半导体测试理论
- 格式:doc
- 大小:88.50 KB
- 文档页数:9
半导体开尔文测试原理引言:半导体开尔文测试原理是一种用于测量半导体材料电阻的方法。
通过该原理,可以准确地测量出半导体材料的电阻值,从而了解其电导性能。
本文将详细介绍半导体开尔文测试原理的基本概念、测量方法和应用领域。
一、基本概念半导体开尔文测试原理是基于开尔文电桥原理的一种测试方法。
开尔文电桥是一种用于精确测量电阻的电路,它通过对被测电阻进行四点测量,消除了连接电阻的影响,从而得到准确的电阻值。
半导体开尔文测试原理就是将开尔文电桥应用于半导体材料的电阻测量中。
二、测量方法半导体开尔文测试的主要步骤如下:1. 准备工作:选择合适的测试仪器,如开尔文电桥或四线法测试仪。
同时,确保被测半导体材料表面清洁、平整,以保证测量结果的准确性。
2. 四点测量:将开尔文电桥的两个测量电极接触到被测半导体材料上,另外两个电极用于测量电流。
通过施加恒定电流,测量电压差,并计算出电阻值。
3. 数据处理:根据测得的电阻值,进行数据处理和分析。
可以通过计算、绘制曲线等方式,进一步了解半导体材料的电导性能。
三、应用领域半导体开尔文测试原理在半导体材料研究和工业生产中有着广泛的应用。
主要包括以下几个方面:1. 材料研究:通过测量半导体材料的电阻,可以了解其电导性能和导电机制,为新材料的开发和研究提供重要数据。
2. 半导体器件测试:在半导体器件的生产过程中,需要对电阻进行测试,以保证产品质量和性能。
3. 故障分析:当半导体器件出现故障时,可以通过半导体开尔文测试原理来定位故障点,并进行修复。
4. 质量控制:对于批量生产的半导体材料或器件,通过半导体开尔文测试原理进行质量控制,可以保证产品的稳定性和一致性。
结论:半导体开尔文测试原理是一种准确测量半导体材料电阻的方法。
通过该原理,可以得到被测半导体材料的电阻值,进而了解其电导性能。
在半导体材料研究、器件测试、故障分析和质量控制等领域,半导体开尔文测试原理都有着广泛的应用前景。
通过不断的研究和发展,相信半导体开尔文测试原理将为半导体技术的进步和应用提供更多的支持。
半导体测试公司简介Integrated Device Manufacturer (IDM):半导体公司,集成了设计和制造业务。
IBM:(International Business Machines Corporation)国际商业机器公司,总部在美国纽约州阿蒙克市。
Intel:英特尔,全球最大的半导体芯片制造商,总部位于美国加利弗尼亚州圣克拉拉市。
Texas Instruments:简称TI,德州仪器,全球领先的数字信号处理与模拟技术半导体供应商。
总部位于美国得克萨斯州的达拉斯。
Samsung:三星,韩国最大的企业集团,业务涉及多个领域,主要包括半导体、移动电话、显示器、笔记本、电视机、电冰箱、空调、数码摄像机等。
STMicroelectronics:意法半导体,意大利SGS半导体公司和法国Thomson半导体合并后的新企业,公司总部设在瑞士日内瓦。
是全球第五大半导体厂商。
Strategic Outsourcing Model(战略外包模式):一种新的业务模式,使IDM厂商外包前沿的设计,同时保持工艺技术开发Motorola:摩托罗拉。
总部在美国伊利诺斯州。
是全球芯片制造、电子通讯的领导者。
ADI:(Analog Devices, Inc)亚德诺半导体技术公司,公司总部设在美国,高性能模拟集成电路(IC)制造商,产品广泛用于模拟信号和数字信号处理领域。
Fabless:是半导体集成电路行业中无生产线设计公司的简称。
专注于设计与销售应用半导体晶片,将半导体的生产制造外包给专业晶圆代工制造厂商。
一般的fabless公司至少外包百分之七十五的晶圆生产给别的代工厂。
Qualcomm:高通,公司总部在美国。
以CDMA(码分多址)数字技术为基础,开发并提供富于创意的数字无线通信产品和服务。
如今,美国高通公司正积极倡导全球快速部署3G网络、手机及应用。
Broadcom:博通,总部在美国,全球领先的有线和无线通信半导体公司。
半导体的cp测试基本原理半导体的电荷平衡性测试(CP测试)是一项用于评估半导体器件或集成电路的质量、稳定性和可靠性的重要测试手段。
它通过在不同的电压、电流条件下测量器件的电荷容量和电荷传输特性,来判断半导体器件是否具有良好的性能。
CP测试的基本原理可以归纳为以下几个步骤:1. 差分电荷测量:CP测试常使用差分放大电路来测量半导体器件的电荷。
差分放大电路由两个输入电极和一个输出电极组成,其中一个输入电极接入被测器件,另一个输入电极接入一个参考电极。
测量时,参考电极保持在稳定电位,而测量电极则受到器件的电荷变化影响。
2. 电荷注入:为了测量器件的电荷容量,需要在测量电极与参考电极之间施加一定的电压。
通过向测量电极施加脉冲电压或持续电压,将一定数量的电荷注入到器件中,并观察电容变化。
3. 电荷传输特性测量:通过在不同的电压条件下反复进行电荷注入和读取,可以测量器件的电荷传输特性。
即测量在不同电场下,电荷注入到器件中和从器件中释放的速度。
4. 数据分析与解释:通过分析测量数据,可以得到器件的电荷容量、电荷传输速率等参数。
通过比较这些参数与设计要求或标准值,可以评估器件的性能是否符合要求。
CP测试的关键是保证测量精度和一致性。
为此,在实际应用中,往往需要采取一系列措施来降低干扰和误差。
例如,可以对测量电路和测量设备进行校准和校验,使用差分放大器来提高信噪比,合理选择测量电压和电流范围,以及采取适当的滤波和抗干扰措施等。
需要注意的是,CP测试不仅仅适用于器件的生产过程中,也可以用于研发和故障分析。
通过对器件的电荷容量和传输特性的测量和分析,可以帮助改进设计、优化工艺和提高产品性能。
总之,半导体的CP测试是一项重要的质量评估手段,它通过测量半导体器件的电荷容量和传输特性,来评估器件的性能和可靠性。
通过合理选择测量参数和采取抗干扰措施,可以提高测试精度和一致性,为半导体器件的制造和应用提供可靠的数据支持。
半导体基本测试原理半导体是一种具有特殊电学特性的材料,在电子、光电子和光电子技术等领域具有广泛的应用。
半导体器件的基本测试主要包括单个器件的电学测试、晶体管的参数测试以及集成电路的功能测试等。
本文将从半导体基本测试的原理、测试方法和测试仪器等方面进行详细介绍。
1.电学测试原理:半导体器件的电学测试主要是通过电压和电流的测量,来判断器件的电学性能。
常见的电学测试有阻抗测量、电流-电压特性测试等。
阻抗测量通常使用交流信号来测试器件的电阻、电感和电容等参数,可以通过测试不同频率下的阻抗来分析器件的频率响应特性。
2.晶体管参数测试原理:晶体管是半导体器件中最常见的器件之一,其参数测试主要包括DC参数测试和AC(交流)参数测试。
DC参数测试主要通过测试器件的电流增益、静态工作点等参数来分析和评估器件的直流工作性能。
AC参数测试主要通过测试器件在射频信号下的增益、带宽等参数来分析和评估其射频性能。
3.功能测试原理:集成电路是半导体器件的一种,其测试主要从功能方面进行。
功能测试主要分为逻辑测试和模拟测试两种。
逻辑测试主要测试器件的逻辑功能是否正常,比如输入输出的逻辑电平是否正确,数据传输是否正确等。
模拟测试主要测试器件的模拟电路部分,比如电压、电流、频率等参数是否在规定范围内。
二、半导体基本测试方法1.电学测试方法:常用的电学测试方法包括直流测试和交流测试。
直流测试主要通过对器件的电流和电压进行测量来分析器件的基本电学性能,如电流增益、电压饱和等。
交流测试主要通过在不同频率下测试器件的阻抗来分析器件的频率响应特性,一般使用网络分析仪等仪器进行测试。
2.参数测试方法:晶体管参数测试主要使用数字万用表等测试仪器来测量器件的电流和电压,并通过计算得到相关参数。
AC参数测试一般使用高频测试仪器,如频谱分析仪、示波器等来测试器件在射频信号下的特性。
3.功能测试方法:功能测试一般通过编写测试程序,控制测试仪器进行测试。
逻辑测试的方法主要是通过输入特定的信号序列,对输出结果进行判断,是否与预期的结果相符。
半导体基本测试原理资料1.测试原理半导体器件的测试原理主要包括以下几个方面:(1)电性能测试:电性能测试主要是通过对器件进行电流-电压(I-V)特性测试来评估器件的电气性能。
通过在不同电压下测量器件的电流来得到I-V曲线,从而确定器件的关键参数,如导通电压、截止电压、饱和电流等。
(2)高频特性测试:高频特性测试主要是通过对器件进行射频(RF)信号测试来评估其在高频工作状态下的性能。
常用的高频特性测试参数包括功率增益、频率响应、噪声系数等。
(3)温度特性测试:温度特性测试主要是通过对器件在不同温度条件下的测试来评估其温度稳定性和性能。
常用的测试方法包括恒流源和恒压源测试。
(4)故障分析测试:故障分析测试主要是通过对器件进行故障分析来确定其故障原因和解决方案。
常用的故障分析测试方法包括失效分析、电子显微镜观察和射线析出测试等。
2.测试方法半导体器件的测试方法主要包括以下几个方面:(1)DC测试:DC测试主要是通过对器件进行直流电流和电压的测试来评估其静态电性能。
常用的测试设备包括直流电源和数字电压表。
(2)RF测试:RF测试主要是通过对器件进行射频信号的测试来评估其高频性能。
常用的测试设备包括频谱分析仪、信号源和功率计。
(3)功能测试:功能测试主要是通过对器件进行各种功能的测试来评估其功能性能。
常用的测试方法包括逻辑分析仪和模拟信号源。
(4)温度测试:温度测试主要是通过对器件在不同温度条件下的测试来评估其温度性能。
常用的测试设备包括热电偶和恒温槽。
3.数据分析半导体器件的测试结果需要进行数据分析和处理,以得到结果的可靠性和准确性。
常用的数据分析方法包括统计分析、故障分析和回归分析等。
(1)统计分析:统计分析主要是通过对测试结果进行统计和分布分析来评估器件的性能和可靠性。
常用的统计方法包括平均值、标准偏差和散点图等。
(2)故障分析:故障分析主要是通过对测试结果中的异常数据进行分析来确定故障原因和解决方案。
半导体测试原理
半导体测试是一种评估半导体器件性能和可靠性的方法。
它通过对半导体器件进行一系列电学和物理测试,来确定其工作状态和质量特征。
半导体测试的主要目的是确保器件能够按照设计要求进行正常工作,并且能够在预期的环境下长时间稳定运行。
半导体测试通常包括以下几个方面:
1. 电学测试:这是半导体测试的核心部分。
通过对器件进行电流、电压、功率等电学参数的测量,可以评估器件的功能性能。
例如,通过测试电流特性,可以确定器件的静态和动态功耗;通过测试电压特性,可以了解器件的工作电压范围等。
2. 功能测试:这种测试主要是为了验证器件是否按照设计要求实现了各项功能。
这些功能可能包括逻辑门、存储器单元、模拟电路等。
通过输入特定的电信号,并观察输出信号,以确定器件是否正确执行了所需的功能。
3. 可靠性测试:这种测试用于评估器件在长时间使用和不同环境下的可靠性。
常见的可靠性测试包括温度循环测试、湿度测试、电热老化等。
通过模拟器件在实际使用中可能遇到的各种环境,可以预测其寿命和性能退化情况。
4. 外观检查:这是一种对器件外观进行检查和评估的测试。
通过目视检查、显微镜观察等方法,可以确定器件是否存在裂纹、磨损、划痕等表面缺陷。
这对于一些对外观要求较高的应用,
如汽车电子、消费电子等领域非常重要。
半导体测试原理基于电学和物理测试技术,通过对器件进行多种测试手段的组合,以全面评估器件的性能和可靠性。
测试结果将被用于判定器件是否合格,并进行进一步的工艺改进和性能调优。
最终目标是确保半导体器件的质量和可靠性,以满足不同领域应用的需求。
第1章半导体测试基础第1节基础术语描述半导体测试得专业术语很多,这里只例举部分基础得:1.DUT需要被实施测试得半导体器件通常叫做DUT (De viceUnderTest,我们常简称“被测器件”),或者叫u UT(Unit Unde r Test) <>首先我们来瞧瞧关于器件引脚得常识,数字电路期间得引脚分为“信号”、“电源”与“地”三部分。
信号脚,包括输入、输出、三态与双向四类,输入:在外部信号与器件内部逻辑之间起缓冲作用得信号输入通道;输入管脚感应其上得电压并将它转化为内部逻辑识别得“0"与电平.输出:在芯片内部逻辑与外部环境之间起缓冲作用得信号输岀通道;输出管脚提供正确得逻辑“ o ”或“r得电压,并提供合适得驱动能力(电流)。
三态:输岀得一类,它有关闭得能力(达到高电阻值得状态).双向:拥有输入、输出功能并能达到高阻态得管脚。
电源脚,“电源”与“地”统称为电源脚,因为它们组成供电回路,有着与信号引脚不同得电路结构。
VCC: TTL器件得供电输入引脚.VDD:CMOS器件得供电输入引脚。
VSS:为VCC或V D D提供电流回路得引脚。
GND:地,连接到测试系统得参考电位节点或VSS,为信号引脚或其她电路节点提供参考0电位;对于单一供电得器件,我们称VSS为GND・2.测试程序半导体测试程序得口得就是控制测试系统硬件以一定得方式保证被测器件达到或超越它得那些被具体定义在器件规格书里得设计指标。
测试程序通常分为儿个部分,如DC测试、功能测试、AC测试等。
DC测试验证电圧及电流参数;功能测试验证芯片内部一系列逻辑功能操作得正确性;AC 测试用以保证芯片能在特定得时间约束内完成逻辑操作。
程序控制测试系统得硬件进行测试,对每个测试项给出pa s s或fail得结果。
Pass指器件达到或者超越了其设计规格;F a il则相反,器件没有达到设计要求,不能用于最终应用。
测试程序还会将器件按照它们在测试中表现出得性能进行相应得分类,这个过程叫做“B i nning",也称为“分Biif\ 举个例子,一个微处理器,如果可以在15 0 MHz下正确执行指令,会被归为最好得一类,称之为“Bin 1〃;而它得某个兄弟,只能在100MHz下做同样得事悄,性能比不上它,但就是也不就是一无就是处应该扔掉,还有可以应用得领域,则也许会被归为“B i n 2 卖给只要求100MHz 得客户。
半导体测试理论半导体测试理论1测量可重复性和可复制性(GR&R)GR&R是⽤于评估测试设备对相同的测试对象反复测试⽽能够得到重复读值的能⼒的参数。
也就是说GR&R是⽤于描述测试设备的稳定性和⼀致性的⼀个指标。
对于半导体测试设备,这⼀指标尤为重要。
从数学⾓度来看,GR&R就是指实际测量的偏移度。
测试⼯程师必须尽可能减少设备的GR&R值,过⾼的GR&R值表明测试设备或⽅法的不稳定性。
如同GR&R名字所⽰,这⼀指标包含两个⽅⾯:可重复性和可复制性。
可重复性指的是相同测试设备在同⼀个操作员操作下反复得到⼀致的测试结果的能⼒。
可复制性是说同⼀个测试系统在不同操作员反复操作下得到⼀致的测试结果的能⼒。
当然,在现实世界⾥,没有任何测试设备可以反复获得完全⼀致的测试结果,通常会受到5个因素的影响:1、测试标准2、测试⽅法3、测试仪器4、测试⼈员5、环境因素所有这些因素都会影响到每次测试的结果,测试结果的精确度只有在确保以上5个因素的影响控制到最⼩程度的情况下才能保证。
有很多计算GR&R的⽅法,下⾯将介绍其中的⼀种,这个⽅法是由Automotive Idustry Action Group(AIAG)推荐的。
⾸先计算由测试设备和⼈员造成的偏移,然后由这些参数计算最终GR&R 值。
Equipment Variation (EV):代表测试过程(⽅法和设备)的可重复性。
它可以通过相同的操作员对测试⽬标反复测试⽽得到的结果计算得来。
Appraiser Variation (AV):表⽰该测试流程的可复制性。
可以通过不同操作员对相同测试设备和流程反复测测试所得数据计算得来。
GR&R的计算则是由上述两个参数综合得来。
必须指出的是测试的偏移不仅仅是由上述两者造成的,同时还受Part Variation(PV)的影响。
PV表⽰测试⽬标不同所造成的测试偏差,通常通过测试不同⽬标得到的数据计算⽽来。
半导体测试技术原理半导体测试技术在现代电子行业中起着至关重要的作用。
通过对半导体器件进行测试,我们可以确保其性能达到预期,提高产品质量和可靠性。
本文将介绍半导体测试技术的原理和常见的测试方法。
一、半导体测试技术的背景半导体器件是电子设备中的重要组成部分,由于其微小的尺寸和复杂的内部结构,其测试变得十分必要。
半导体测试技术的发展可以追溯到上世纪70年代,随着半导体技术的快速发展,测试技术也在不断演进。
现代半导体测试技术借助于先进的仪器设备和软件工具,可以对芯片、模块以及完整的电子系统进行全面的测试。
二、半导体测试技术的原理1. 功能测试功能测试是最基本的半导体测试方法之一。
通过输入不同的电信号和控制信号到被测设备中,检查其输出是否与预期相符。
这种测试方法可以进行诸如逻辑电路验证、数字信号处理器性能测试等。
2. 时序测试时序测试是针对时序敏感的半导体器件的一种测试方法。
通过对输入和输出信号的时序动态进行测量,验证器件在不同工作频率和时钟周期下的性能。
这种测试方法广泛应用于高速通信和计算领域,确保设备在各种工作条件下都能正常工作。
3. 功耗测试在半导体器件测试中,功耗测试是一项重要的指标。
功耗测试可以评估设备在不同工作负载下的能源消耗情况。
通过测量和监测设备的功耗,可以为电子设备的设计和优化提供重要的参考信息。
4. 温度测试温度测试是一种常见的半导体测试方法,可以评估设备在不同温度下的性能和稳定性。
由于半导体器件对温度敏感,温度测试能够帮助我们了解器件在极端环境下的表现,并为其设计提供改进方向。
三、半导体测试技术的常见方法1. 功能测试仪功能测试仪是半导体测试中常用的设备之一。
它可以通过模拟和数字信号源、传感器以及电源等设备,对半导体器件进行各种输入输出的测试,并记录测试结果。
2. 逻辑分析仪逻辑分析仪广泛应用于半导体器件测试中,可以对数字信号进行捕捉和分析。
通过监测和分析信号的特征,逻辑分析仪可以帮助我们了解器件的工作状态和性能。
四运放卡DUT应用说明一.概述用于通用运算放大器及电压比较器测试的DUT卡,可用于双运放LM358、四运放LM324,双比较器LM393、四比较器LM339等器件的主要参数。
其外观见图1。
该DUT卡由一块主卡DUT和四块运放环路卡OPLOOP1A组成,可对一颗运放的四个单元同时搭接闭环环路,以提高测试速度。
为完成单工位运放(或比较器)参数测试,该DUT卡至少需要从STS 8107主机引入POWER插头、DUT插头、C-BIT插头、PVM插头各1个。
该DUT卡还用LED对C-BIT各位的状态进行显示,以便于环路工作状态的分析和程序的调试。
二.测试原理DUT卡的原理框图见图2。
由图可知DUT卡上有4个相同的辅助运放环,可以同时搭接4个运放环路,完成4单元运放的测试。
DVI2图2 DUT原理框图DUT卡中所用到的系统主要硬件资源如下:DVI2:向DUT提供正电源V+,并测试其工作电流。
DUT3:向DUT提供负电源V-,并测试其工作电流。
测试单电源运放时,V-应设为零。
DVI0:测试DUT中A、B两单元的输出端参数。
DVI1:测试DUT中C、D两单元的输出端参数。
MVS0:向DUT输入端提供共模或差模电压。
MVS2:提供偏置电压,以控制DUT的输出电压VO。
MVS3:测试开路门比较器时用于DUT输出上拉电压。
DUT卡上的主要元器件及功能如下:DUT:被测器件。
AMP:辅助运放。
K1(C-BIT 0-0):用于DUT反向输入端接地。
K2(C-BIT 0-1):用于DUT反向输入端接MVS0。
K3(C-BIT 0-2):用于DUT同相输入端接MVS0。
K4(C-BIT 0-3):用于DUT同相输入端接地。
K5(C-BIT 0-4):用于DUT反相输入端短接IB测试电阻。
K6(C-BIT 0-5):用于DUT同相输入端短接IB测试电阻。
K7A,K7B(C-BIT 0-6):用于DUT连接辅助放大器构成闭环。
K8(C-BIT 0-7):用于DUT自身闭环(用于交流参数测试)。
半导体基本测试原理资料半导体器件的基本测试原理包括以下几个方面:四端测量、电流和电压的测试、频率响应测试、功率测试和温度测试。
四端测量是指通过四个测量引脚来测量器件的电阻、电压和电流等参数。
其中,两个接触引脚(即探头)用来加电流或电压,另外两个引脚用来测量电阻、电压或电流。
通过四端测量,可以避免因测量线路的阻抗对测试结果的影响,提高测量精度。
电流和电压的测试是常见的半导体器件测试方法。
电流测试通常使用万用表或特定的测试仪器来测量器件的电流流过行为,该测试方法主要用于了解器件的工作状态、特性和性能。
电压测试通常使用数字电压表或万用表来测量电压的大小,该测试方法可用于了解器件的工作电压、电源电压和信号电压等。
频率响应测试是指通过测试器件的输入和输出信号的频率响应来了解器件在不同频率下的响应情况。
频率响应测试通常使用函数发生器和示波器等仪器进行,通过改变输入信号的频率并测量输出信号的幅度和相位差等参数,可以了解器件在不同频率下的增益、相位和带宽等特性。
功率测试是指通过测试器件的功率消耗或功率放大等性能来了解器件的功耗情况。
功率测试通常使用功率计或功率放大器等仪器进行,在给定的输入信号下测量器件的功率消耗或输出功率,从而了解器件的能效和功率特性。
温度测试是指通过测试器件的温度变化来了解器件的热特性。
温度测试通常使用热电偶或红外测温仪等仪器进行,在器件工作时测量器件的温度变化情况,可以了解器件的散热性能和温度特性。
以上是半导体器件基本测试的几个方面,实际测试过程中可能会有更多的细节和内容,不同类型的器件测试方法也会有所差异。
在测试过程中,还需要注意仪器的精度和准确性,确保测试结果的可靠性和准确性。
ic半导体测试基础(中文版)本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。
一.测试目的Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。
测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。
Open-Short 测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。
另外,在测试开始阶段,Open-Short 测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket没有正确的连接。
二.测试方法Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。
基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。
首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。
大家知道,当电流流经二极管时,会在其P-N结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。
既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。
Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。
串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open引起还是Short导致。
第1章半导体测试基础第1节基础术语描述半导体测试的专业术语很多,这里只例举部分基础的:1.DUT需要被实施测试的半导体器件通常叫做DUT〔Device Under Test,我们常简称"被测器件"〕,或者叫UUT〔Unit Under Test〕.首先我们来看看关于器件引脚的常识,数字电路期间的引脚分为"信号"、"电源"和"地"三部分.信号脚,包括输入、输出、三态和双向四类,输入:在外部信号和器件内部逻辑之间起缓冲作用的信号输入通道;输入管脚感应其上的电压并将它转化为内部逻辑识别的"0"和"1"电平.输出:在芯片内部逻辑和外部环境之间起缓冲作用的信号输出通道;输出管脚提供正确的逻辑"0"或"1"的电压,并提供合适的驱动能力〔电流〕.三态:输出的一类,它有关闭的能力〔达到高电阻值的状态〕.双向:拥有输入、输出功能并能达到高阻态的管脚.电源脚,"电源"和"地"统称为电源脚,因为它们组成供电回路,有着与信号引脚不同的电路结构.VCC:TTL器件的供电输入引脚.VDD:CMOS器件的供电输入引脚.VSS:为VCC或VDD提供电流回路的引脚.GND:地,连接到测试系统的参考电位节点或VSS,为信号引脚或其他电路节点提供参考0电位;对于单一供电的器件,我们称VSS为GND.2.测试程序半导体测试程序的目的是控制测试系统硬件以一定的方式保证被测器件达到或超越它的那些被具体定义在器件规格书里的设计指标.测试程序通常分为几个部分,如DC测试、功能测试、AC测试等.DC测试验证电压与电流参数;功能测试验证芯片内部一系列逻辑功能操作的正确性;AC 测试用以保证芯片能在特定的时间约束内完成逻辑操作.程序控制测试系统的硬件进行测试,对每个测试项给出pass或fail的结果.Pass指器件达到或者超越了其设计规格;Fail则相反,器件没有达到设计要求,不能用于最终应用.测试程序还会将器件按照它们在测试中表现出的性能进行相应的分类,这个过程叫做"Binning",也称为"分Bin". 举个例子,一个微处理器,如果可以在150MHz下正确执行指令,会被归为最好的一类,称之为"Bin 1";而它的某个兄弟,只能在100MHz下做同样的事情,性能比不上它,但是也不是一无是处应该扔掉,还有可以应用的领域,则也许会被归为"Bin 2",卖给只要求100MHz 的客户.程序还要有控制外围测试设备比如Handler 和Probe 的能力;还要搜集和提供摘要性质〔或格式〕的测试结果或数据,这些结果或数据提供有价值的信息给测试或生产工程师,用于良率<Yield>分析和控制.第2节正确的测试方法经常有人问道:"怎样正确地创建测试程序?"这个问题不好回答,因为对于什么是正确的或者说最好的测试方式,一直没有一个单一明了的界定,某种情形下正确的方式对另一种情况来说不见得最好.很多因素都在影响着测试行为的构建方式,下面我们就来看一些影响力大的因素.➢测试程序的用途.下面的清单例举了测试程序的常用之处,每一项都有其特殊要求也就需要相应的测试程序:●Wafer Test——测试晶圆〔wafer〕每一个独立的电路单元〔Die〕,这是半导体后段区分良品与不良品的第一道工序,也被称为"Wafer Sort"、CP测试等.●Package Test——晶圆被切割成独立的电路单元,且每个单元都被封装出来后,需要经历此测试以验证封装过程的正确性并保证器件仍然能达到它的设计指标,也称为"Final Test"、FT测试、成品测试等.●Quality Assurance Test——质量保证测试,以抽样检测方式确保Package Test执行的正确性,即确保pass的产品中没有不合格品.●Device Characterization——器件特性描述,决定器件工作参数范围的极限值.●Pre/Post Burn-In ——在器件"Burn-in"之前和之后进行的测试,用于验证老化过程有没有引起一些参数的漂移.这一过程有助于清除含有潜在失效〔会在使用一段时间后暴露出来〕的芯片.●Miliary Test——军品测试,执行更为严格的老化测试标准,如扩大温度范围,并对测试结果进行归档.●Ining Inspection ——收货检验,终端客户为保证购买的芯片质量在应用之前进行的检查或测试.●Assembly Verification ——封装验证,用于检验芯片经过了封装过程是否仍然完好并验证封装过程本身的正确性.这一过程通常在FT测试时一并实施.●Failure Analysis ——失效分析,分析失效芯片的故障以确定失效原因,找到影响良率的关键因素,并提高芯片的可靠性.➢测试系统的性能.测试程序要充分利用测试系统的性能以获得良好的测试覆盖率,一些测试方法会受到测试系统硬件或软件性能的限制.高端测试机:●高度精确的时序——精确的高速测试●大的向量存储器——不需要去重新加载测试向量●复合PMU〔Parametric Measurement Unit〕——可进行并行测试,以减少测试时间●可编程的电流加载——简化硬件电路,增加灵活性●PerPin的时序和电平——简化测试开发,减少测试时间低端测试机:●低速、低精度——也许不能充分满足测试需求●小的向量存储器——也许需要重新加载向量,增加测试时间●单个PMU ——只能串行地进行DC测试,增加测试时间●均分资源〔时序/电平〕——增加测试程序复杂度和测试时间➢测试环节的成本.这也许是决定什么需要被测试以与以何种方式满足这些测试的唯一的最重要的因素,测试成本在器件总的制造成本中占了很大的比重,因此许多与测试有关的决定也许仅仅取决于器件的售价与测试成本.例如,某个器件可应用于游戏机,它卖15元;而同样的器件用于人造卫星,则会卖3500元.每种应用有其独特的技术规范,要求两种不同标准的测试程序.3500元的器件能支持昂贵的测试费用,而15元的器件只能支付最低的测试成本.➢测试开发的理念.测试理念只一个公司内部测试人员之间关于什么是最优的测试方法的共同的观念,这却决于他们特殊的要求、芯片产品的售价,并受他们以往经验的影响.在测试程序开发项目启动之前,测试工程师必须全面地上面提到的每一个环节以决定最佳的解决方案.开发测试程序不是一件简单的正确或者错误的事情,它是一个在给定的状况下寻找最佳解决方案的过程.第3节测试系统测试系统称为ATE,由电子电路和机械硬件组成,是由同一个主控制器指挥下的电源、计量仪器、信号发生器、模式〔pattern〕生成器和其他硬件项目的集合体,用于模仿被测器件将会在应用中体验到的操作条件,以发现不合格的产品. 测试系统硬件由运行一组指令〔测试程序〕的计算机控制,在测试时提供合适的电压、电流、时序和功能状态给DUT并监测DUT的响应,对比每次测试的结果和预先设定的界限,做出pass或fail的判断.●测试系统的内脏图2-1显示所有数字测试系统都含有的基本模块,虽然很多新的测试系统包含了更多的硬件,但这作为起点,我们还是拿它来介绍."CPU"是系统的控制中心,这里的CPU不同于电脑中的中央处理器,它由控制测试系统的计算机与数据输入输出通道组成.许多新的测试系统提供一个网络接口用以传输测试数据;计算机硬盘和Memory用来存储本地数据;显示器与键盘提供了测试操作员和系统的接口.图2-1.通用测试系统内部结构DC子系统包含有DPS〔Device Power Supplies,器件供电单元〕、RVS 〔Reference Voltage Supplies,参考电压源〕、PMU〔Precision Measurement Unit,精密测量单元〕.DPS为被测器件的电源管脚提供电压和电流;RVS为系统内部管脚测试单元的驱动和比较电路提供逻辑0和逻辑1电平提供参考电压,这些电压设置包括:VIL、VIH、VOL和VOH.性能稍逊的或者老一点的测试系统只有有限的RVS,因而同一时间测试程序只能提供少量的输入和输出电平.这里先提与一个概念,"tester pin",也叫做"tester channel",它是一种探针,和Loadboard背面的Pad接触为被测器件的管脚提供信号.当测试机的pins共享某一资源,比如RVS,则此资源称为"Shared Resource".一些测试系统称拥有"per pin"的结构,就是说它们可以为每一个pin独立地设置输入与输出信号的电平和时序.DC子系统还包含PMU〔精密测量单元,Precision Measurement Unit〕电路以进行精确的DC参数测试,一些系统的PMU也是per pin结构,安装在测试头〔Test Head〕中.〔PMU我们将在后面进行单独的讲解〕每个测试系统都有高速的存储器——称为"pattern memory"或"vector memory"——去存储测试向量〔vector或pattern〕.Test pattern〔注:本人驽钝,一直不知道这个pattern的准确翻译,很多译者将其直译为"模式",我认为有点欠妥,实际上它就是一个二维的真值表;将"test pattern"翻译成"测试向量"吧,那"vector"又如何区别?呵呵,还想听听大家意见〕描绘了器件设计所期望的一系列逻辑功能的输入输出的状态,测试系统从pattern memory中读取输入信号或者叫驱动信号〔Drive〕的pattern状态,通过tester pin输送给待测器件的相应管脚;再从器件输出管脚读取相应信号的状态,与pattern中相应的输出信号或者叫期望〔Expect〕信号进行比较.进行功能测试时,pattern 为待测器件提供激励并监测器件的输出,如果器件输入与期望不相符,则一个功能失效产生了.有两种类型的测试向量——并行向量和扫描向量,大多数测试系统都支持以上两种向量.Timing分区存储有功能测试需要用到的格式、掩盖〔mask〕和时序设置等数据和信息,信号格式〔波形〕和时间沿标识定义了输入信号的格式和对输出信号进行采样的时间点.Timing分区从pattern memory那里接收激励状态〔"0”或者"1”〕,结合时序与信号格式等信息,生成格式化的数据送给电路的驱动部分,进而输送给待测器件.Special Tester Options部分包含一些可配置的特殊功能,如向量生成器、存储器测试,或者模拟电路测试所需要的特殊的硬件结构.The Systen Clocks为测试系统提供同步的时钟信号,这些信号通常运行在比功能测试要高得多的频率范围;这部分还包括许多测试系统都包含的时钟校验电路.第4节PMUPMU〔Precision Measurement Unit,精密测量单元〕用于精确的DC参数测量,它能驱动电流进入器件而去量测电压或者为器件加上电压而去量测产生的电流.PMU的数量跟测试机的等级有关,低端的测试机往往只有一个PMU,同过共享的方式被测试通道〔test channel〕逐次使用;中端的则有一组PMU,通常为8个或16个,而一组通道往往也是8个或16个,这样可以整组逐次使用;而高端的测试机则会采用per pin的结构,每个channel配置一个PMU.图2-2. PMU状态模拟图驱动模式和测量模式〔Force and Measurement Modes〕在ATE中,术语"驱动〔Force〕"描述了测试机应用于被测器件的一定数值的电流或电压,它的替代词是Apply,在半导体测试专业术语中,Apply和Force都表述同样的意思.在对PMU进行编程时,驱动功能可选择为电压或电流:如果选择了电流,则测量模式自动被设置成电压;反之,如果选择了电压,则测量模式自动被设置成电流.一旦选择了驱动功能,则相应的数值必须同时被设置.●驱动线路和感知线路〔Force and Sense Lines〕为了提升PMU驱动电压的精确度,常使用4条线路的结构:两条驱动线路传输电流,另两条感知线路监测我们感兴趣的点〔通常是DUT〕的电压.这缘于欧姆定律,大家知道,任何线路都有电阻,当电流流经线路会在其两端产生压降,这样我们给到DUT端的电压往往小于我们在程序中设置的参数.设置两根独立的〔不输送电流〕感知线路去检测DUT端的电压,反馈给电压源,电压源再将其与理想值进行比较,并作相应的补偿和修正,以消除电流流经线路产生的偏差.驱动线路和感知线路的连接点被称作"开尔文连接点".●量程设置〔Range Settings〕PMU的驱动和测量范围在编程时必须被选定,合适的量程设定将保证测试结果的准确性.需要提醒的是,PMU的驱动和测量本身就有就有范围的限制,驱动的范围取决于PMU的最大驱动能力,如果程序中设定PMU输出5V的电压而PMU本身设定为输出4V电压的话,最终只能输出4V的电压.同理,如果电流测量的量程被设定为1mA,则无论实际电路中电流多大,能测到的读数不会超过1mA.值得注意的是,PMU上无论是驱动的范围还是测量的量程,在连接到DUT的时候都不应该再发生变化.这种范围或量程的变化会引起噪声脉冲〔浪涌〕,是一种信号电压值短时间内的急剧变化产生的瞬间高压,类似于ESD的放电,会对DUT造成损害.●边界设置〔Limit Settings〕PMU有上限和下限这两个可编程的测量边界,它们可以单独使用〔如某个参数只需要小于或大于某个值〕或者一起使用.实际测量值大于上限或小于下限的器件,均会被系统判为不良品.●钳制设置〔Clamp Settings〕大多数PMU会被测试程序设置钳制电压和电流,钳制装置是在测试期间控制PMU输出电压与电流的上限以保护测试操作人员、测试硬件与被测器件的电路.图2-2.电流钳制电路模拟图当PMU用于输出电压时,测试期间必须设定最大输出电流钳制.驱动电压时,PMU会给予足够的必须的电流用以支持相应的电压,对DUT的某个管脚,测试机的驱动单元会不断增加电流以驱动它达到程序中设定的电压值.如果此管脚对地短路〔或者对其他源短路〕,而我们没有设定电流钳制,则通过它的电流会一直加大,直到相关的电路如探针、ProbeCard、相邻DUT甚至测试仪的通道全部烧毁.图2-3显示PMU驱动5.0V电压施加到250ohm负载的情况,在实际的测试中,DUT是阻抗性负载,从欧姆定律I=U/R我们知道,其上将会通过20mA的电流.器件的规格书可能定义可接受的最大电流为25mA,这就意味着我们程序中此电流上限边界将会被设置为25mA,而钳制电流可以设置为30mA.如果某一有缺陷的器件的阻抗性负载只有10ohm的话,在没有设定电流钳制的情况下,通过的电流将达到500mA,这么大的电流已经足以对测试系统、硬件接口与器件本身造成损害;而如果电流钳制设定在30mA,则电流会被钳制电路限定在安全的范围内,不会超过30mA.电流钳制边界〔Clamp〕必须大于测试边界〔Limit〕上限,这样当遇到缺陷器件才能出现fail;否则程序中会提示"边界电流过大",测试中也不会出现fail了.图2-4.电压钳制电路模拟图当PMU用于输出电流时,测试期间则相应地需要进行电压钳制.电压钳制和电流钳制在原理上大同小异,这里就不再赘述了.第5节管脚电路管脚电路〔The Pin Electronics,也叫PinCard、PE、PEC或I/O Card〕是测试系统资源部和待测期间之间的接口,它给待测器件提供输入信号并接收待测器件的输出信号.每个测试系统都有自己独特的设计但是通常其PE电路都会包括:●提供输入信号的驱动电路●驱动转换与电流负载的输入输出切换开关电路●检验输出电平的电压比较电路●与PMU的连接电路〔点〕●可编程的电流负载还可能包括:●用于高速电流测试的附加电路●Per pin 的PMU结构尽管有着不同的变种,但PE的基本架构还是一脉相承的,图2-5显示了数字测试系统的数字测试通道的典型PE卡的电路结构.图2-5.典型的Pin Electronics1.驱动单元〔The Driver〕驱动电路从测试系统的其他相应环节获取格式化的信号,称为FDATA,当FDATA通过驱动电路,从参考电压源〔RVS〕获取的VIL/VIH参考电平被施加到格式化的数据上.如果FDATA命令驱动单元去驱动逻辑0,则驱动单元会驱动VIL参考电压;VIL〔Voltage In Low〕指施加到DUT的input管脚仍能被DUT 内部电路识别为逻辑0的最高保证电压.如果FDATA命令驱动单元去驱动逻辑1,则驱动单元会驱动VIH参考电压;VIH 〔Voltage In High〕指施加到DUT的input管脚仍能被DUT内部电路识别为逻辑1的最低保证电压.F1场效应管用于隔离驱动电路和待测器件,在进行输入-输出切换时充当快速开关角色.当测试通道被程序定义为输入〔Input〕,场效应管F1导通,开关〔通常是继电器〕K1闭合,使信号由驱动单元〔Driver〕输送至DUT;当测试通道被程序定义为输出〔Output〕或不关心状态〔don’t care〕,F1截止,K1断开,则驱动单元上的信号无法传送到DUT上.F1只可能处于其中的一种状态,这样就保证了驱动单元和待测器件同时向同一个测试通道送出电压信号的I/O冲突状态不会出现.2.电流负载单元〔Current Load〕电流负载〔也叫动态负载〕在功能测试时连接到待测器件的输出端充当负载的角色,由程序控制,提供从测试系统到待测器件的正向电流或从待测器件到测试系统的负向电流.电流负载提供IOH〔Current Output High〕和IOL〔Current Output Low〕.IOH 指当待测器件输出逻辑1时其输出管脚必须提供的电流总和;IOL则相反,指当待测器件输出逻辑0时其输出管脚必须接纳的电流总和.当测试程序设定了IOH和IOL,VREF电压就设置了它们的转换点.转换点决定了IOH起作用还是IOL起作用:当待测器件的输出电压高于转换点时,IOH提供电流;当待测器件的输出电压低于转换点时,IOL提供电流.F2和F1一样,也是一个场效应管,在输入-输出切换时充当高速开关,并隔离电流负载电路和待测器件.当程序定义测试通道为输出,则F2导通,允许输出正向电流或抽取反向电流;当定义测试通道为输入,则F2截止,将负载电路和待测器件隔离.电流负载在三态测试和开短路测试中也会用到.3.电压比较单元〔Voltage Receiver〕电压比较器用于功能测试时比较待测器件的输出电压和RVS提供的参考电压.RVS为有效的逻辑1〔VOH〕和逻辑0〔VOL〕提供了参考:当器件的输出电压等于或小于VOL,则认为它是逻辑0;当器件的输出电压等于或大于VOH,则认为它是逻辑1;当它大于VOL而小于VOH,则认为它是三态电平或无效输出.4.PMU连接点〔PMU Connection〕当PMU连接到器件管脚,K1先断开,然后K2闭合,用于将PMU和Pin Electrics 卡的I/O电路隔离开来.5.高速电流比较单元〔High Speed Current parators〕相对于为每个测试通道配置PMU,部分测试系统提供了快速测量小电流的另一种方法,这就是可进行快速漏电流〔Leakage〕测试的电流比较器,开关K3控制它与待测器件的连接与否.如果测试系统本身就是Per Pin PMU结构的,那么这部分就不需要了.6.PPPMU〔Per Pin PMU〕一些系统提供Per Pin PMU的电路结构,以支持对DUT每个管脚同步地进行电压或电流测试.与PMU一样,PPPMU可以驱动电流测量电压或者驱动电压测量电流,但是标准测试系统的PMU的其它功能PPPMU则可能不具备.第6节测试开发基本规则任何工作都有其规则和流程,IC测试也不例外.我们在实际工作中看到,一些简单的错误和低级的问题经常在一个又一个的程序中再现,如果有一定的标准,相信情况会好很多.这里我们就来总结一些基本的规则,它们将普遍适用于多数的实例;也许其中的一些在我们看来是显而易见的,但是在测试硬件无误的情况下,很多人还是在不经意间违反.可能大家会说了,谁这么傻呀?呵呵,相信大家都不会主动这么做,但是粗心呢?如果你决定刻意违反其中的某一条或几条的话,请确定你完全知道后果.^_^永远不要将DUT的输入管脚当作输出管脚进行功能测试.最常见的是在pattern中,如果一个输入管脚在此测试项不需要去管〔既给0或给1不影响此测试结果〕,我们有人就给它"X",而"X"是输出测试的mask态,这样测试机就会将此管脚当作输出去处理,连接到比较电路,只是对结果不做比较.记住,在功能测试中,输入管脚不能直接测试以期得到pass/fail的结果;信号施加到输入管脚,我们需要测试的是输出管脚.●永远不要将测试机的驱动单元连接到DUT的输出管脚.此举会造成测试机和器件本身会在同一时间驱动电压和电流到该管脚,当它们在某一点相遇时,那就是狭路相逢勇者胜了,输的一方会受伤哦!●永远不要悬空〔float〕某个输入管脚,一个有效的逻辑必须施加到输入管脚,0或者1.对于CMOS工艺的器件,悬空输入管脚会造成闩锁〔latch-up〕现象,导致大电流对器件造成破坏.●永远不要施加大于VDD或小于GND的电压到输入或输出管脚.否则同样会引起浪涌现象损害器件.●驱动电压信号到DUT时,记得设置电流钳制,限制测试机的最大输出电流.●驱动电流信号到DUT时,记得设置电压钳制,限制测试机的最大输出电压.●永远不要在驱动单元与器件引脚连接时改变驱动信号〔电压或电流〕的范围,也不要在这个时候改变PMU驱动的信号类型〔如将电压驱动改为电流驱动〕.。
半导体浪涌测试原理与功能-概述说明以及解释1.引言1.1 概述半导体浪涌测试是一项关键的电子测试技术,用于评估和验证半导体器件在电压耐受性和稳定性方面的性能。
浪涌测试通过模拟电路系统中的瞬态过电压事件,能够检测半导体器件对电压峰值和持续时间的响应能力。
随着电子设备的不断发展和普及,电力供应系统中的浪涌电压和电流事件也越来越普遍和严峻。
这些浪涌事件可能由雷击、开关操作、电源故障或其他原因引起,会对电子设备和半导体器件造成损害。
因此,对于电子设备和半导体器件来说,具备良好的浪涌耐受性是至关重要的。
半导体浪涌测试旨在模拟和重现这些浪涌事件,以验证半导体器件在这些情况下的工作性能和稳定性。
通过施加一系列高能量、高峰值的脉冲电压,浪涌测试可以评估半导体器件在不同电压下的响应和反应时间。
通过这些测试,可以确定器件的最大耐受电压和其它性能指标,确保器件在实际的工作环境中具备可靠的性能。
半导体浪涌测试功能主要包括以下几个方面:1. 评估器件的抗浪涌能力:通过浪涌测试,可以确定半导体器件在浪涌电压或电流冲击下的能力,从而确定其抗浪涌性能和耐受能力。
2. 检测器件的响应速度:浪涌测试可以模拟各种浪涌事件,测试器件在不同电压峰值和持续时间下的响应速度,以评估其电路保护能力。
3. 评估器件的稳定性:通过浪涌测试,可以判断器件在不同浪涌事件下的工作稳定性和可靠性,为电子设备的设计和工作提供更多的保障。
4. 提高产品质量:半导体浪涌测试可以帮助制造商提前筛选和测试半导体器件,以确保产品的质量和可靠性,减少因浪涌事件引起的损害和故障。
总之,半导体浪涌测试是一项重要的技术手段,可为电子设备和半导体器件提供必要的保护和评估。
通过对器件的浪涌耐受性进行测试,可以确保其在实际工作中具备良好的性能和稳定性,提高产品的可靠性和质量。
1.2 文章结构文章结构部分的内容可以包括以下信息:文章结构部分旨在介绍本篇长文的整体结构安排,让读者能够快速了解文章的组织和内容安排。
半导体测试理论1测量可重复性和可复制性(GR&R)GR&R是用于评估测试设备对相同的测试对象反复测试而能够得到重复读值的能力的参数。
也就是说GR&R是用于描述测试设备的稳定性和一致性的一个指标。
对于半导体测试设备,这一指标尤为重要。
从数学角度来看,GR&R就是指实际测量的偏移度。
测试工程师必须尽可能减少设备的GR&R值,过高的GR&R值表明测试设备或方法的不稳定性。
如同GR&R名字所示,这一指标包含两个方面:可重复性和可复制性。
可重复性指的是相同测试设备在同一个操作员操作下反复得到一致的测试结果的能力。
可复制性是说同一个测试系统在不同操作员反复操作下得到一致的测试结果的能力。
当然,在现实世界里,没有任何测试设备可以反复获得完全一致的测试结果,通常会受到5个因素的影响:1、测试标准2、测试方法3、测试仪器4、测试人员5、环境因素所有这些因素都会影响到每次测试的结果,测试结果的精确度只有在确保以上5个因素的影响控制到最小程度的情况下才能保证。
有很多计算GR&R的方法,下面将介绍其中的一种,这个方法是由Automotive Idustry Action Group(AIAG)推荐的。
首先计算由测试设备和人员造成的偏移,然后由这些参数计算最终GR&R 值。
Equipment Variation (EV):代表测试过程(方法和设备)的可重复性。
它可以通过相同的操作员对测试目标反复测试而得到的结果计算得来。
Appraiser Variation (AV):表示该测试流程的可复制性。
可以通过不同操作员对相同测试设备和流程反复测测试所得数据计算得来。
GR&R的计算则是由上述两个参数综合得来。
必须指出的是测试的偏移不仅仅是由上述两者造成的,同时还受Part Variation(PV)的影响。
PV表示测试目标不同所造成的测试偏差,通常通过测试不同目标得到的数据计算而来。
现在让我们来计算总偏差:Total Variation (TV),它包含了由R&R和PV所构成的影响。
TV = sqrt((R&R)**+ PV**)在一个GR&R报表中,最终的结果往往表示成:%EV, %AV, %R&R,和 %PV。
他们分别表示EV,AV,R&R 和PV相对TV的百分比。
因此%EV=(EV/TV)x100%%AV=(AV/TV)x100%%R&R=(R&R/TV)x100%%PV=(PV/TV)x100%%R&R如果大于10%,则此测试设备和流程是良好的;%R&R在10%和30% 之间表示可以接受;如果大于30%则需要工程人员对此设备和流程进行改良。
电气测试可信度(Electrical Test Confidence)电气测试可信度(Electrical Test Confidence)很多测试工程师都会发现测试的结果往往都不能预见,即使是用最先进的ATE也不能保证测试结果的正确性。
很多情况下,必须对产品重新测试(retest),浪费了大量时间。
电气测试可信度简而言之就是衡量一个测试设备提供给使用者测试结果正确性的指标。
一个电气测试可信度很高的测试设备无需作重复的retest,从而节省大量宝贵的测试时间。
如果把第一次测试下来的失效器件(rejects)重测,其中有些可能会通过测试,原因在于原始的错误可能由测试设备造成的,而非器件本身。
这样的失效被称为“非正常失效”(invalid),测试可信度可以通过衡量这些“非正常失效”的数量来计算。
非正常失效产生有很多原因:1、DUT和测试头之间接触不良2、测试设备硬件问题3、不合理的硬件搭构4、金属接触面氧化或污染导致接触失效5、测试环境湿度过高6、GR&R过高其中第一条是很多测试工程师面临的普遍问题,其原因有:1、DUT引脚和接触面没有对齐2、接触器件老化3、接触器件氧化和污染4、接触面湿度太大很多公司试图解决这个问题,毕竟其他的问题可以在产品测试正式release之前解决:1、测试程序调试和设计2、正确设置测试限值3、使用性能优良的测试设备4、使用可靠的接触件5、测试环境优化等等由此可见,电气测试可信度很大程度上依赖于电气接触可靠性。
具体的说,就是电气测试中各部件正确良好接触的几率。
90%的电气测试可信度就表示平均100个被测器件中有90个获得良好接触而其他10个则遇到了电气接触问题。
通过几轮的重测可以将这些非正常失效器件变成好的器件,因此重测获得的非正常失效器件的数量也由电气测试可信度决定。
假设初测成品率为Y1,那么这批产品真正的成品率为Y=Y1/C,其中C为该系统电气测试可靠度。
如果这批产品重测成品数量为R2,R2=Q(1-Y1),其中Q为产品总数。
重测成品率为YY,YY = Rinvalid/R2 而重测后增加的成品率Y2 = (Rinvalid/R2) x C.通过计算可得:C = 1 - [Y2(1-Y1) / Y1]C:测试系统测试可信度Y1:初测成品率Y2:重测后成品率有人观察过RFIC测试的结果得出如下结论:1、C小于85%的测试是不合理的,应该重写2、C大于95%的测试无需重测3、C在85%和95%之间的需要重测当然以上数据不一定适合所有公司和所有产品,公司的测试经理应该通过计算得适合自己产品的测试原则,这是对测试专业人员提出的挑战。
电气测试的限值空间(Guardband)很多测试工程师认为电气测试参数的限值就是在进行参数测试的时候设定的允许范围,电测限值的使用是为了在产品量测的时候相对产品电气标准参数更保守,从而降低客户使用产品时出现问题的几率。
在大部分半导体测试工序中,往往采用两个版本的测试程序:1、产品量测程序2、质量确认程序(QA)前者用于产品量测线上,后者则用于抽样测试。
QA测试用于确保通过量测的产品是真正的没有问题,由于被测器件已经通过量测程序,理论上他们应该100%通过QA测试。
因此,QA不通过的器件将被重点调查。
QA测试程序是根据产品参数标准来设计的,而量测程序则是使用了更加严格的测试限值。
很多测试同时有上下限值,在这种情况下,必须保证两者都是用更加严格的限值。
那么,为什么在量测和QA之间有一个限值空间呢?答案在于没有两个测试系统的完全一致的,两个系统总会给出不同的测试量结果。
这可能导致一个器件在不同系统上测试得到不同的结果,事实上即使同一个系统上多次测试的结果也可能不尽相同。
测试系统的不一致性原因很多,而且很难全部解决,这也是为什么在量测和QA测试之间留置限值空间的原因。
电气测试参数 CPKCPK = process capability index.一个工序的性能可以由结果的集中度和距离标准的偏移度来衡量。
对于一个结果可以由正态分布表示的工序来说,它的性能可以由CpK来表示。
一个工序的CpK指数表示该工序输出结果在上下限之间的集中度和偏移度。
实际上,CpK代表了输出结果的和平均值之间的距离和比较近的标准限值之间的比率。
(也就是3个sigma)如果结果的平均值更靠近下限(LSL),假设标准差为Stdev,那么Cpk = (Mean-LSL) / (3 Stdev)。
如果结果平均值更靠近上限(USL)那么Cpk = (USL-Mean) / (3 Stdev)。
理想情况就是输出值一直在分布的正中间,那么Stdev=0,CpK=无限大。
当输出值离中间值越来越远,CpK将减小。
CpK减小代表了该工序产生结果在标准限值之外的可能性怎增大了。
因此,每个CpK的值可以表示相应的失效比率(PPM)。
下表列出CpK和相应的PPM值,在半导体业中,CpK的标准值应在1.67左右,最低不能低于1.33。
CPK and PPMCpK在半导体测试中用于描述测试工序的稳定度,它只适用于测试结果呈正态分布的情况下。
CpK 衡量两个指标:1、测试结果靠近中间值的距离2、测试结果分布情况CpK越高表示测试工序越好。
在电气测试中,CpK只能用于有数量读值并能构成正态分布的测试结果。
一个低的CpK暗示了3件事:1、结果的平均值远离中间值2、Stdev太大3、两者皆是测试工程师因该能够通过观察CpK变化寻找提高CpK的方法。
推荐的解决方法有:排出无效数据,维修出错的测试设备,调试测试程序,重新定义上下限值电气测试良品率模型良品率就是通过电气测试的器件数量和器件总数量的比例,同常用百分比来表示。
所有半导体厂商想方设法提高良品率,低良品率意味着成本的提高。
良品率低的原因有很多,包括工艺问题,产品设计问题等等。
下面举例说明工艺问题导致良品率低:1、氧化层厚度不匀2、参杂浓度不匀,导致某些区域的电阻增大3、掩模版偏移4、离子污染5、多晶硅层厚度不匀设计失误也会导致低良品率,对工艺过度敏感的器件不能经受生产工程的正常参数变化。
即使器件设计和制造工艺没有问题,某些产品批次也会遇到低良品率,这有可能是由于硅片的“点坏区”造成的。
因为在硅片生产过程中,很容易受到灰尘的污染,硅片的某个区域就不能正常工作。
我么必须了解低良品率的原因来降低生产的成本。
这可以通过数学方法“良品率模型”来获得,它将失效密度(defect density)转化为可以预计的良品率。
通常我们使用泊松模型,墨菲模型,指数模型和Seeds模型来计算。
半导体厂商往往通过实际数据来选择合适的数学模型。
比如一个晶圆厂的良品率数据可能是根据晶元大小对比其他数学模型而得来的。
一个简单的良品率数学模型假设造成良品率损失的原因是平均的失效密度和随机的失效点分布。
如果该晶圆上有很多晶元(N)其中有很多随机分布的失效晶元(n),那么一个晶元存在k个失效晶元的可能性可以根据泊松分布估算:Pk = e-m (mk/k!) 其中 m = n/N。
假设Y为良品率那么Y就是一个晶元没有任何失效的可能性即K=0,Y = e-m。
设D为晶元的失效密度,那么D=n/N/A=n/NA,其中A是每个晶元的面积,由m=n/N,m为每个晶元平均的失效晶元数即AD。
因此Y = e (-AD),这也就是泊松良品率模型。
许多专家提出泊松分布估算的良品率太低了因为失效晶元通常不会随机分布在晶圆上,他们一般都集中在某个区域。
这种现象导致估算的良品率要比实际良品率低的多。
另一个简单的数学模型假设失效晶元是不均匀的分布,此时良品率Y= 0∫∞ e (-AD) f(D) dD,其中f(D)为失效密度分布函数。
假设有一个三角形的失效密度分布函数如下图1所示,那么Y = [(1-e(-AD))/(AD)]2,此时模型被称为墨菲模型。
如果失效密度分布函数为长方形的(图2)那么Y = (1-e(-2AD))/(2AD),许多实验数据都和此模型吻合。