稳压电源电路图_doc
- 格式:doc
- 大小:121.50 KB
- 文档页数:2
LM317可调稳压电源电路图
LM317可调稳压电源电路图由;LM317输出电流为1.5A,LM317输出电压可在1.25-37V之间连续调节,LM317输出电压由两只外接电阻R1、RP1决定,LM317输出端和调整端之间的电压差为1.25V,LM317这个电压将产生几毫安的电流,经R1、RP1到地,在RP1上分得的电压加到调整端,LM317通过改变RP1就能改变输出电压。
注意,为了得到稳定的输出电压,流经R1的电流小于3.5mA。
LM317在不加散热器时最大功耗为2W,加上200×200×4mm3散热板时其最大功耗可达15W。
VD1(IN4002)为保护二极管,防止稳压器输出端短路而损坏IC,VD2(IN4002)用于防止输入短路而损坏集成电路。
如下图
LM317制作的可调稳压电源电路图
LM317安装时注意电容C2应靠近IC的输入端,C3应靠近IC的输出端,这样能更好地抑制纹波。
LM317输出电压在1.25-37V之间连续可调,LM317输出最大电流可达1.5A。
LM317替换型号YW-UTC317,也可以用来制作可调稳压电源电路图。
详解大功率可调稳压电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。
如图1所示大功率可调稳压电源电路图大功率可调稳压电源电路图图1 大功率可调稳压电源电路图其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。
第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。
第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。
第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。
图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4和R3的电阻值,当然变压器的次级电压也要提高。
变压器的功率可根据输出电流灵活掌握,次级电压15V左右。
桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。
调整管用的是大电流NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。
滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。
5v稳压电源电路图首先推荐一下7805组成的5V输出的电源电路。
78XX系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。
IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。
当输出电较大时,7805应配上散热板。
下图为提高输出电压的应用电路。
稳压二极管VD1串接在78XX稳压器2脚与地之间,可使输出电压Uo得到一定的提高,输出电压Uo为78XX稳压器输出电压与稳压二极管VC1稳压值之和。
VD2是输出保护二极管,一旦输出电压低于VD1稳压值时,VD2导通,将输出电流旁路,保护7800稳压器输出级不被损坏。
下图为输出电压可在一定范围内调节的应用电路。
由于R1、RP电阻网络的作用,使得输出电压被提高,提高的幅度取决于RP与R1的比值。
调节电位器RP,即可一定范围内调节输出电压。
当RP=0时,输出电压Uo等于78XX稳压器输出电压;当RP逐步增大时,Uo也随之逐步提高。
采用A723构成的输出20A 5V稳压电源电路图所示是采用A723构成的输出20A/5V稳压电源电路,本电路外接晶体管使输出电流达到20A,若输出电压超过6V,晶闸管VS动作,防止输出端短路时产生的过电压,若输出电压低于5V时,输入电压约为13V,A723的工作电源由辅助电源提供,恒流保护回路的动作电流约为30A,输出电压可调范围为4.92-5.09V,电路中采用多个晶体管并联须注意均流问题。
MAX610不间断5V电源电路图中为不间断5V电源电路,市电供电时,V通过R2向7.2V电池缓慢充电市电停止供电时,电池通过二极管VD1提供电源,MAX610可连续提供5V电压输出直到V+近似为、5.8V,即使、电池电压降为6.5V。
(责任编辑:电路图)。
可调稳压电源电路图一、引言可调稳压电源电路图是一种常见的电子电路设计,用于为电子设备提供稳定的直流电源。
本文将介绍一种基于线性稳压器的可调稳压电源电路图的设计原理和工作原理,并详细说明其各组成部分的功能和特点。
二、设计原理可调稳压电源电路图的设计基于线性稳压器的工作原理。
线性稳压器主要由输入电压调节器、误差放大器、功率三极管和输出电压采样电路等组成。
输入电压经过调节器调整为所需的稳定电压值,然后经由功率三极管输出给负载。
误差放大器用于比较输出电压与预设电压之间的差异,然后通过控制功率三极管来调整输出电压的稳定性。
三、电路图及组成部分下面是一种基于线性稳压器的可调稳压电源电路图的示意图:[电路图省略]1. 输入电源输入电源是可调稳压电源电路图的起点。
一般情况下,输入电源的电压范围为6V至12V。
2. 可调稳压器可调稳压器通常采用可控硅调整器或变压器来实现电压的调整。
可控硅调整器的电压输出范围广,稳定性好,适用于大功率可调稳压电源电路图的设计;而变压器则适用于小功率的可调稳压电源电路图。
根据设计需求选择相应的可调稳压器。
3. 误差放大器误差放大器是可调稳压电源电路图中的核心部分,它用于比较输出电压与预设电压之间的差异。
一般情况下,误差放大器采用运算放大器进行实现。
4. 功率三极管功率三极管是可调稳压器的输出部分,用于控制输出电压的稳定性。
功率三极管的工作原理是通过调节其输入电压的大小来控制输出电压的稳定性。
5. 输出电压采样电路输出电压采样电路用于采集输出电压的实际数值,并将其反馈给误差放大器。
误差放大器根据反馈的电压值来进行误差放大,并通过控制功率三极管来调节输出电压的稳定性。
四、工作原理可调稳压电源电路图的工作原理如下:首先,输入电源将电压输入到可调稳压器中,经过可控硅调整器或变压器的调整,将电压稳定在预设值范围内。
然后,输出电压采样电路采集实际输出电压的数值,并通过误差放大器与预设电压进行比较。
12V、0.5A单片开关稳压电源的电路如图1所示。
其输出功率为6W。
当输入交流电压在110~260V范围内变化时,电压调整率Sv≤1%。
当负载电流大幅度变化时,负载调整率SI=5%~7%。
为简化电路,这里采用了基本反馈方式。
接通电源后,220V交流电首先经过桥式整流和C1滤波,得到约+300V的直流高压,再通过高频变压器的初级线圈N1,给WSl57提供所需的工作电压。
从次级线圈N2上输出的脉宽调制功率信号,经VD7、C4、L和C5进行高频整流滤波,获得+12V、0.5A的稳压输出。
反馈线圈N3上的电压则通过VD6、R2、C3整流滤波后,将控制电流加至控制端C上。
由VD5、R1,和C2构成的吸收回路,能有效抑制漏极上的反向峰值电压。
该电路的稳压原理分析如下:当由于某种原因致使Uo↓时,反馈线圈电压及控制端电流也随之降低,而芯片内部产生的误差电压Ur↑时,PWM比较器输出的脉冲占空比D↑,经过MOSFET和降压式输出电路使得Uo↑,最终能维持输出电压不变。
反之亦然。
J1图6 数控步进直流稳压电源电路图数控步进直流稳压电源一、按所附原理图(图6)完成部分电路设计,制作一台数控步进直流稳压电源。
1.分析电路工作原理,完成“电路设计区”的电路设计。
2.利用Protel99SE软件绘制全电路图,并按要求设计PCB。
3.利用组委会提供的机箱完成简单的结构设计,包括变压器、电路板、按键、LED的安装及机内走线的规划。
4.完成电路组装及调试。
5.完成整机的安装与调试,使其达到规定的技术指标。
6.编写设计文件、生产工艺文件、产品说明书。
二、功能与技术指标1.功能⑴通过“+”、“-”键步进调整输出电压,可调范围为0~+12V,步进幅度为0.5V。
⑵输出电压和电流值通过4位LED显示,显示精度分别为0.1V和0.01A。
通过“F1”键实现电压/电流显示切换,开机默认显示电压,按“F1”转换为显示电流,再按“F1”转换为显示电压。
4位LED末位显示单位,电流显示“A”,电压显示“U”。
⑶过流保护与报警功能。
2.技术指标⑴交流输入电压范围:220V±10%⑵输出电压范围:0~+12V⑶输出电流范围:0~1A⑷输出纹波电压:<10mV(输出电压为10V,输出电流为500mA时测得)⑸过流保护动作电流:1.1 A四、说明1.关于电路元件及部分电路的说明⑴U6、R20、R21、LED2、D12、LS构成过流指示及声音报警电路,蜂鸣器LS为5V供电,过流时发出连续鸣音。
⑵R18、R19、RP3、D11、C23、C24构成D/A转换器基准电压源电路,根据电路设计情况可取消。
2.关于电路的说明⑴限定使用使用AT89S52、ATmega16、PIC16F877三种微控制器。
⑵电路设计区的电路可以使用U5中未用的运放。
⑶F2键作为备用键,可在扩展软件功能时使用。
⑷可以利用微控制器自带的A/D转换器替代AD0809。
编写合适的MCU程序发给我的另加五倍积分!!!其他回答共1条电路图的定义:用导线将电源、开关(电键)、用电器、电流表、电压表等连接起来组成电路,再按照统一的符号将它们表示出来,这样绘制出的就叫做电路图。
TL431大功率可调稳压电源电路图TL431是用于稳压电路的精细基准电压集成电路,它的输出电压接连可调,最高可达36V。
作业电流最高可达100mA。
下图是用TL431作基准电压源,K790场效应管作调整管构成的高精度稳压电源,输出电流可达6A。
电路原理:220v电压经变压器B降压、D1-D4整流、C1滤波。
此外D5、D6、C2、C3构成倍压电路(使得Vdc=60V),Rw、R3构成分压电路,TL431、R1构成取样拓宽电路,9013、R2构成限流维护电路,场效应管K790作调整管,C5是输出滤波电容器。
稳压进程:当输出电压下降时,f点电位下降,经TL431内部拓宽使e点电压增高,经K790调整后,b点电位添加;反之,当输出电压增高时,f点电位添加,e点电位下降,经K790调整后,b 点电位下降。
然后使输出电压安稳。
限流维护:当输出电流大于6A时,三极管9013处于截止,使输出电流被束缚在6A以内,然后抵达限流的意图。
本电路除电阻R1选用2W、R2选用5W外,其它元件无分外恳求,元件参数如图所示。
1。
具有过压保护的5V稳压电源电路图具有过电压保护的5V稳压电源,采用集电极输出串调电源,有扩流、过电压保护装置。
电路如图所示。
具有过压保护的5V稳压电源电路电路工作原理:闭合电源开关S,电路电源220V经变压器T降压,由桥式整流二极管VD1~VD4和电容C4整流、滤波使输出端获得稳定的5V电压。
W7805的最大输出电流为1.5A,要想使输出电流大于1.5A,则要扩大输出电流,为此在W78O5的外围接一只大功率晶体管VT。
它采用的是并接式扩流方式,即W7805的第1脚与VT的基极相连,W7805的第2脚与VT的集电极相连,这样两输出电流之和可满足输出1.6A电流的要求。
如果需要更大的输出电流,可改用2~3只大功率管并联即可。
W78O5集成稳压器内部有过电流、过热和安全区保护电路。
尽管如此,由W7805和VT等组成的稳压电源输出端仍有可能发生过电压现象。
为确保负载的安全,该电源在集成块典型应用电路基础上,加了过电压保护电路。
该电路由稳压二极管VZ、电阻R3、晶间管VS和快速熔丝管FU等组成。
该电源工作正常时输出电压为5V,晶问管VS呈截止状态。
当稳压电源由于某种原因(如集成块损坏或调整管击穿)使输出电压超过限定值时,即大于等于5.6V,稳压管VZ 击穿,采样电压VR3升高使晶间管VS触发而导通,造成熔丝熔断,从而保护了负载。
在集成稳压器W7805的第1、2脚和扩流管VT的发射极与集电极间分别并联二极管VD5和VD6,主要是用来保护集成块和扩流管。
当输人端发生短路或输出端过压而使VS 导通造成输人端短路时,稳压器输入端电压因熔丝熔断立刻为零,而输出端电容器C8上充足的电荷则不能立即为零,因而造成输出端瞬间电压高于输入端,为了防止这个反向峰值电压击穿集成稳压器W7805或VT功率管,故加了VD5、VD6使电荷泄放掉,从而保护了W7805和VT。
C1和C2为VD1~VD4的输人和输出电容器,可抑制高频谐波干扰。
初学者特别应注意7812正电源稳压IC与7912负电源稳压IC的引脚功能是不一样的,有关详细说明见:
三端稳压器7912引脚功能,电路接法
从电路中可以看到,7812/7912的输入输出端都接有电容,而且是一大一小,大容量电容是低频滤波作用,小容量电容是高频滤波用。
需提醒的是输出端一般不要接过大容量电容,一般接几十微法的就可以了。
否则有些电路中会出现关闭电源后,输出端电容向前级稳压IC放电的过程,这容易损坏稳压IC。
如果电路需要,应在三端稳压器输入输出端跨接一保护二极管。
它可以解决反向浪涌电流对稳压IC的冲击。
这在一些实验电源中特别推荐加接以保护三端稳压器。
三端稳压器组成的多路输出(正负12V,正负5V)
稳压电源电路图
下图是一采用三端稳压器的多路输出直流稳压电源电路图。
可同时输出正负12V,正负5V。
原理比较简单这里就不作介绍了。