点差法公式在高考中的妙用
- 格式:doc
- 大小:539.00 KB
- 文档页数:8
点差法公式在双曲线中点弦问题中的妙用XXXX 外国语学校隆光诚(邮政编码530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理在双曲线12222=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN=⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x)2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200ab x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN=⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22ba x y k AB =⋅得:3121=⋅--x y x y , 整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k ∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值X 围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k 解之得:k <23且.2±≠k ∴k 的取值X 围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知+=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q .,+=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a bx y k AB =⋅得:14222=⋅+=⋅+x y x y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a ∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为()A.14322=-y xB. 13422=-y xC. 12522=-y xD. 15222=-y x 2.(02XX )设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200ab x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上,∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-x y,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3.解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x .∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x 又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k .由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
点差法公式在双曲线中点弦问题中的妙用广西南宁外国语学校 隆光诚(邮政编码530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221ΛΛΛΛb y a x by a x)2()1(-,得.02222122221=---byy a x x又.22,00021211212x y x y x x y y x x y y k MN ==++--=Θ同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200b a x y k MN =⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22b a x y k AB =⋅得:3121=⋅--x y x y ,整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2)Θ P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k Θ直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222φk k k k k k解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,(Y Y ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知+=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q . 由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a b x y k AB =⋅得:14222=⋅+=⋅+x y x y x y x y, 整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x . 由100+=kx y 得:132+=k ,∴2±=k.又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x kΘ直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C. 12522=-y x D. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线. (1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22a b x y k CD=⋅得:21=⋅-xy,即x y 2-=. 由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆.3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x . 若直线l 的的斜率不存在,则x l⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x .4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a , ∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P . 由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又Θ300+=kx y ,∴32329+⋅=k k ,即12=k . ∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k Θ直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN=⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x)2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200ab x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN=⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22ba x y k AB =⋅得:3121=⋅--x y x y , 整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k ∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k 解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知OB OA OP +=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q .,OB OA OP +=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a b x y k AB =⋅得:14222=⋅+=⋅+x yx y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由2234y x =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a ∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( )A.14322=-y xB. 13422=-y xC. 12522=-y xD. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200ab x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-x y,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x . ∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x 又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k .由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
[3+[53]2]=2ꎬ故①正确ꎻ当a=1时ꎬx1=1ꎬx2=x3= =xn=1ꎬ但当a=3时ꎬx1=3ꎬx2=2ꎬx3=1ꎬx4=2ꎬx5=1ꎬx6=2ꎬx7=1ꎬ ꎬ此时可以看出数列xn{}ꎬ从第二项起是以2为周期重复出现ꎬ不存在正整数kꎬ使得当nȡk时总有xn=xkꎬ故②不正确.对于③ꎬx1=a>a-1成立ꎬ因xn是整数ꎬ故若xn+axn[]是正奇数ꎬ则xn+1=xn+axn[]-12>xn+axn-22ȡ2a-12>a-1ꎬ若xn+axn[]是正偶数ꎬxn+1=xn+axn[]2>xn+axn-12ȡ2a-12>a-1.综上知③正确.对于④ꎬ由xk+1ȡxk得axk[]-xkȡ0ꎬaxk-xkȡaxk[]-xkȡ0ꎬxkɤaꎻ结合③有a-1<xkɤaꎬ因此有xk=a[]ꎬ④正确.综上知真命题是①③④.评注㊀本题借用取整函数ꎬ构造一个新数列ꎬ主要考查数列知识的灵活应用和推理论证能力.本题是取整函数(高斯函数)与数列二者交汇而成ꎬ设计新颖ꎬ构思精妙ꎬ难度较大.解此类题的关键是理解函数x[]的意义.㊀㊀参考文献:[1]蒋孝国.数学竞赛中的高斯函数[J].数学通讯ꎬ2015(19):45-48.[责任编辑:李㊀璟]点差法的基本原理及其在高考数学中的简单应用武增明(云南省玉溪第一中学㊀653100)摘㊀要:本文给出点差法的基本原理和点差法的简单应用ꎬ与同仁及同学们共飨.关键词:点差法ꎻ圆锥曲线ꎻ解题研究中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2021)04-0053-03收稿日期:2020-11-05作者简介:武增明(1965.5-)ꎬ男ꎬ云南省玉溪市易门人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀一㊁点差法的基本原理在研究直线被圆锥曲线截得中点弦问题时ꎬ设出弦端点坐标ꎬ并分别代入圆锥曲线方程得两式ꎬ将其两式相减ꎬ可得弦的斜率与弦的中点坐标之间的关系式ꎬ这种解题方法叫做点差法.如ꎬ圆锥曲线mx2+ny2=1(mꎬnɪRꎬ且mʂ0ꎬnʂ0ꎬ)上两点PꎬQꎬ设P(x1ꎬy1)ꎬQ(x2ꎬy2)ꎬ弦PQ的中点M(x0ꎬy0)ꎬ弦PQ的斜率为kꎬ则mx21+ny21=1ꎬ①mx22+ny22=1ꎬ②{由①-②ꎬ得m(x1+x2)(x1-x2)+n(y1+y2)(y1-y2)=0ꎬ又x1+x2=2x0ꎬy1+y2=2y0ꎬy1-y2x1-x2=k(x1ʂx2)ꎬ于是mx0+nky0=0ꎬ这一等式建立了圆锥曲线弦的斜率与弦的中点坐标之间的关系式.㊀㊀二㊁点差法的简单应用与弦中点相关的问题有三种ꎬ一是平行弦的中点轨迹ꎻ二是过定点的弦的中点轨迹ꎻ三是过定点且被定点平分的弦所在直线方程.其他问题都是由这三类问题衍生出来的.1.已知弦中点坐标简求弦所在直线方程此类问题是点差法的最基本的简单应用.例1㊀(2002年高考江苏卷 文理20)设AꎬB是双曲线x2-y22=1上的两点ꎬ点N(1ꎬ2)是线段AB的中点.35(1)求直线AB的方程ꎻ(2)如果线段AB的垂直平分线与双曲线相交于CꎬD两点ꎬ那么AꎬBꎬCꎬD四点是否共圆ꎬ为什么?解㊀(1)由题意知ꎬ直线AB的斜率存在且不为0ꎬ设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ直线AB的斜率为kꎬ则有x1+x2=2ꎬy1+y2=4ꎬk=y1-y2x1-x2.由x21-y212=1x22-y222=1ìîíïïïï两式相减并整理ꎬ得y1-y2x1-x2=2 x1+x2y1+y2ꎬ所以y1-y2x1-x2=1ꎬ从而k=1.故直线AB的方程为y-2=1 (x-1)ꎬ即x-y+1=0.(2)解略.评注㊀此问题用常规方法也易求解ꎬ但没有用点差法来得快.2.用点差法简求轨迹方程例2㊀(2001年春季高考上海卷 文理21)已知椭圆C的方程为x2+y22=1ꎬ点P(aꎬb)的坐标满足a2+b22ɤ1ꎬ过点P的直线l与椭圆交于AꎬB两点ꎬ点Q为线段AB的中点ꎬ求:(1)点Q的轨迹方程ꎻ(2)点Q的轨迹与坐标轴的交点的个数.解㊀(1)设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬQ(xꎬy)ꎬ则有x1+x2=2xꎬy1+y2=2y.由x21+y212=1x22+y222=1ìîíïïïï两式相减并整理ꎬ得y1-y2x1-x2=-2 x1+x2y1+y2ꎬ所以y1-y2x1-x2=-2 xyꎬ又y1-y2x1-x2=b-ya-xꎬ从而b-ya-x=-2 xyꎬ即2x2+y2-2ax-by=0.故点Q的方程为2x2+y2-2ax-by=0.(2)解略.3.用点差法简求圆锥曲线的方程例3㊀(2013年高考新课标全国卷Ⅱ 理20)平面直角坐标系xOy中ꎬ过椭圆M:x2a2+y2b2=1(a>b>0)右焦点的直线x+y-3=0交M于AꎬB两点ꎬP为AB的中点ꎬ且OP的斜率为12.(1)求M的方程ꎻ(2)CꎬD为M上两点ꎬ若四边形ACBD的对角线CDʅABꎬ求四边形ACBD面积的最大值.解㊀(1)设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬP(x0ꎬy0)ꎬ则x1+x2=2x0ꎬy1+y2=2y0ꎬy1-y2x1-x2=-1ꎬy0-0x0-0=12.x21a2+y21b2=1ꎬ㊀①x22a2+y22b2=1ꎬ㊀②ìîíïïïï①-②并整理ꎬ得b2(x1+x2)a2(y1+y2)=-y1-y2x1-x2ꎬ所以b2 2x0a2 2y0=1ꎬ故b2a2 2=1ꎬ即a2=2b2.又由题意知ꎬM的右焦点为(3ꎬ0)ꎬ故a2-b2=3.因此ꎬa2=6ꎬb2=3.所以M的方程为x26+y23=1.(2)解略.评注㊀此问题若没有想到点差法ꎬ就不易求解了ꎬ甚至解不出来.4.巧用点差法简解对称题型一般地ꎬ对称直线㊁对称点的题目ꎬ用点差法求解较为简便.例4㊀(1986年高考广东卷 理4)已知椭圆C:x24+y23=1ꎬ试确定m的取值范围ꎬ使得对于直线l:y=4x+mꎬ椭圆C上有不同的两点关于该直线对称.解㊀设椭圆C:x24+y23=1上不同两点P1(x1ꎬy1)ꎬP2(x2ꎬy2)关于直线l:y=4x+m对称ꎬ线段P1P2的中点为M(x0ꎬy0)ꎬ则x1+x2=2x0ꎬy1+y2=2y0ꎬy0=4x0+mꎬkpp=-14.x214+y213=1ꎬ㊀①x224+y223=1ꎬ㊀②ìîíïïïï45①-②并整理ꎬ得y1-y2x1-x2=-34 x1+x2y1+y2ꎬ又因为kpp=-14ꎬ所以y1-y2x1-x2=-14ꎬ所以-14=-34 2x02y0ꎬ即y0=3x0.由y0=4x0+mꎬy0=3x0ꎬ{解得x0=-mꎬy0=-3m.{因为点M(x0ꎬy0)在椭圆C:x24+y23=1内ꎬ所以x024+y023<1ꎬ即m24+9m23<1ꎬ解得-21313<m<21313ꎬ即为所求m的取值范围.评注㊀解此类题关键是用了点在圆锥曲线内部的充要条件ꎬ应认真领会.5.注意中点的构造ꎬ创造点差法的条件简解题例5㊀(2016年高考浙江卷 理19)设椭圆x2a2+y2=1(a>1).(1)求直线y=kx+1被椭圆截得的线段长(用aꎬk表示)ꎻ(2)若任意以点A(0ꎬ1)为圆心的圆与椭圆至多有3个公共点ꎬ求椭圆离心率的取值范围.分析㊀(1)略.(2)因为此问题ꎬ正面情况较多或正面入手困难ꎬ所以想到从反面入手ꎬ即运用正难则反思想ꎬ任意以点A(0ꎬ1)为圆心的圆与椭圆x2a2+y2=1(a>1)至多有3个公共点的反面是ꎬ任意以点A(0ꎬ1)为圆心的圆与椭圆x2a2+y2=1(a>1)至少有4个公共点.而在这里ꎬ任意以点A(0ꎬ1)为圆心的圆与椭圆x2a2+y2=1(a>1)的公共点数不可能是5ꎬ6ꎬ7ꎬ ꎬn.故而ꎬ在这里ꎬ任意以点A(0ꎬ1)为圆心的圆与椭圆x2a2+y2=1(a>1)至多有3个公共点的反面是ꎬ任意以点A(0ꎬ1)为圆心的圆与椭圆x2a2+y2=1(a>1)有4个公共点.解㊀(1)略.(2)假设圆与椭圆有4个公共点ꎬ则圆与椭圆在y轴左侧有2个交点PꎬQ.设P(x1ꎬy1)ꎬQ(x2ꎬy2)ꎬ线段PQ的中点为M(x0ꎬy0)ꎬ于是x21a2+y12=1ꎬx22a2+y22=1ꎬ两式相减整理ꎬ得(x1+x2)(x1-x2)+a2(y1+y2)(y1-y2)=0.因为x1+x2=2x0ꎬy1+y2=2y0ꎬ又kAM kPQ=-1ꎬ即y1-y2x1-x2=-x0y0-1ꎬ从而x0+a2y0 -x0y0-1=0ꎬ由x0ʂ0ꎬ得y0=11-a2.因为点M(x0ꎬy0)在椭圆x2a2+y2=1内ꎬ所以x02a2+y02<1.故x02a2+1(1-a2)2<1ꎬ即x02<a2-a2(1-a2)2.又存在x02ɪ(0ꎬa2)使上式成立ꎬ所以a2-a2(1-a2)2>0ꎬ即a>2.因此ꎬ任意以点A(0ꎬ1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<aɤ2ꎬ由离心率e=ca=a2-1aꎬ得所求离心率的取值范围为(0ꎬ22].评注㊀(1)命题者(官方)给出的解答计算量较大ꎬ详见文[4].(2)此问题ꎬ解法较多(详见文[1])ꎬ上述解法最简捷.点差法在高考中有着广泛的运用ꎬ如:2010年高考ꎬ山东卷 文9ꎬ新课标全国卷Ⅰ 理12ꎬ安徽卷 理19ꎻ2012年高考ꎬ湖北卷 理21ꎻ2013年高考ꎬ新课标全国卷Ⅰ 理10ꎻ2015年高考ꎬ全国卷Ⅱ 理20ꎬ浙江卷 理19ꎻ2018年高考ꎬ全国卷Ⅲ 理20.综上所述ꎬ点差法在各式各样的题目中均有广泛的应用ꎬ同时作为一种基础数学方法ꎬ它与其它数学方法之间有着极大的相关性ꎬ这是我们在解题过程中所不能忽视的ꎬ在学习点差法的解题过程中要熟练掌握运用其它方法ꎬ才能够把数学解题思想方法运用到解题过程中ꎬ来提高解题效率与质量.㊀㊀参考文献:[1]李美君.数学 入题 三维度:直接㊁间接㊁转换 以2016年浙江省数学高考理科第19题为例[J].中学教研(数学)ꎬ2016(11):33-37.[2]赵建勋.点差法及其应用[J].中学生数学(高中)ꎬ2012(12):20-21.[3]汤伊静.浅谈点差法在高中数学中的应用[J].数理化解题研究(高中)ꎬ2019(2):9-10.[4]天利高考命题研究中心.2016高考真题(数学 理科)[M].拉萨:西藏人民出版社ꎬ2016.[责任编辑:李㊀璟]55。
点差法公式在双曲线中点弦问题中的妙用Final approval draft on November 22, 2020点差法公式在双曲线中点弦问题中的妙用广西南宁外国语学校 隆光诚(邮政编码530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---byy a x x又.22,00021211212x y x y x x y y x x y y k MN ==++--=同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN =⋅.典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22b a x y k AB =⋅得:3121=⋅--x y x y ,整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k 直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k 解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200a b x y k AB =⋅得:.1,22=∴=⋅k k 由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200a b x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知+=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q . 由平行四边形法则知:2=,即Q 是线段OP 的中点.设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x .由2222a b x y k AB =⋅得:14222=⋅+=⋅+x yx y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x .∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………②由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C. 12522=-y x D. 15222=-y x2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹; (2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a .故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200a b x y k AB =⋅得:22=⋅AB k ,∴1=AB k . ∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22a b x y k CD=⋅得:21=⋅-xy,即x y 2-=. 由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -.由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x .4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a , ∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………②由①、②得:29,2300==y k x又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
双曲线点差法点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MNk ,则2200a b x y kMN=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x∴由2200ba x y k AB =⋅得:,3121=⋅AB k即.32=ABk∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y xC 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围;(2)是否存在过点P 的弦AB ,使得AB 的中点为P ?(3)试判断以)1,1(Q 为中点的弦是否存在. 解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+= 由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点, ∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k解之得:k <23且.2±≠k ∴k的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200a b x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y xC 于A 、B 两点,已知OB OA OP +=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y xC 中,122==b a,焦点在x 轴上.设弦AB 的中点为Q . ,OB OA OP +=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点.设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫ ⎝⎛2,2y x . 由2222a b x yk AB =⋅得:14222=⋅+=⋅+xy x y x y xy ,整理得:.0422=+-x y x 配方得:144)2(22=-+y x .∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例4. 设双曲线C 的中心在原点,以抛物线4322-=x y的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ; (Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由24y=-得)32(322-=x y,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x .∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x.(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x .设),(),,(2211y x B y x A ,则2,42121=-=+x x x x.∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线.因而ka 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(0y x P .由2200ab x y k AB =⋅得:30=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:kx ky 400+-=.…………………………………………………②由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k.∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C.12522=-y xD.15222=-y x2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点.(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点.(1)求弦AB 的中点M 的轨迹; (2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线xy322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y kMN=⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a ab 得5,222==b a.故答案选D.2. 解:(1)2,122==b a,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅ABk,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-xy,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x . ∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -.由两点间的距离公式可知:102||||||||====MD MC MB MA .故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22a b x y kAB =⋅得:32123=⋅++x y x y ,整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x.(2)由2200ab x y kAB =⋅得:32123=--⋅AB k ,∴1=ABk.∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y . 由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x,解之得:1,221=-=x x .∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线xy322-=中,3=p ,∴准线为23=x .∴在双曲线中,232=c a . 从而.3,3==b a∴所求双曲线C 的方程为19322=-y x .(2)直线'l 是弦AB 的垂直平分线,∴km 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(0y x P .11 由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………① 由6100+⋅-=x k y 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又 300+=kx y, ∴32329+⋅=k k ,即12=k .∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
...... 最新资料推移 ......................点差法公式在双曲线中点弦问题中的妙用广四南宁外国语学校隆光诚(邮政编码530007)圆锥曲线的中点弦问题是髙考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它 的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、 中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式 作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法 为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗 浅的探讨,以飨读者。
定理在双曲线务歩“(心,5)中,若直线/与双曲线相交于W N 两点,点是弦MN 的中点,弦MN 所在的宜线/的斜率为kg 则S' — = 4Xo X⑴一⑵,力一儿勺一坷$2 - N N +『2 =込=21 x 2 -X] X| + x 2 2x 0 x 0V"同理可证,在双曲线=一==1(6/ >0, b >0)中,若直线/与双曲线相交于M 、N 两点, cr2 点儿)是弦MN 的中点,弦MN 所在的直线/的斜率为心心 则心阿・也=2・典题妙解例1已知双曲线c :y 2-—= 1,过点P (2,l )作直线/交双曲线C 于A 、B 两点.证明: 设M 、N 两点的坐标分别为(兀切八(x 29y 2),则有•>•> crb 2 •>■•>V(rb 2=1 (2)b 2=1, (1)般新资料推移(1) 求弦AB 的中点M 的轨迹;(2) 若P 恰为弦AB 的中点,求直线/的方程.解:(1) cr =Vb 2=3,焦点在y 轴上.2・••直线/的方程为y-l=-(x-2),即2x —3y — l = 0・例2已知双曲线C: 2, _),2 = 2与点P(l,2).(1) 斜率为R 且过点P 的宜线/与C 有两个公共点,求《的取值范围; (2) 是否存在过点P 的弦AB,使得AB 的中点为P? (3) 试判断以Q(l,l)为中点的弦是否存在.解:(1)直线/的方程为y-2 = k(x-\),即〉,=kx+2-k.y = kx+2-k,_ -7 ?由{ °, 得伙 2 — 2)x 2一 2伙 2 一 2幻x + k 2 — 4k + 6 = 0. —尸=2・•.•直线/与C 有两个公共点,W —2H0,• •得彳△ = 4伙 $ 一 2£)2 一 心 2 一 2)伙 2 - + 6) a 0.解之得:k<-且£工土血・(2)双曲线的标准方程为x 2- — = t :.a 2=^b 2=2.设点M 的坐标为(X, y),由心『丄=2得:y-i y 1 ------ =— x-2 x 3整理得:x 2-3y 2-2x + 3y = 0.・・・所求的轨迹方程为,一 3y 2 一 2x + 3y = 0.(2)・・・P 恰为弦AB 的中点.2・•・k 的取值范围是(-s,-、②U(-VI 、伍)11(血上)・• •由k.\B232v方设存在过点P的弦AB,使得AB的中点为P,则由心飞得:《・2 = 2.:. k = 由(1)可知,《 = 1时,直线/与C有两个公共点,・・・存在这样的弦•这时直线I的方程为y = x + l.(3)设以0(1,1)为中点的弦存在,则由£诃・卫=厶得:k ・\ = 2;k = 2. 由(1)可知,k = 2时,直线/与C 没有两个公共点,・・・设以2(14)为中点的弦不存在.例3过点M(—2,0)作直线/交双曲线C:/ — y2= 1于A 、B 两点,已知OP = OA + OB (O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线C:x 2-y 2= 1中,6? =b 2=\,焦点在x 轴上•设弦AB 的中点为Q ・\OP = OA + OB,由平行四边形法则知:OP = 2OQ ,即Q 是线段OP 的中点、设点P 的坐标为(x, y),则点Q 的坐标为・12 2)整理得:x 2-/+4x = 0.配方得:二点P 的轨迹方程是(V "2—=1,它是中心为(-2,0),对称轴分别为x 轴和直线4 4x + 2 = 0的双曲线.例4.设双曲线C 的中心在原点,以抛物线y 2 = 2y[3x -4的顶点为双曲线的右焦点,抛物线的准 线为双曲线的右准线.(I )试求双曲线c 的方程;(H)设宜线/:y = 2x + l 与双曲线C 交于AB 两点,求\AB\t(m)对于直线l:y = kx+\9是否存在这样的实数k,使直线/与双曲线C 的交点人3关于直线i :y = ax + 4 (°为常数)对称,若存在,求出R 值;若不存在,请说明理由.y石 b 2 z由 k.\B '~ = ~2 得:X C1 2 2 y y y -------- -= ---- -- 土+2 x x+4 v 21.解: 由尸=2笛兀_4得y2 =2巧(/_••• p = 氐抛物线的顶点是(刍,0),准线是X = - —+ A=-T7- y/32Q32十3.••在双曲线C中,・・.双曲线C的方程为3,一),2 =iy = 2x + l, ,“由仁—得:"27设A(x i.y l X B(x2,y2),则山+x2 =-4,^%2 = 2..・・ I AB1= 丁(1 + /)[匕+耳)2—4尤宀]=J(1+22)[(-4)2—4X2] = 2^W .(【II)假设存在这样的实数R,使直线/与双曲线C的交点关于直线/对称,则「是线段AB 的垂直平分线.因而“=一丄,从而八y =—丄x + 4・设线段AB的中点为P(X O5yo)・k k• 2由B •乂 =厶得:« •乂 = 3,・\ ky Q = 3x0・ ............................................................. ①由y0= 一丄・x0 +4 得:ky Q = -x() + 4k ・ ..................................... ②k由①.②得:心=k= 3・由)?o = kx° + 1 得:3 = k2 +\ 9 /. k = ±>!1 ・m b=i又由< ?得:伙2 -3)x2 + 2kx +2 = 0.y = kx+\.•.•直线/与双曲线C相交于A、B两点,•••△ = 4比2一8伙2一3)>0,即^2<6,且/工3・・・・符合题意的R的值存在,£=±、伍.金指点睛1.(03全国)己知双曲线中心在原点且一个焦点为F(、/7,0),宜线y = x-1与其相交于M、N两点,2MN的中点的横坐标为-亍,则此双曲线的方程为()B. c.22.(02江苏)设A、B是双曲线x2- — = 1上两点,点N(l,2)是线段AB的中点•2(1)求直线AB的方程;(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆,为什么?,v2 1 33.已知双曲线X-- —= 1,过点P(---j)作直线/交双曲线于A、B两点.(1)求弦AB的中点M的轨迹;(2)若点P恰好是弦AB的中点,求直线/的方程和弦AB的长.2 24.双曲线C的中心在原点,并以椭圆2 + £ = 1的焦点为焦点,以抛物线)匸的准线为右准线.(1)求双曲线C的方程;(2)设直线l:y = kx+3伙H0)与双曲线C相交于A、B两点,使A、B两点关于直线I : y = mx + 6(〃?工0)对称,求k的值.参考答案5c u . 2 --- < t21.解:在直线y = x-1中,k = \, x =-二时,y =--・由心川•丄丄=厶得1・一 =二=厶.3 3 x0er 2 cr~3又由得/ =2上2 =5.a1 +/?' =c2 =7故答案选D.2•解:(1) “2=3=2,焦点在x上.由忍〃云〒得:"2 = 2, g=1.・・・所求的直线AB方程为y-2 = 1・匕一1),即x — y + l = 0・(2)设直线CD的方程为x+y + / = 0,点N(l,2)在直线CD上,/. 1 + 2 + m = 0, in = -3 ・・・・直线CD的方程为x + y — 3 = 0・又设弦CD的中点为M(x,y),由如•丄=匚得:-1- = 2,即y = —2x・xX 6Tfx+y-3 = 0.由{' 得x = —3, y = 6 .[y = -2 儿/.点M的坐标为(-3,6)・x - y +1 = 0.又由! , v2得A(—l,0),B(3,4)・—= 1.2由两点间的距离公式可知:丨MA 1=1 MB 1=1 MC 1=1 MD 1= 2価・故A、B、C、D四点到点M的距离相等,即A、B、C、D四点共圆.3.解:(1)a2 = Lb2 = 3,焦点在x上.设点M的坐标为(x,y).若直线/的的斜率不存在,贝“丄X轴,这时直线/与双曲线没有公共点,不合题意,故直线/的的斜率存在.3y b2+ 7 V由X B ・—=—得: ----- ・—=3 9X " x+l x2整理,得:6x2-2y2+3x-3y = 0.点M的轨迹方程为6x2一2y2 + 3x - 3y = 0.3,2 ——(2)由k AR•—=—得:—=3, :. k AR=\.X Q a_ 丄23 i・•・所求的直线/方程为y +二=1・(% + _),即y = x — l・2 2由]3 一得X2+X-2=09y = x-\.解之得:Xj = 一2,尤2 = 1・:.\AB\=y/\ + k2 lx2-x, 1=72-3 = 372.2 2 _____________________________________ 4•解:(1)在椭圆^ + ― = 1中,a = 5、b =、丽工=』左一1, =2屈・・・焦点为耳(一2 JI 。
双曲线点差法点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MNk ,则2200a b x y kMN=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x∴由2200ba x y k AB =⋅得:,3121=⋅AB k即.32=ABk∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y xC 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围;(2)是否存在过点P 的弦AB ,使得AB 的中点为P ?(3)试判断以)1,1(Q 为中点的弦是否存在. 解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+= 由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点, ∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k解之得:k <23且.2±≠k ∴k的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200a b x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y xC 于A 、B 两点,已知OB OA OP +=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y xC 中,122==b a,焦点在x 轴上.设弦AB 的中点为Q . ,OB OA OP +=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点.设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫ ⎝⎛2,2y x . 由2222a b x yk AB =⋅得:14222=⋅+=⋅+xy x y x y xy ,整理得:.0422=+-x y x 配方得:144)2(22=-+y x .∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例4. 设双曲线C 的中心在原点,以抛物线4322-=x y的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ; (Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由24y=-得)32(322-=x y,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x .∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x.(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x .设),(),,(2211y x B y x A ,则2,42121=-=+x x x x.∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线.因而ka 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(0y x P .由2200ab x y k AB =⋅得:30=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:kx ky 400+-=.…………………………………………………②由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k.∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C.12522=-y xD.15222=-y x2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点.(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点.(1)求弦AB 的中点M 的轨迹; (2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线xy322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y kMN=⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a ab 得5,222==b a.故答案选D.2. 解:(1)2,122==b a,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅ABk,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-xy,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x . ∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -.由两点间的距离公式可知:102||||||||====MD MC MB MA .故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22a b x y kAB =⋅得:32123=⋅++x y x y ,整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x.(2)由2200ab x y kAB =⋅得:32123=--⋅AB k ,∴1=ABk.∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y . 由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x,解之得:1,221=-=x x .∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线xy322-=中,3=p ,∴准线为23=x .∴在双曲线中,232=c a . 从而.3,3==b a∴所求双曲线C 的方程为19322=-y x .(2)直线'l 是弦AB 的垂直平分线,∴km 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(0y x P .11 由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………① 由6100+⋅-=x k y 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又 300+=kx y, ∴32329+⋅=k k ,即12=k .∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
点差法公式在双曲线中点弦问题中的妙用广西南宁外国语学校 隆光诚(邮政编码530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点.它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN=⋅。
证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x)2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200ab x y k MN=⋅∴ 同理可证,在双曲线12222=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN=⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上。
点差法公式在高考中的应用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理1 在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=-+-byy a x x.2212121212ab x x y y x x y y -=++⋅--∴ 又.22,21211212xyx y x x y y x x y y k MN ==++--=.22ab x y k MN-=⋅∴ 同理可证,在椭圆12222=+ay b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN -=⋅.定理2 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200a b x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200b a x y k MN =⋅. 定理3 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN=⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121 mx y mx y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在.同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN=⋅01.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零.典题妙解例1(09年四川)已知椭圆12222=+by a x (a >b >0)的左、右焦点分别为1F 、2F ,离心率22=e ,右准线方程为2=x .(Ⅰ) 求椭圆的标准方程;(Ⅱ) 过点1F 的直线l 与该椭圆相交于M 、N 两点,且3262||22=+N F M F ,求直线l 的方程. 解:(Ⅰ)根据题意,得⎪⎪⎩⎪⎪⎨⎧====.2,222c a x a c e ∴1,1,2===c b a .∴所求的椭圆方程为1222=+y x . (Ⅱ)椭圆的焦点为)0,1(1-F 、)0,1(2F . 设直线l 被椭圆所截的弦MN 的中点为),(y x P . 由平行四边形法则知:P F N F M F 2222=+. 由3262||22=+N F M F 得:326||2=P F . ∴.926)1(22=+-y x ………………………………………………………………………① 若直线l 的斜率不存在,则x l ⊥轴,这时点P 与)0,1(1-F 重合,4|2|||1222==+F F N F M F ,与题设相矛盾,故直线l 的斜率存在. 由22a b x y k MN-=⋅得:.211-=⋅+x y x y ∴).(2122x x y +-= ………………………………………………………………………②②代入①,得.926)(21)1(22=+--x x x 整理,得:0174592=--x x .解之得:317=x ,或32-=x . 由②可知,317=x 不合题意.∴32-=x ,从而31±=y .∴.11±=+=x yk∴所求的直线l 方程为1+=x y ,或1--=x y .例2. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由2234y x =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .例3. (05全国Ⅲ文22)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当3,121-==x x 时,求直线l 的方程. 解:(Ⅰ)y x 212=,∴)81,0(,41F p =. 设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=. 由p x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F. (Ⅱ)当3,121-==x x 时,.102,12),18,3(),2,1(210210=+=-=+=-y y y x x x B A 由p x k AB=⋅01得:41=k .∴所求的直线l 的方程为10)1(41++=x y ,即.0414=+-y x练习1. (05湖北)设A 、B 是椭圆λ=+223y x 上的两点,点)3,1(N 是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(1)确定λ的取值范围,并求直线AB 的方程; (2)略.2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么? 3. (08陕西理20) 已知抛物线22x y C =:,直线2+=kx y 交C 于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N.(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0=⋅NB NA ,若存在,求k 的值;若不存在,请说明理由参考答案1. 解:(1) 点)3,1(N 在椭圆λ=+223y x 内,∴22313+⨯<λ,即λ>12.∴λ的取值范围是),12(+∞.由λ=+223y x 得1322=+λλx y ,∴3,22λλ==b a ,焦点在y 轴上.若直线AB 的斜率不存在,则直线AB x ⊥轴,根据椭圆的对称性,线段AB 的中点N 在x 轴上,不合题意,故直线AB 的斜率存在.由22ba x y k AB -=⋅得:313λλ-=⋅AB k ,∴1-=AB k .∴所求直线AB 的方程为)1(13-⋅-=-x y ,即04=-+y x .从而线段AB 的垂直平分线CD 的方程为)1(13-⋅=-x y ,即02=+-y x .2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22a b x y k CD=⋅得:21=⋅-xy,即x y 2-=. 由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 8.(Ⅰ)证明:41,212===p m y x ,设点M 的坐标为),(00y x . 当0=k 时,点M 在y 轴上,点N 与原点O 重合,抛物线C在点N 处的切线为x 轴,与AB 平行.当0≠k 时,由p x k AB=⋅01得:40k x =. ∴8222k x y N ==. 得点N 的坐标为)8,4(2k k . 设抛物线C 在点N 处的切线方程为)4(82k x m k y -=-,即8)4(2k k x m y +-=. 代入22x y =,得:8)4(222k k x m x +-=,整理得:084222=-+-k km mx x . 0)(2)84(822222=-=+-=--=∆k m k km m k km m ,∴k m =,即抛物线C 在点N 处的切线的斜率等于直线AB 的斜率.故抛物线C 在点N 处的切线与AB 平行.yMA(Ⅱ)解:若0=⋅NB NA ,则NB NA ⊥,即︒=∠90ANB .∴||2||2||2||MN BM AM AB ===.482200+=+=k kx y ,∴816848||2220+=-+=-=k k k y y MN N . 由⎩⎨⎧=+=.2,22x y kx y 得0222=--kx x .设),(),,(2211y x B y x A ,则1,22121-==+x x kx x . ∴)16)(1(21)44)(1(]4))[(1(||2222212212++=++=-++=k k k k x x x x k AB .∴8162)16)(1(21222+⨯=++k k k . 即4)16()16)(1(2222+=++k k k . 化简,得:416122+=+k k ,即42=k .∴2±=k .故存在实数2±=k ,使0=⋅NB NA .。