为[0,+∞).(3)由于f(x)为奇函数,所以由f(|x2+3x|)+f(―a|x―1|)=0,可得f(|x2+3x|)=f(a|x―1|),又因为f(x)在R上递减,即|x2+3x|=a|x―1|,显然x≠1,所以a=|x2+3xx―1|,令t=x―1,则a=|t+4t+5|,又由当t>0时,t+4t +5≥2t⋅4t+5=9,当且仅当t=4t时,即t=2时等号成立;当t<0时,t+4t +5=―[(―t)+4―t]+5≤―2(―t)⋅4(―t)+5=1,当且仅当―t=―4t时,即t=―2时等号成立,方程有2个互异实数根,画出y=|t+4t+5|的图象,如图所示,由图可得,实数a的取值集合为{a|1<a<9或a=0}。
高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。
高一函数单元测试
一、 选择题
1.已知),(y x 在映射f 下的象是),(y x y x -+,则)6,4(在f 下的原象是 ( )
A.)1,5(-
B.)5,1(-
C.)2,10(-
D.)10,2(-
2.下列各组中,函数f (x )和g(x )的图象相同的是
( ) A .f (x )=x ,g(x )=(x )2
B .f (x )=1,g(x )=x 0
C .f (x )=|x |,g(x )=2x
D .f (x )=|x |,g(x )=⎩⎨⎧-∞∈-+∞∈)0,(,),0(,x x x x 3.函数y =1-1-x (x ≥1)的反函数是
( ) A .y =(x -1)2+1,x ∈R
B .y =(x -1)2-1,x ∈R
C .y =(x -1)2+1,x ≤1
D .y =(x -1)2-1,x ≤1
4.函数y = ( ) A )43,21(- B ]43,21[- C ),43[]21,(+∞⋃-∞ D ),0()0,2
1
(+∞⋃-
5. 某学生离家去学校,一开始跑步前进,跑累了再走余下的路程。
下列图中纵轴表示离校 的距离,横轴表示出发后的时间,则较符合学生走法的是 ( )
x
A B C D
6.下列函数为奇函数的是 ( ) A 2x y = B 1+=x y C 3
x x y += D x y =
7.下列函数中为减函数的是 ( )
A x y =
B 24x y =
C 42+-=x y
D x y -=4 8.已知函数()13ax f x x +=-的反函数就是()f x 本身,则a 的值为 ( )
A .3-
B .1
C .3
D .1-
9.二次函数2ax y -=,当2=x 时,2
1=y ,则当2-=x 时,y 的值为 ( )
A 4-
B 4 C
21 D 21- 10. 二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( )
A 7-
B 1
C 17
D 25
二、填空题
11. 设f (x -1)=3x -1,则f (x )=__ _______.
12. 已知函数f (x )=x 2-2x +2,那么f (1),f (-1),f (3)之间的大小关系为 .
13. 已知函数()⎪⎩
⎪⎨⎧<=>+=0,00,0,1x x x x x f π满足,则()[]{}3-f f f =_____________;
14.函数32-=m
x y ,当m = 时,函数为正比例函数
15.函数12
1-=
x y ,[]4,2-∈x ,则其值域是 三、解答题
18.求函数x
x y --=421的定义域
17.已知函数2
()1f x x =+
①用定义证明()x f 是偶函数;
②用定义证明()x f 在[)0,+∞上是增函数
16. 对于二次函数2483y x x =-+-,(8分)
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(3)求函数的最大值或最小值;
(4)分析函数的单调性。
19.已知函数b x y +=5
1与3+=ax y 互为反函数,求常数b a ,的值
20.一家旅社有客房300间,每间房租20元,没天都客满,旅社于提高档次,并提高租金,如果每间房租增加2元,客房出租数会减少10间。
不考虑其他因素,旅社将房间租金提高到多少元时,每天的客房租金最高
20。