河南省信阳市罗山县2015-2016学年七年级(上)期中数学试卷(解析版)
- 格式:doc
- 大小:178.50 KB
- 文档页数:11
2015——2016学年初一上学期期中考试数 学 试 卷考试时间:120分钟;总分:120分;一、选择题(每小题3分,共30分) 1、-2的倒数是( )A .2B .-2C .21 D .21- 2、在实数-2,0,2,3中,最小的实数是( ) A.-2 B.0 C.2 D.33、甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A.1℃~3℃ B.3℃~5℃ C.5℃~8℃ D.1℃~8℃4、在数0.25,﹣21,7,0,﹣3,100中,正数的个数是( )A .1个B .2个C .3个D .4个5、实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A.a 的相反数大于2 B .a 的相反数是2 C .|a|>2 D .2a <06、多项式2x 2y 3﹣5xy 2﹣3的次数和项数分别是( ) A .5,3 B .5,2 C .8,3 D .3,37、若单项式﹣35a b 与2m a +b 是同类项,则常数m 的值为( ) A.﹣3 B.4 C.3 D.28、若代数式22x +3x 的值是5,则代数式42x +6x ﹣9的值是( ) A.10 B.1 C.﹣4 D.﹣89、随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b 元,则原售价为( )A .(54a b +)元B .(45a b +)元C .(54b a +)元D .(45b a +)元10、下列计算正确..的是( ). A .2334a a a =+ B .()22a b a b --=-+ C . 541a a -= D .2222a b a b a b -=- 二、填空题(每小题3分,共30分)11、计算5x 2-2x 2的结果是 .12、第六次人口普查显示,腾冲市常住人口数约为6 44 000人,数据6 44 000用科学记数法表示为 .13、梯形的上底长为8,下底长为x ,高是6,那么梯形面积是 .14、长方形的一边长为3a ﹣b ,另一边比它小a ﹣2b ,那么长方形的周长为 .15、单项式b a 231π-的系数是 ,次数是 .16、按图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是 .17、某商品标价是a 元,现按标价打9折出售,则售价是 元.18、甲、乙二人一起加工零件.甲平均每小时加工a 个零件,加工2小时;乙平均每小时加工b 个零件,加工3小时.甲、乙二人共加工零件 个. 19、数轴上到原点的距离等于4的数是 .20、如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是 个.三、计算题(共20分).21、(每小题4分,共8分)计算: (1)1+(﹣4)÷2﹣(+5) (2)﹣32×|﹣4|﹣4÷(﹣2)2.22、计算:(每小题4分,共12分)(1)、()()241211653223-⨯⎪⎭⎫ ⎝⎛+--+-.(2)、42×(-23)÷72-(-12)÷(-4). (3)、32x y ﹣[22x y ﹣3(2xy ﹣2x y )﹣xy]四、解答题(共40分).23、(8分)教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?24、(6分)先简化,再求值:5(3a 2﹣b )﹣4(3a 2﹣b ),其中a=2,b=3.25、(6分)已知:()02232=++-y x ,化简 )3123()3141(222y x y x x +-+-- 再求值.26、(7分)某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示): 月用水量(吨)水价(元/吨) 第一级 20吨以下(含20吨) 1.6 第二级 20吨﹣30吨(含30吨) 2.4第三级 30吨以上3.2例:某用户的月用水量为32吨,按三级计量应缴交水费为:1. 6×20+2.4×10+3.2×2=62.4(元)(1)如果甲用户的月用水量为12吨,则甲需缴交的水费为 元; (2)如果乙用户缴交的水费为39.2元,则乙月用水量 吨;(3)如果丙用户的月用水量为a 吨,则丙用户该月应缴交水费多少元?(用含a 的代数式表示,并化简)27、(6分) “囧”(jiǒng)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为、,剪去的两个小直角三角形的两直角边长也分别为、.(1)用含有、的代数式表示下图中“囧”的面积; (2)当=6,=8时,求此时“囧”的面积.28、(7分)如果a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,求代数式2a bx cdx x+++的值. x y x y x y y x2015——2016学年初一上学期期中考试数 学 答 题 卡 一、选择题(每小题3分,共30分). 题号 12 3 4 5 6 7 8 9 10 选项二、填空题(每小题3分,共30分)11、 .12、 .13、 .14、 .15、 , 16、 .17、 元.18、 个.19、 .20、 个. 三 、计算题(共20分). 21、(每小题4分,共8分)计算: (1)1+(﹣4)÷2﹣(+5) (2)﹣32×|﹣4|﹣4÷(﹣2)2. 解: 解: 22、(每小题4分,共12分)计算: (1)、()()241211653223-⨯⎪⎭⎫ ⎝⎛+--+-. (2)、42×(-23)÷72-(-12)÷(-4). 解: 解:(3)、32x y ﹣[22x y ﹣3(2xy ﹣2x y )﹣xy]解:四、解答题(共40分).23、(8分)(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?解:(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱? 解:24、(6分)先简化,再求值:5(3a 2﹣b )﹣4(3a 2﹣b ),其中a=2,b=3. 解:装订线内请勿答题25、(6分)已知:()02232=++-y x ,化简 )3123()3141(222y x y x x +-+-- 再求值.解: 26、(7分)(1)如果甲用户的月用水量为12吨,则甲需缴交的水费为 元; (2)如果乙用户缴交的水费为39.2元,则乙月用水量 吨;(3)如果丙用户的月用水量为a 吨,则丙用户该月应缴交水费多少元?(用含a 的代数式表示,并化简)解:27、(6分)(1)用含有、的代数式表示下图中“囧”的面积; 解:(2)当=6,=8时,求此时“囧”的面积.解: 28.(7分)如果a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,求代数式 2a b x cdx x +++的值. 解:x y y x。
绝密★启用前2015-2016学年河南省信阳市罗山县七年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:118分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•罗山县期末)某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x 元,根据题意列一元一次方程,正确的是( ) A .(1+50%)x•80%﹣x=8 B .50%x•80%﹣x=8 C .(1+50%)x•80%=8 D .(1+50%)x ﹣x=82、(2012•孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ的值等于( )A .45°B .60°C .90°D .180°3、(2015秋•罗山县期末)以下3个说法中:②经过两点有一条直线,并且只有一条直线; ③同一个锐角的补角一定大于它的余角. 说法都正确的结论是( )A .②③B .③C .①②D .①4、有理数a 、b 在数轴上的位置如图所示,则下列各式错误的是()A .b <0<aB .|b|>|a|C .ab <0D .a+b >05、(2015秋•罗山县期末)在解方程﹣=1时,去分母正确的是( )A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)+2(2x+3)=1C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x+3)=66、(2015秋•罗山县期末)下列关于单项式的说法中,正确的是( )A .系数是3,次数是2B .系数是,次数是2C .系数是,次数是3D .系数是,次数是37、(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为( )A .1.11×104B .11.1×104C .1.11×105D .1.11×1068、(2015秋•罗山县期末)下列4个数中:(﹣1)2016,|﹣2|,π,﹣32,其中正数的个数有()个.A .1B .2C .3D .4第II 卷(非选择题)二、填空题(题型注释)9、(2010•衡阳)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n (n 是正整数)个图案中由 个基础图形组成.10、(2015秋•罗山县期末)如果关于x 的方程2x+1=3和方程的解相同,那么k 的值为 .11、(2015秋•罗山县期末)若a 2n+1b 2与5a 3n ﹣2b 2是同类项,则n= .12、(2015秋•罗山县期末)如图,直线AB 、CD 相交于点O ,∠DOF=90°,OF 平分∠AOE ,若∠BOD=28°,则∠EOF 的度数为 .13、(2015秋•罗山县期末)57.32°= ° ′ ″.14、(2015秋•单县期末)己知关于x 的方程3a ﹣x=+3的解为2,则a 值是 .15、(2008•莆田)的倒数是 .三、计算题(题型注释)16、(2015秋•罗山县期末)计算: (1)(﹣3)2÷2÷(﹣)+4+22×(﹣) (2)2﹣(﹣+)×36.四、解答题(题型注释)17、(2015秋•罗山县期末)为更好的参与“阳光体育”大课间活动,某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的兵兵球和乒乓球拍.兵乓球拍毎副定价30元,兵兵球毎盒定价5元,两店促销活动如下:甲店毎买一副球拍赠一盒乒乓球,乙店两种商品均按定价的9折优惠.(1)若该班需球拍5副,乒乓球x 盒(不小于5盒),请用含x 的代数式表示此时甲店和乙店分别所需费用.(2)当购买乒乓球多少盒时,两种优惠办法付款一样?(3)当购买10副球拍30盒乒乓球时,请你去办这件事,你打算去如何购买才能最省钱?需要花费多少元?18、(2015秋•罗山县期末)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶100km 需用汽油6升,汽油每升5.5元,试估计小明家一个月(按30天计)的汽油费用是多少元?19、(2015秋•罗山县期末)如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°(1)请你数一数,图中有多少个小于平角的角; (2)求出∠BOD 的度数;(3)请通过计算说明OE 是否平分∠BOC .20、(2015秋•罗山县期末)小购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他计划给卧室铺上木地板,其余房间都铺上地砖.根据图中的数据,解答下列问题:(结果用含x 、y 的代数式表示)(1)求整套住房需要铺多少平方米的地砖?(2)求厅的面积比其余房间的总面积多多少平方米?21、(2015秋•罗山县期末)如图,D 是AB 的中点,E 是BC 的中点,BE=AC=2cm ,求线段DE 的长.22、(2015秋•罗山县期末)化简后再求值:x ﹣2(3y 2﹣2x )﹣4(2x ﹣y 2),其中|x ﹣2|+(y+1)2=0.23、(2015秋•罗山县期末)已知关于x 的方程(1﹣x )=1+a 的解与方程=+2a 的解互为相反数,求x 与a 的值.参考答案1、A2、C3、A4、D5、D6、D7、C8、C9、(3n+1).10、711、312、62°13、57°19′12″.14、215、﹣316、(1)﹣8;(2).17、(1)甲店:30×5+(x﹣5)×5=(5x+125)元,乙店:(5×30+5x)×0.9=(4.5x+135)元;(2)当购买乒乓球50盒时,两种优惠办法付款一样.(3)390元18、(1)50千米;(2)495元19、(1)见解析;(2)155°;(3)见解析20、(1)6x+6+2y(m2);(2)6x﹣2y﹣18(m2)21、5cm22、﹣823、a=,x=﹣【解析】1、试题分析:首先根据题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x•80%,然后利用售价﹣进价=利润即可得到方程.解:设每个双肩背书包的进价是x元,根据题意得:(1+50%)x•80%﹣x=8.故选:A.考点:由实际问题抽象出一元一次方程.2、试题分析:根据互余两角之和为90°,互补两角之和为180°,结合题意即可得出答案.解:由题意得,∠α+∠β=180°,∠α+∠γ=90°,两式相减可得:∠β﹣∠γ=90°.故选:C.考点:余角和补角.3、试题分析:根据线段的概念,直线的性质和余角、补角的定义进行判断.解:①在同一直线上的4点A、B、C、D只能表示6条不同的线段,故错误;②经过两点有一条直线,并且只有一条直线,正确;③同一个锐角的补角一定大于它的余角,正确.故选A.4、试题分析:根据数轴的特点判断出a、b的正负情况以及绝对值的大小,再根据有理数的大小比较方法与有理数的乘法加法运算法则对各选项分析判断后利用排除法.解:根据题意得,0<a<1,b<﹣1,∴A、b<0<a,正确;B、|b|>|a|,正确;C、ab<0,正确;D、a+b<0,故本选项错误.故选D.考点:数轴;绝对值;有理数大小比较.5、试题分析:方程两边乘以6去分母得到结果,即可做出判断.解:去分母得:3(x﹣1)﹣2(2x+2)=6,故选D考点:解一元一次方程.6、试题分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.考点:单项式.7、试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将11.1万用科学记数法表示为1.11×105.故选C.考点:科学记数法—表示较大的数.8、试题分析:根据大于零的数是正数,可得答案.解:(﹣1)2016=1>0,|﹣2|=2>0,π是正数,﹣32=﹣9<0是负数.故选:C.考点:正数和负数.9、试题分析:观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).考点:规律型:图形的变化类.10、试题分析:本题可先根据一元一次方程解出x的值,再根据解相同,将x的值代入二元一次方程中,即可解出k的值.解:∵2x+1=3∴x=1又∵2﹣=0即2﹣=0∴k=7.故答案为:7考点:同解方程.11、试题分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,从而求得n的值.解:根据同类项的定义,2n+1=3n﹣2,解得n=3.考点:同类项.12、试题分析:根据平角的性质得出∠COF=90°,再根据对顶角相等得出∠AOC=28°,从而求出∠AOF的度数,最后根据角平分线的性质即可得出∠EOF的度数.解:∵∠DOF=90°,∴∠COF=90°,∵∠BOD=28°,∴∠AOC=28°,∴∠AOF=90°﹣28°=62°,∵OF平分∠AOE,∴∠EOF=62°.故答案为:62°考点:对顶角、邻补角;角平分线的定义.13、试题分析:根据1度等于60分,1分等于60秒,不到一度的化成分,不到一分的化成秒,可得答案.解:57.32°=57°19′12″,故答案为:57°19′12″.考点:度分秒的换算.14、试题分析:根据关于x的方程3a﹣x=+3的解为2,将x=2代入原方程即可求得a 的值,本题得以解决.解:∵关于x的方程3a﹣x=+3的解为2,∴3a﹣2=解得,a=2,故答案为:2.考点:一元一次方程的解.15、试题分析:根据倒数的定义.解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.考点:倒数.16、试题分析:(1)根据幂的乘方、有理数的除法和加法进行计算即可;(2)根据乘法的分配律和有理数的加法和减法进行计算即可.解:(1)(﹣3)2÷2÷(﹣)+4+22×(﹣)=9×=﹣6+4﹣6=﹣8;(2)2﹣(﹣+)×36===.考点:有理数的混合运算.17、试题分析:(1)根据甲、乙两店的优惠方式,可得出关于x的表达式.(2)根据等量关系是:甲店的费用=乙店的费用列出方程解答即可;(3)根据最省钱的购买的思想确定方案.解:(1)甲店:30×5+(x﹣5)×5=(5x+125)元,乙店:(5×30+5x)×0.9=(4.5x+135)元;(2)设当购买乒乓球x盒时,两种优惠办法付款一样,可得:(5x+125)=4.5x+135解得:x=50,答:当购买乒乓球50盒时,两种优惠办法付款一样.(3)到甲店购买10副球拍,得到10副球拍,10盒球.再到乙店购买20盒乒乓球最省钱.需要30×10+20×5×0.9=390元.考点:一元一次方程的应用.18、试题分析:(1)根据有理数的加法,可得总路程,根据总路程除以时间,可得平均路程;(2)根据总路程乘以100千米的耗油量,可得总耗油量,根据有的单价乘以总耗油量,可得答案.解:(1)总路程为:(50﹣8)+(50﹣11)+(50﹣14)+50+(50﹣16)+(50+41)+(50+8)=350km平均每天路程为:350÷7="50" km,答:这七天中平均每天行驶50千米.答:估计小明家一个月的汽油费用是495元.考点:正数和负数.19、试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.考点:角的计算;角平分线的定义.20、试题分析:(1)根据图中数据可知厨房的长为3,宽为x;卧室的邻边长分别为3和4;(2)设客厅的宽是x,卫生间的宽是y,根据长方形的面积=长×宽,表示出总面积.解:客厅的面积为6xm2,厨房的面积为6m2,卫生间的面积是2ym2,卧室的面积是12m2;(1)地砖的面积是6x+6+2y(m2);(2)厅的面积比其余房间的总面积多6x﹣(6+2y+12)=6x﹣2y﹣18(m2)考点:列代数式;整式的加减.21、试题分析:根据题意分别求出BE、AC的长,根据线段中点的性质进行计算即可.解:∵BE=AC=2cm,∴BE=2cm,AC=10cm,∵E是BC的中点,∴BC=2BE=4cm,∴AB=AC﹣BC=6cm,∵D是AB的中点,∴DB=AB=3cm,∴DE=DB+BE=5cm.考点:两点间的距离.22、试题分析:先根据绝对值及完全平方的非负性求出x和y的值,然后对所求的式子去括号、合并同类项得出最简整式,代入x和y的值即可.解:∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.23、试题分析:分别表示出两方程的解,由两个解互为相反数列出方程,求出方程的解即可得到a的值.解:解方程(1﹣x)=1+a得:x=﹣1﹣2a,解方程=+2a得:x=,∵两个方程的解互为相反数,∴﹣1﹣2a+=0,解得:a=,代入x=﹣1﹣2a得:x=﹣.考点:一元一次方程的解.。
一、选择题(每题3分,共30分)1. 下列各数中,属于整数的是()A. 2.5B. -3.1C. 0.001D. 3答案:D解析:整数包括正整数、负整数和0,所以选D。
2. 下列各数中,绝对值最小的是()A. -5B. 5C. -0.5D. 0.5答案:D解析:绝对值表示数与0的距离,所以绝对值最小的是0.5。
3. 下列等式中,正确的是()A. (-2) × (-3) = -6B. (-2) × 3 = 6C. (-2) × (-3) = 6D. (-2) × 3 = -6答案:C解析:两个负数相乘得到正数,所以选C。
4. 下列各式中,正确的是()A. (3 + 2) × 5 = 15B. (3 + 2) × 5 = 35C. 3 × (2 + 5) = 35D. 3 ×(2 + 5) = 15答案:D解析:先计算括号内的和,再乘以外面的数,所以选D。
5. 下列各数中,能被3整除的是()A. 7B. 12C. 15D. 20答案:B解析:能被3整除的数的各位数字之和能被3整除,所以选B。
6. 下列各数中,是奇数的是()A. 2B. 4C. 5D. 6答案:C解析:奇数是不能被2整除的整数,所以选C。
7. 下列各数中,是偶数的是()A. 3B. 5C. 7D. 8答案:D解析:偶数是能被2整除的整数,所以选D。
8. 下列各数中,是质数的是()A. 10B. 11C. 12D. 14答案:B解析:质数是指只有1和它本身两个因数的自然数,所以选B。
9. 下列各数中,是合数的是()A. 7B. 8C. 9D. 10答案:C解析:合数是指除了1和它本身还有其他因数的自然数,所以选C。
10. 下列各数中,是分数的是()A. 2B. 3C. 1/2D. 4答案:C解析:分数是表示部分与整体关系的数,所以选C。
二、填空题(每题3分,共30分)11. 3 - 5 = (); 4 × 6 = ();7 ÷ 2 = ()答案:-2; 24; 3.5解析:直接计算得出答案。
2015-2016学年七年级(上)期中数学试卷一一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 23.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.比较的大小,结果正确的是()A.B.C.D.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:.(答案不唯一).14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为元.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)16..17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:多项式:整式:.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 2考点:有理数的混合运算;有理数的乘方.分析:此题比较简单.先算乘方,再算加法.解答:解:(﹣1)2+(﹣1)3=1﹣1=0.故选C.点评:此题主要考查了乘方运算,乘方的意义就是求几个相同因数积的运算.注意负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃考点:有理数的加减混合运算.专题:应用题.分析:在列式时要注意上升是加法,下降是减法.解答:解:根据题意可列式﹣7+11﹣9=﹣5,所以温度是﹣5℃.故选B.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3考点:代数式求值;绝对值.专题:计算题.分析:根据a的取值范围,先去绝对值符号,再计算求值.解答:解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.点评:此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.比较的大小,结果正确的是()A.B.C.D.考点:有理数大小比较.分析:根据有理数大小比较的方法即可求解.解答:解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选A.点评:本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60考点:规律型:图形的变化类.专题:规律型.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:根据题意得,第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.故选:D.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为x2.考点:合并同类项.分析:根据合并同类项,系数相加字母和字母的指数不变,可得答案.解答:解:原式=(﹣2+3)x2=x2,故答案为:x2.点评:本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是5.考点:数轴.分析:数轴上两点间的距离:数轴上两点对应的数的差的绝对值.解答:解:根据数轴上两点对应的数是﹣2,3,则两点间的距离是3﹣(﹣2)=5.点评:本题考查数轴上两点间距离的求法:右边点的坐标减去左边点的坐标;或两点坐标差的绝对值.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将170000用科学记数法表示为:1.7×105.故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=﹣9.考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出﹣1⊗2=6,然后再根据新定义计算6⊗3即可.解答:解:﹣1⊗2=22﹣(﹣1)×2=6,6⊗3=32﹣6×3=﹣9.所以(﹣1⊗2)⊗3=﹣9.故答案为:﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为﹣1.考点:代数式求值.专题:计算题.分析:原式变形后,将已知等式代入计算即可求出值.解答:解:∵2a﹣b=﹣1,∴原式=2(2a﹣b)+1=﹣2+1=﹣1,故答案为:﹣1点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是4.考点:合并同类项.分析:有题意可知,这两个式子是同类项,再根据同类项的定义可得:2m=4,3﹣n=1.解答:解:由题意可得,2m=4,3﹣n=1.解得,m=2,n=2,∴m+n=4.故答案为:4.点评:此题主要考查同类项的概念,所含字母相同,并且相同字母的指数也相同的项是同类项.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:某人以5千米/时的速度走了x小时,他走的路程是5x千米.(答案不唯一).考点:单项式.专题:开放型.分析:对单项式“5x”,是5与x的积,表示生活中的相乘计算.比如:某人以5千米/时的速度走了x小时,他走的路程是5x千米解答:解:某人以5千米/时的速度走了x小时,他走的路程是5x千米,答案不唯一.点评:本题考查了单项式在生活中的实际意义,只要计算结果为5x的都符合要求.14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为210或200元.考点:有理数的混合运算.专题:应用题;压轴题;分类讨论.分析:分四种情况讨论:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;④先付120元,80元,得到100元的优惠券,再去付60元的书包;分别计算出实际花费即可.解答:解:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;实际花费为:60+80﹣50+120=210元;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;实际花费为:60+120﹣50+80=210元;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;实际花费为:120﹣50+60+80=210元;④先付120元,80元,得到100元的优惠券,再去付60元的书包;实际花费为:120+80=200元;综上可得:他的实际花费为210元或200元.点评:本题旨在学生养成仔细读题的习惯.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)考点:有理数的混合运算.分析:先算乘方,再从左到右依次计算除法、乘法.解答:解:原式=﹣4÷(﹣1)×(﹣5)=4×(﹣5)=﹣20.点评:有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题要特别注意运算顺序以及符号的处理,如﹣22=﹣4,而(﹣2)2=4.16..考点:有理数的混合运算.专题:常规题型.分析:按照有理数混合运算的顺序,先乘除后加减,有括号的先算括号里面的,并且在计算过程中注意正负符号的变化.解答:解:原式===0答:此题答案为0.点评:有理数的运算能力是很重要的一部分,要熟练掌握.17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:0;﹣a;;a2b2多项式:3+a;;3x2﹣2x+1;a2﹣b2整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.考点:整式;单项式;多项式.分析:根据单项式、整式以及多项式进行填空.解答:解:单项式:0;﹣a;;a2b2;多项式:3+a;;3x2﹣2x+1;a2﹣b2;整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.故答案是:0;﹣a;;a2b2;3+a;;3x2﹣2x+1;a2﹣b2;3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.点评:要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.考点:整式的加减—化简求值.分析:本题应先将原式合并同类项,再将x的值代入,即可解出本题.解答:解:原式=2x3+x3﹣3x3+9x2﹣5x2﹣2=4x2﹣2,当x=时,原式=1﹣2=﹣1.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=﹣3;②在①的基础上化简:B﹣2A.考点:多项式.分析:①不含x2项,即x2项的系数为0,依此求得a的值;②先将表示A与B的式子代入B﹣2A,再去括号合并同类项.解答:解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.点评:多项式的加减实际上就是去括号和合并同类项.多项式加减的运算法则:一般地,几个多项式相加减,如果有括号就先去括号,然后再合并同类项.合并同类项的法则:把系数相加减,字母及字母的指数不变.本题注意不含x2项,即x2项的系数为0.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?考点:正数和负数.分析:(1)根据有理数的加法,可得正负数,根据正数在东,负数在西,可得答案;(2)根据单位耗油量乘以行车距离,可得答案.解答:解:(1)+9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+12=2km故出租车在体育场东边2 km处;(2)﹙|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+12|﹚•a=60a 升.答:这一天共耗油60a升点评:本题考查了正数和负数,利用有理数的加法运算是解题关键,注意求耗油量时要算每次行驶的绝对值.21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?考点:代数式求值.专题:应用题.分析:(1)将脚印长度为24.5cm代入关系式即可得;(2)借助关系式b=7a﹣3.07,求出身高,再根据概率知识推测谁的可能性大.解答:解:(1)已知如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.若某人脚印长度为24.5cm,即a=24.5,将其代入关系式可得,身高约为7×24.5﹣3.07=168.43≈168cm,即他的身高约为168cm;(2)根据现场测量的脚印长度为26.3cm,将这个数值代入b=7a﹣3.07中可得:罪犯身高为181.03cm≈1.81cm,比较可知:身高1.82m的可疑人员的可能性更大.点评:立意新颖,把数学知识融汇到案件侦破中,既考知识,又增加了学习的乐趣.六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?考点:有理数的混合运算;正数和负数.专题:应用题.分析:(1)先根据表格中找出星期一,星期二及星期三所对应的涨跌情况,把这三个数字相加得到这三天的涨跌情况,与买进时每股的单价相加即可求出星期三收盘时每股的价钱;(2)根据表格中记录的正负数情况得到星期二涨幅最大,星期五跌幅最大,求出星期一与星期二两天的涨幅情况,与买进时每股的价钱相加即可得到每股的最高价;用星期一到星期五五天的涨跌情况,与买进时每股的价格相加即可求出每股的最低价;(3)根据买进时每股的单价与股数相乘,减去手续费即可得到买进时所花费的钱数,然后求出一星期七天的涨跌情况,与买进时每股的价钱相加即可求出卖出时每股的价钱,然后乘以股数,再减去手续费和交易费即可求出卖出时获得的总钱数,用获得的总钱数减去买入时花费的钱数,根据其差得正负情况即可计算出他得收益情况.解答:解:(1)(+4)+(+4.5)+(﹣1)=7.5,则星期三收盘时,每股是27+7.5=34.5元;(2)本周内最高价是27+4+4.5=35.5元;最低价是27+4+4.5﹣1﹣2.5﹣6=26元;(3)买入时,27×1000×(1+1.5‰)=27040.5元,卖出时每股:27+4+4.5﹣1﹣2.5﹣6+2=28元,所以卖出时的总钱数为28×1000×(1﹣1.5‰﹣1‰)=27930元,所以小红爸爸的收益为27930﹣27040.5=889.5元,故赚了889.5元.点评:此题考查了有理数的混合运算,以及正负数的意义.原题提供的是实际生活中常见的一个表格,它提供了多种信息,但关键是从中找出解题所需的有效信息,构造相应的数学模型,来解决问题.数学服务于生活,数学来源于生活.2015-2016学年七年级(上)期中数学试卷二一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B. 1 C. 2 D. 34.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×1086.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣19.下列图形中,哪一个是正方体的展开图()A.B.C.D.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是011.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>012.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5二、填空题:本题有4小题,每小题3分,共12分.把答案填在答题卡上.13.﹣a2b的系数是.14.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记米.15.菜场上西红柿每千克a元,白菜每千克b元,学校食堂买30kg西红柿,50kg白菜共需元.16.“*”是规定的一种运算法则:a*b=a2﹣b,则5*(﹣1)的值是.三、解答题:本题有6小题,共52分,解答应写出文字说明或演算步骤.17.(16分)(2014秋•深圳校级期中)计算:(1)8﹣6+(﹣9)(2)﹣24×(﹣+)(3)(﹣0.1)÷×(﹣10)(4)16÷(﹣2)3﹣(﹣)×(﹣4)18.(10分)(2014秋•深圳校级期中)先化简,再求值(1)6a+2a2﹣3a+a2+1的值,其中a=﹣1.(2)x﹣2(x+2y)+3(y﹣2x),其中x=﹣2,y=1.19.画出如图几何体的三视图.20.某一矿井的示意图如图所示:以地面为准,A点的高度是+4米,B、C两点的高度分别是﹣15米与﹣30米.A点比B点高多少?比C点呢?21.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.已知a,b互为相反数,m,n互为倒数,x的绝对值等于3.①由题目可得,a+b=;mn=;x=.②求代数式x2﹣(a+b+mn)x+(a+b)2008+(﹣mn)2008的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.考点:点、线、面、体.分析:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.解答:解:根据以上分析应是圆锥和圆柱的组合体.故选:B.点评:本题考查的是点、线、面、体知识点,可把较复杂的图象进行分解旋转,然后再组合.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B.1 C. 2 D. 3考点:同类项.专题:计算题.分析:根据同类项的定义计算即可:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.解答:解:∵代数式a2b和﹣3a2b y是同类项,∴y=1,故选B.点评:本题考查了同类项的定义,解题时牢记定义是关键,此题比较简单,易于掌握.4.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×108考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:30 000 000=3×107.故选B.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.6.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对考点:绝对值.分析:直接利用“绝对值等于一个正数的数有两个,它们互为相反数”写出答案即可.解答:解:∵|a|=2,∴a=±2,故选C.点评:本题考查了绝对值的求法,属于基础题,比较简单.7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能考点:数轴;有理数的加法.专题:数形结合.分析:首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.解答:解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.点评:本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣1考点:倒数.专题:常规题型.分析:根据倒数的定义可知如果一个数的倒数等于它本身,则这个数是±1.解答:解:如果一个数的倒数等于它本身,则这个数是±1,故选:D.点评:此题考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.尤其是±1这两个特殊的数字.9.下列图形中,哪一个是正方体的展开图()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:折叠后,没有上下底面,故不能折成正方体;B、C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故只有D是正方体的展开图.故选D.点评:只要有“田”字格的展开图都不是正方体的表面展开图.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是0考点:绝对值;有理数.专题:常规题型.分析:先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.解答:解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.点评:本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.11.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>0考点:有理数大小比较.分析:先化简﹣(﹣2)=2,再根据正数都大于0;负数都小于0;两个负数,绝对值大的反而小求解.解答:解:化简﹣(﹣2)=2,所以﹣(﹣2)>0>﹣2>﹣3.故选C.点评:本题考查了有理数比较大小的方法:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.12.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5考点:规律型:图形的变化类.专题:压轴题;规律型.分析:本题做为一道选择题,学生可把n=1,x=5;n=2,x=9代入选项中即可得出答案.而若作为常规题,学生则需要一一列出n=1,2,3…的能,再对x的取值进行归纳.解答:解:设段数为x则依题意得:n=0时,x=1,。
考试时间:120分钟满分:120分一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列数中,是正数的是()A. -3.5B. 0C. -2.5D. 52. 下列各数中,有理数是()A. √2B. πC. -√3D. 无理数3. 下列方程中,解为整数的是()A. 2x - 3 = 5B. 3x + 2 = 7C. 5x - 1 = 4D. 4x + 3 = 64. 若 a > b,且 a 和 b 都是正数,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a - 1 < b - 1D. a + 1 < b + 15. 在直角坐标系中,点 P(2, -3) 关于 x 轴的对称点坐标是()B. (-2, -3)C. (-2, 3)D. (2, -3)6. 下列图形中,是平行四边形的是()A. 等腰梯形B. 正方形C. 矩形D. 等边三角形7. 在一个等腰三角形中,底边长为 6cm,腰长为 8cm,则该三角形的面积是()A. 24cm²B. 30cm²C. 36cm²D. 48cm²8. 若一个数的平方是 81,则这个数可能是()A. 9B. -9C. 9 或 -9D. 09. 下列函数中,自变量 x 的取值范围是全体实数的是()A. y = x² + 1B. y = √xC. y = x - 110. 下列命题中,正确的是()A. 同位角相等,两直线平行B. 同旁内角互补,两直线平行C. 对顶角相等,两直线平行D. 同旁内角相等,两直线平行二、填空题(本大题共10小题,每小题3分,共30分。
把答案填在题后的横线上。
)11. 2 + 3 - (-4) = ______12. 0.1 × 0.2 × 0.3 × 0.4 × 0.5 × 0.6 × 0.7 × 0.8 × 0.9 = ______13. a² - b² = (a + b)(a - b) 的因式分解结果是 ______14. 下列方程中,解为 x = 2 的是 ______15. 下列不等式中,正确的是 ______16. 下列图形中,是圆的是 ______17. 在直角三角形中,若直角边分别为 3cm 和 4cm,则斜边长为 ______18. 若 a = 3,则a² + 2a + 1 = ______19. 下列函数中,自变量 x 的取值范围是全体实数的是 ______20. 下列命题中,正确的是 ______三、解答题(本大题共5小题,共60分。
七年级(上)期中数学试卷一.选择题(每小题3分,共24分)1.如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作() A. +2m B.﹣2m C. +m D.﹣m2.﹣3的绝对值是()A. 3 B.﹣3 C.﹣ D.3.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n的值为()A. 5 B. 6 C. 7 D. 84.下列各式中不是单项式的是()A. B.﹣ C. 0 D.5.在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有()个.A. 1 B. 4 C. 2 D. 36.下列说法正确的是()A. x+y是一次单项式B.多项式3πa3+4a2﹣8的次数是4C. x的系数和次数都是1D.单项式4×104x2的系数是47.下列各组中的两项是同类项的是()A. 6zy2和﹣2y2z B.﹣m2n和mn2 C.﹣x2和3x D. 0.5a和0.5b8.两个有理数相除,其商是负数,则这两个有理数()A.都是负数 B.都是正数C.一个正数一个负数 D.有一个是零二、填空题(每小题3分,共21分)9.在﹣3,﹣1,0,2这四个数中,最小的数是.10.列式表示:p与2的差的是.11.在数轴上表示点A的数是3,则与点A相距4个单位长度的点表示的数是.12.在近似数6.48中,精确到位,有个有效数字.13.多项式4x2y﹣5x3y2+7xy3﹣是次项式.14.的相反数是,倒数是,绝对值是.15.若4x4y n+1与﹣5x m y2是同类项,则m+n= .三、计算题(16题6分,17题24分,共30分)16.画出数轴,在数轴上表示下列各数,并用“<”连接:+5,﹣3.5,,,4,0,2.5.17.计算(1)﹣6+14﹣5+22(2)(﹣+)×(﹣12)(3)23×(﹣5)﹣(﹣3)÷(4)(﹣2)2+3×(﹣2)﹣1÷(﹣)2(5)8a﹣a3+a2+4a3﹣a2﹣7a﹣6(6)(﹣3)×(﹣4)﹣60÷(﹣12)四、解答题(18、19、20题各6分,21题7分共25分)18.(1)用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=5,h=4时,S的值.19.若m、n互为相反数,p、q互为倒数,且|a|=3,求值.20.若|m﹣2|+|n﹣5|=0,求(m﹣n)2的值.21.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)收工时在A地的哪边距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?参考答案与试题解析一.选择题(每小题3分,共24分)1.如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作() A. +2m B.﹣2m C. +m D.﹣m考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作﹣2m.故选:B.点评:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.﹣3的绝对值是()A. 3 B.﹣3 C.﹣ D.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣3的绝对值是3.故选:A.点评:此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n的值为()A. 5 B. 6 C. 7 D. 8考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各式中不是单项式的是()A. B.﹣ C. 0 D.考点:单项式.分析:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.解答:解:A、是数与字母的积的形式,是单项式;B、C都是数字,是单项式;D、分母中有字母,是分式,不是单项式.故选D.点评:本题考查单项式的定义,较为简单,要准确掌握定义.5.在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有()个.A. 1 B. 4 C. 2 D. 3考点:有理数.分析:利用绝对值、相反数及有理数的乘方,先对所给数进行化简,即可得出结论.解答:解:﹣(﹣4)=4,|﹣1|=1,﹣|0|=0,(﹣2)3=﹣8,所以只有(﹣2)3是负数,所以非负数的个数为3,故答案为D.点评:此题主要考查相反数、绝对值及有理数的乘方的运算,解题的关键是把题目所给数据进行准确化简,比较好容易.6.下列说法正确的是()A. x+y是一次单项式B.多项式3πa3+4a2﹣8的次数是4C. x的系数和次数都是1D.单项式4×104x2的系数是4考点:单项式;多项式.分析:分别根据单项式与多项式的定义对各选项进行逐一分析即可.解答:解:A、x+y是一次多项式,故本选项错误;B、多项式3πa3+4a2﹣8的次数是3,故本选项错误;C、x的系数和次数都是1,故本选项正确;D、单项式4×104x2的系数是4×104,故本选项错误.故选C.点评:本题考查的是单项式的定义,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.7.下列各组中的两项是同类项的是()A. 6zy2和﹣2y2z B.﹣m2n和mn2 C.﹣x2和3x D. 0.5a和0.5b考点:同类项.分析:根据同类项的定义,结合选项求解.解答:解:A、6zy2和﹣2y2z中,相同字母的指数相同,是同类项,故本选项正确;B、﹣m2n和mn2中,字母相同,指数不同,故本选项错误;C、﹣x2和3x,字母相同,指数不同,故本选项错误;D、0.5a和0.5b字母不同,故本选项错误.故选A.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.两个有理数相除,其商是负数,则这两个有理数()A.都是负数 B.都是正数C.一个正数一个负数 D.有一个是零考点:有理数的除法.分析:根据两数相除,同号得正,异号得负,进行分析.解答:解:根据除法法则,知两个有理数相除,其商是负数,则这两个有理数必定异号.故选C.点评:此题考查了有理数的除法法则.二、填空题(每小题3分,共21分)9.在﹣3,﹣1,0,2这四个数中,最小的数是﹣3 .考点:有理数大小比较.分析:根据负数小于0和正数,得到最小的数在﹣3和﹣1中,然后比较它们的绝对值即可得到答案.解答:解:∵|﹣1|=2,|﹣3|=3,∴﹣3<﹣1,且负数小于0和正数,所以四个数中最小的数为﹣3.故填:﹣3.点评:本题考查了有理数的大小比较:负数小于0和正数,0小于正数;负数的绝对值越大,这个数越小.10.列式表示:p与2的差的是(p﹣2).考点:列代数式.分析:用p与2的差乘以即可.解答:解:根据题意得:(p﹣2);故答案为:(p﹣2).点评:本题考查了列代数式,主要是文字语言转化为数学语言的能力的训练.11.在数轴上表示点A的数是3,则与点A相距4个单位长度的点表示的数是﹣1或7 .考点:数轴.分析:根据题意得出两种情况:当点在表示3的点的左边时,当点在表示3的点的右边时,列出算式求出即可.解答:解:分为两种情况:①当点在表示3的点的左边时,数为3﹣4=﹣1;②当点在表示3的点的右边时,数为3+4=7;故答案为:﹣1或7.点评:本题考查了数轴的应用,注意符合条件的有两种情况.12.在近似数6.48中,精确到百分位,有 3 个有效数字.考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位,最后一位是什么位就是精确到哪一位;一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.解答:解:近似数6.48中,最后一位是百分位,因而是精确到百分位,有6,4,8共3个有效数字.故答案是百分和3.点评:本题主要考查了近似数与有效数字的确定方法,精确到哪一位,即对下一位的数字进行四舍五入.有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.13.多项式4x2y﹣5x3y2+7xy3﹣是五次四项式.考点:多项式.分析:多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.解答:解:多项式4x2y﹣5x3y2+7xy3﹣是五次四项式,故答案为:五,四.点评:此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.14.的相反数是,倒数是﹣2 ,绝对值是.考点:倒数;相反数;绝对值.专题:计算题.分析:根据相反数的性质,互为相反数的两个数和为0,倒数的性质,互为倒数的两个数积为1,绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可.解答:解:根据倒数、相反数和绝对值的定义得:﹣的相反数为:﹣的倒数为:1÷(﹣)=﹣2,﹣的绝对值为:,故答案为:,﹣2,.点评:本题主要考查了绝对值、相反数、倒数的定义,a的相反数是﹣a,a的倒数是,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.15.若4x4y n+1与﹣5x m y2是同类项,则m+n= 5 .考点:同类项.分析:这类题目的解题关键是从同类项的定义出发,列出方程并求解.解答:解:由同类项的定义可得m=4,n+1=2,解得n=1.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.三、计算题(16题6分,17题24分,共30分)16.画出数轴,在数轴上表示下列各数,并用“<”连接:+5,﹣3.5,,,4,0,2.5.考点:有理数大小比较;数轴.分析:先把各点在数轴上表示出来,再从左到右用“<”把各点连接起来即可.解答:解:如图所示:故﹣3.5<<0<<2.5<4<+5.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的数大的特点是解答此题的关键.17.计算(1)﹣6+14﹣5+22(2)(﹣+)×(﹣12)(3)23×(﹣5)﹣(﹣3)÷(4)(﹣2)2+3×(﹣2)﹣1÷(﹣)2(5)8a﹣a3+a2+4a3﹣a2﹣7a﹣6(6)(﹣3)×(﹣4)﹣60÷(﹣12)考点:有理数的混合运算;合并同类项.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式合并同类项即可得到结果;(6)原式先计算乘除运算,再计算加减运算即可得到结果.解答:解:(1)原式=﹣11+36=25;(2)原式=﹣5+4﹣9=﹣10;(3)原式=﹣115+128=13;(4)原式=4﹣6﹣16=﹣18;(5)原式=3a3+a﹣6;(6)原式=12+5=17.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(18、19、20题各6分,21题7分共25分)18.(1)用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=5,h=4时,S的值.考点:列代数式;代数式求值.专题:几何图形问题.分析:(1)阴影部分的面积=上下底为a,b,高为h的梯形的面积﹣边长为a,h的长方形的面积,把相关字母代入即可;(2)把数值代入(1)中的代数式求值即可.解答:解:(1)S=×(a+b)h﹣ah,(2)当a=2,b=5,h=4时,S=×(2+5)×4﹣2×4=6.点评:本题考查列代数式及求值问题,得到阴影部分的面积的等量关系是解决本题的关键.19.若m、n互为相反数,p、q互为倒数,且|a|=3,求值.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用相反数,倒数,以及绝对值的定义求出m+n,pq以及a的值,代入原式计算即可得到结果.解答:解:根据题意得:m+n=0,pq=1,a=3或a=﹣3,当a=3时,原式=0+2010+1=2011;当a=﹣3时,原式=0+2010﹣1=2009.点评:此题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握各自的定义是解本题的关键.20.若|m﹣2|+|n﹣5|=0,求(m﹣n)2的值.考点:非负数的性质:绝对值;代数式求值.专题:计算题.分析:根据两个非负数的和为0,必须都为0,得出关于m n的方程,求出m n的值,代入进行计算即可.解答:解:由题意知,m﹣2=0,n﹣5=0,∴m=2,n=5,∴(m﹣n)2=(2﹣5)2=9.点评:本题考查了非负数的性质和代数式求出等知识点的运用,解此题的目的看学生能否根据题意得出m﹣2=0,n﹣5=0.21.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)收工时在A地的哪边距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?考点:有理数的加法.专题:应用题.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题求耗油量时,注意要用汽车实际行驶的路程乘以每千米耗油量.解答:解:(1)约定向东为正,向西为负,8﹣9+4+7﹣2﹣10+18﹣3+7+5=8+4+7+18+7+5﹣9﹣10﹣2﹣3=25千米,故收工时在A地的东边距A地25千米.(2)油耗=行走的路程×每千米耗油0.3升,即|8|+|﹣9|+|4|+|7|+|﹣2|+|﹣10|+|18|+|﹣3|+|7|+|5|=73千米,73×0.3=21.9升,故从出发到收工共耗油21.9升.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.注意耗油量与方向无关,求路程时要把绝对值相加才可以.。
2015-2016学年七年级(上)期中数学试卷一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=99.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=011.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6二、填空题(每题4分,共32分)13.平方得的数是,立方得﹣8的数是,倒数是﹣的数是,的相反数是.14.数轴上表示有理数﹣3.5与4.5两点的距离是.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=.16.38400万千米用科学记数表示为米.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:=24.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有项,其中﹣xy4的系数是.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?2014-2015学年甘肃省白银五中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(5的相反数)+5=0,则5的相反数是﹣5.故选:B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个考点:正数和负数.分析:先化简,再根据小于0的是负数即可求解.解答:解:在﹣(﹣6)=6,﹣(﹣6)2=﹣36,﹣|﹣6|=﹣6,(﹣6)2=36中,负数有﹣(﹣6)2,﹣|﹣6|,一共2个.故选C.点评:本题主要考查了正数和负数的意义,判断一个数是正数还是负数,关键是看它比0大还是比0小.3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a考点:列代数式.分析:根据数的表示,用数位上的数字乘以数位即可.解答:解:这个两位数是:10a+b.故选C.点评:本题考查了列代数式,比较简单,主要是数的表示方法.4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒考点:列代数式(分式).专题:应用题.分析:通过桥洞所需的时间为=(桥洞长+车长)÷车速.解答:解:它通过桥洞所需的时间为秒.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.注意此时路程应为桥洞长+车长.5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.考点:整式的加减.分析:此题可先列出所求代数式的两倍,然后再除以2即可.解答:解:依题意得[(a+2b)﹣(﹣2a+b)]÷2=.故选D.点评:整式的加减运算实际上就是去括号、合并同类项.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn考点:同类项.分析:同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项.并且与字母的顺序无关.解答:解:A、62与x2字母不同不是同类项;B、4ab与4abc字母不同不是同类项;C、0.2x2y与0.2xy2字母的指数不同不是同类项;D、nm和﹣mn是同类项.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=9考点:有理数的除法;有理数的减法;有理数的乘方.专题:计算题.分析:原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.解答:解:A、﹣12﹣8=﹣20,错误;B、(﹣)÷(﹣4)=﹣×(﹣)=,错误;C、﹣5﹣(﹣2)=﹣5+2=﹣3,正确;D、﹣32=﹣9,错误.故选C.点评:此题考查了有理数的除法,乘方,以及乘法,熟练掌握运算法则是解本题的关键.9.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y考点:整式的加减.分析:根据题意得出:(x3﹣3x2y)﹣(3x2y﹣3xy2),求出即可.解答:解:根据题意得:(x3﹣3x2y)﹣(3x2y﹣3xy2)=x3﹣3x2y﹣3x2y+3xy2=x3﹣6x2y+3xy2,故选C.点评:本题考查了整式的加减的应用,主要考查学生的计算能力.10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=0考点:单项式;代数式;列代数式;合并同类项.分析:分别利用单项式以及代数式和合并同类项法则分析得出即可.解答:解:A、单项式﹣πx3的系数是﹣π,故此选项错误;B、0和a都是代数式,此选项正确;C、数a的与这个数的和表示为+a,故此选项错误;D、合并同类项﹣n2﹣n2=﹣2n2,故此选项错误.故选:B.点评:此题主要考查了单项式、代数式以及合并同类项的定义,正确把握相关性定义是解题关键.11.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处考点:数轴.专题:计算题.分析:由题意知,可看作书店为原点,文具店在书店西边20米处,即﹣20米,玩具店位于书店东边100米处,即+100米,解答出即可.解答:解:根据题意得:文具店在书店西边20米处,玩具店位于书店东边100米处,∴书店看作原点时,玩具店为100米,文具店为﹣20米,∴小明的位置为:40﹣60=﹣20,∴小明的位置为:﹣20米,∴小明的位置在文具店.故答案为A.点评:本题考查了数轴,规定了原点、正方向、单位长度的直线叫做数轴,学生掌握数轴的定义,是解答本题的关键.12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,b+3=0,a﹣2=0,解得a=2,b=﹣3,所以,b a=(﹣3)2=9.故选B.点评:本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、填空题(每题4分,共32分)13.平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.考点:有理数的乘方;相反数;倒数.专题:计算题.分析:原式利用有理数的乘方,相反数,以及倒数的定义计算即可得到结果.解答:解:平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.故答案为:±;﹣2;﹣4;﹣1点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.14.数轴上表示有理数﹣3.5与4.5两点的距离是8.考点:数轴.专题:计算题.分析:有理数﹣3.5与4.5两点的距离实为两数差的绝对值.解答:解:由题意得:有理数﹣3.5与4.5两点的距离为|﹣3.5﹣4.5|=8.故答案为:8.点评:本题考查了数轴的知识,属于基础题,难度不大,注意两点之间的距离即是两数差的绝对值.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=7.考点:同类项.分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得m,n的值,代入求解即可.解答:解:∵3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,∴m﹣1=3,n﹣2=1,∴m=4,n=3,则m+n=7.故答案为:7.点评:本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.38400万千米用科学记数表示为 3.84×108米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300 670用科学记数法表示为3.84×108.故答案为3.84×108.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是x(15﹣x).考点:列代数式.分析:根据周长是30,一边是x,求出另一边是15﹣x,再根据长方形的面积公式即可求解.解答:解:∵周长是30,∴相邻两边的和是15,∵一边是x,∴另一边是15﹣x.∴面积是:x(15﹣x).故答案为:x(15﹣x).点评:本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:3×7+(4﹣1)=24.考点:有理数的混合运算.专题:计算题;开放型.分析:24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯一.解答:解:答案不唯一,如:3×7+(4﹣1)=24.点评:此题考查有理数混合运算的灵活程度,可以提高学生的学习兴趣.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.考点:整式的加减;多项式.分析:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,由此可确定多项式2x2y3﹣x3y ﹣xy4﹣5x4y3的项数,根据单项式的系数的定义确定﹣xy4的系数.解答:解:代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.故答案为:四,﹣1.点评:本题考查了多项式的定义,多项式中每个单项式叫做多项式的项,单项式中的数字因数叫做单项式的系数.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是9.考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.考点:作图-三视图;由三视图判断几何体.分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.解答:解:如图所示:点评:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.考点:数轴.专题:计算题.分析:数轴上点的移动规律是“左减右加”.依据规律计算即可.解答:解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.点评:本题考查了数轴的知识,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).考点:有理数的混合运算.分析:(1)先化简,再分类计算;(2)先算乘方和括号里面的加法,再算除法,最后算减法;(3)先算乘方和除法,再算括号里面的减法,再算乘法,最后算加法;(4)利用乘法分配律简算.解答:解:(1)原式=﹣7+15+25=33;(2)原式=9﹣(﹣)÷=9﹣(﹣)×12=9+11=20;(3)原式=﹣1×(4﹣9)+3×(﹣)=﹣1×(﹣5)﹣4=5﹣4=1;(4)原式=﹣24×(﹣)+(﹣24)×﹣24×(﹣)=20﹣9+1=12.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)考点:整式的加减.分析:(1)(2)(3)直接合并整式中的同类项即可;(4)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:(1)3a+2a﹣7a=﹣2a;(2)﹣4x2y+8xy2﹣9x2y﹣21xy2=﹣13x2y﹣13xy2;(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn=m2n+4mn2+mn;(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)=a+b﹣4a+6b+3a﹣2b=5b.点评:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(3)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=3x﹣8x+2﹣3+2x=﹣3x﹣1,当x=﹣时,原式=1﹣1=0;(2)原式=10a2﹣14ab+18b2﹣42a2+6ab﹣9b2=﹣32a2﹣8ab+9b2,当a=,b=﹣时,原式=﹣18+4+4=﹣10;(3)原式=4x3+x2﹣2x3+x2=2x3+x2,当x=﹣3时,原式=﹣81+15=﹣66;(4)原式=5x2﹣2xy+xy+6﹣4x2=x2﹣xy+6,当x=﹣2,y=时,原式=4+1+6=11.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.考点:折线统计图;正数和负数;算术平均数.专题:应用题.分析:(1)根据上周日的收入依次加减即可解答;(2)根据平均数=总收入÷天数进行求解;(3)根据(2)的数据,可以作出折线图,然后分析即可.解答:解:(1)星期五该小店的收入情况为20+10﹣5﹣3+6﹣2=26(元);(2)星期一20+10=30元,星期二30﹣5=25元,25﹣3=22元,22+6=28元,28﹣2=26元,(30+25+22+28+26)÷5=26.2(元);(3)画折线统计图:正确结论例如:这五天中收入最高的是星期一为30元.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.熟练掌握对统计图的分析和平均数的计算.要理解极差的概念,能够根据计算的数据进行综合分析.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?考点:数轴.分析:(1)根据题目的叙述1个单位长度表示1千米,即可表示出;(2)根据(1)得到的数轴,得到表示小明家与小彬家的两点之间的距离,利用1个单位长度表示1千米,即可得到实际距离;(3)把三次所行路程相加即可,(4)路程是20千米,乘以0.5即可求得耗油量.解答:解:(1)如图所示:(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,(4)耗油量是:20×0.2=4升.答:小明家距小彬家7.5千米,这趟路货车共耗油4升.点评:本题考查了数轴,利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.。
2015-2016学年七年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.﹣C.﹣D.2.如果一个物体向东移动8m记为+8m,那么向西移动3m记为()A.+3m B.﹣3m C.+5m D.﹣5m3.多项式x2﹣4xy2+y2的次数为()A.2 B. 3 C. 4 D.﹣44.在有理数0,1,﹣4,﹣2.5中,属于负整数的是()A.0 B. 1 C.﹣4 D.﹣2.55.今年由于降水明显偏少,气温持续偏高,河库水量锐减,据统计,某市造成直接经济损失达560 000 000元,该数据用科学记数法表示为()A.5.6×107元B. 5.6×108元C.56×107元D.56×108元6.下列选项中,是同类项的是()A.3ab和3b B.﹣2pq和npq C.b2和2b D.4xy和xy7.比较﹣,5,﹣0.5的大小,下列选项正确的是()A.﹣B.﹣C.﹣0.5D.5<﹣<﹣0.58.一个两位数,个位数是x,十位数是y,如果个位数字与十位数字对调,所得的两位数与原来的两位数的和是()A.10x+y B.10y+x C.2x+2y D.11x+11y9.观察一列单项式:2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…则第2014个单项式是()A.﹣22014x3 B.22014x3 C.﹣24018x3 D.24018x310.按照如图所示的操作步骤,若输入的值为﹣4,则输出的值为()A.44 B.4 C.﹣D.﹣84二、填空题(共6小题,每小题3分,共18分)11.﹣(﹣3.5)的相反数为.12.(﹣7)8的底数是.13.用计算器计算:7.783+(﹣0.32)2=(精确到百分位)14.求图中阴影部分的面积.15.若a在数轴上所对应的点到数轴上表示﹣3的点和数轴上表示7的点之间的距离相等,则a=.16.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同;第二步从左边一堆拿出3张,放入中间一堆;第三步从右边一堆拿出2张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是.三、解答题(共6小题,计72分.解答应写出过程)17.计算:(﹣1)98×()﹣(﹣2)4÷4.18.先化简,再求值:+2(x﹣)﹣(﹣3x2+2y2)﹣x,其中x=2,y=3.19.某村棉花的种植面积是a公顷,玉米的种植面积比棉花的种植面积的2倍多5公顷,蔬菜的种植面积比玉米的种植面积的3倍少2公顷,求棉花、玉米和蔬菜的种植面积和.20.周助平时骑自行车的速度为a km/h.今天风速为16km/h,他顺骑4个小时的路程是多少千米?逆风骑2个小时的路程是多少千米?两个路程相差多少千米?21.(10分)(2014秋•旬阳县期中)某儿童服装店老板以25元的价格买进30件连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 ﹣1 ﹣1问该服装店在售完这30件连衣裙后,赚了多少钱?22.(12分)(2014秋•旬阳县期中)某商场为了促销,推出两种促销方式:方式①:一次性购物超过100元,所有商品打七折;方式②:一次性购物超过100元,超过的部分减半.(1)若单老师一下性购买的商品的标价总额为a(a>100)元,按照方式①付款,单老师实际应付多少钱?按照方式②付款,单老板实际应付多少钱?(2)夏目帮叔叔一次性购买的商品的标价总额为170元,参加促销活动,哪种方式更划算?为什么?若一次性购买的商品的标价总额为370元呢?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.﹣C.﹣D.考点:倒数.分析:根据倒数的定义,即可解答.解答:解:﹣的倒数是﹣,故选:B.点评:本题考查了倒数的定义,解决本题的关键是熟记倒数的定义.2.如果一个物体向东移动8m记为+8m,那么向西移动3m记为()A.+3m B.﹣3m C.+5m D.﹣5m考点:正数和负数.分析:认真审题,根据向东移动记为正数则向西移动记为负数,据此即可得到本题的答案.解答:解:向东移动记为8m记为+8,则向西移动3m记为﹣3m.故选B.点评:本题主要考查了正数与负数的意义,用正数与负数可以表示相反意义的量,是经常考查的题目,注意总结.3.多项式x2﹣4xy2+y2的次数为()A.2 B. 3 C. 4 D.﹣4考点:多项式.专题:计算题.分析:利用多项式次数的定义判断即可.解答:解:多项式x2﹣4xy2+y2的次数为3.故选B.点评:此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.4.在有理数0,1,﹣4,﹣2.5中,属于负整数的是()A.0 B. 1 C.﹣4 D.﹣2.5考点:有理数.分析:根据负整数是小于0的整数,判断出在有理数0,1,﹣4,﹣2.5中,属于负整数的有哪些即可.解答:解:在有理数0,1,﹣4,﹣2.5中,属于负整数的是﹣4.故选:C.点评:此题主要考查了有理数的分类,要熟练掌握,解答此题的关键是要明确:负整数是小于0的整数.5.今年由于降水明显偏少,气温持续偏高,河库水量锐减,据统计,某市造成直接经济损失达560 000 000元,该数据用科学记数法表示为()A.5.6×107元B. 5.6×108元C.56×107元D.56×108元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将560 000 000用科学记数法表示为:5.6×108.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列选项中,是同类项的是()A.3ab和3b B.﹣2pq和npq C.b2和2b D.4xy和xy考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.解答:解:A、所含字母不同,则不是同类项,B、所含字母不同,则不是同类项,C、相同的字母的指数不同,故不是同类项.D、正确.故选D.点评:本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.比较﹣,5,﹣0.5的大小,下列选项正确的是()A.﹣B.﹣C.﹣0.5D.5<﹣<﹣0.5考点:有理数大小比较.分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解答:解:根据有理数比较大小的方法,可得﹣0.5.故选:C.点评:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.一个两位数,个位数是x,十位数是y,如果个位数字与十位数字对调,所得的两位数与原来的两位数的和是()A.10x+y B.10y+x C.2x+2y D.11x+11y考点:列代数式.分析:分别表示出两数,然后相加即可得到正确的选项.解答:解:∵两位数的个位数是x,十位数是y,∴两位数为10y+x,个位数字与十位数字对调的两位数为10x+y,∴两位数的和为10y+x+10x+y=11x+11y,故选D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.9.观察一列单项式:2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…则第2014个单项式是()A.﹣22014x3 B.22014x3 C.﹣24018x3 D.24018x3考点:单项式.专题:规律型.分析:根据已知得出单项式变化规律进而得出即可.解答:解:∵2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…∴系数为(﹣1)n+12n,次数都为3,∴第2014个单项式是:(﹣1)2014+122014x3=﹣22014x3.故选A.点评:此题主要考查了单项式,正确利用已知得出变化规律是解题关键.10.按照如图所示的操作步骤,若输入的值为﹣4,则输出的值为()A.44 B.4 C.﹣D.﹣84考点:有理数的混合运算.专题:图表型.分析:把﹣4代入程序框图中计算,判断结果与15大小,即可得到输出的值.解答:解:根据题意得:(﹣4)2=16>15,可得﹣4×(16+5)=﹣84,故选D点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,共18分)11.﹣(﹣3.5)的相反数为﹣3.5.考点:相反数.分析:先化简,再求相反数.解答:解:﹣(﹣3.5)=3.5,3.5的相反数是﹣3.5,故答案为:﹣3.5.点评:本题考查了相反数,解决本题的关键是熟记相反数的定义.12.(﹣7)8的底数是﹣7.考点:有理数的乘方.分析:根据有理数的乘方,即可解答.解答:解:(﹣7)8的底数是﹣7.故答案为:﹣7.点评:本题考查了有理数的乘方,解决本题的关键是熟记有理数乘方的定义.13.用计算器计算:7.783+(﹣0.32)2=471.01(精确到百分位)考点:计算器—有理数.分析:首先用计算器分别求出7.783、(﹣0.32)2的值各是多少;然后把它们求和,并应用四舍五入法,求出算式7.783+(﹣0.32)2精确度百分位的结果是多少即可.解答:解:7.783+(﹣0.32)2=470.910952+0.1024=471.013352≈471.01.故答案为:471.01.点评:此题主要考查了计算器的使用方法,以及四舍五入法求近似值问题的应用,要熟练掌握.14.求图中阴影部分的面积2ab﹣2b2.考点:列代数式.分析:图中两个阴影部分的面积都是长为b,宽为(a﹣b)的矩形.根据矩形的面积公式得:阴影部分的面积是2b(a﹣b).解答:解:阴影部分的面积=b(a﹣b)×2=2ab﹣2b2.点评:正确表示阴影矩形的宽,运用矩形的面积公式列式计算.15.若a在数轴上所对应的点到数轴上表示﹣3的点和数轴上表示7的点之间的距离相等,则a=2.考点:数轴.分析:画出数轴,找出表示﹣3与7的两点中点表示的数即为a的值.解答:解:作图如下:则a=2.故答案为:2.点评:此题考查了数轴的认识,作出相应的图形是解本题的关键.16.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同;第二步从左边一堆拿出3张,放入中间一堆;第三步从右边一堆拿出2张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是8.考点:整式的加减.专题:压轴题.分析:把每堆牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.解答:解:设第一步时候,每堆牌的数量都是x(x≥3);第二步时候:左边x﹣3,中间x+3,右边x;第三步时候:左边x﹣3,中间x+3+2,右边x﹣2;第四步开始时候,左边有(x﹣3)张牌,则从中间拿走(x﹣3)张,则中间所剩牌数为(x+5)﹣(x﹣3)=x+5﹣x+3=8.所以中间一堆牌此时有8张牌.故答案为8点评:本题考查了整式的加减运算,解决此题,根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.三、解答题(共6小题,计72分.解答应写出过程)17.计算:(﹣1)98×()﹣(﹣2)4÷4.考点:有理数的混合运算.专题:计算题.分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:原式=1×(﹣)﹣16×=﹣4=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:+2(x﹣)﹣(﹣3x2+2y2)﹣x,其中x=2,y=3.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=x2+2x﹣y2+x2﹣y2﹣x=x2+x﹣2y2,当x=2,y=3时,原式=5+3﹣18=﹣10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.某村棉花的种植面积是a公顷,玉米的种植面积比棉花的种植面积的2倍多5公顷,蔬菜的种植面积比玉米的种植面积的3倍少2公顷,求棉花、玉米和蔬菜的种植面积和.考点:整式的加减.分析:根据题意得出玉米及蔬菜的种植面积,再把两式相加即可.解答:解:由题意得:玉米的种植面积是(2a+5)公顷,蔬菜的种植面积是[3(2a+5)﹣2]公顷,a+(2a+5)+[3(2a+5)﹣2]=a+2a+5+6a+13=(9a+18)(公顷).答:棉花、玉米和蔬菜的种植面积和为=(9a+18)公顷.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.周助平时骑自行车的速度为a km/h.今天风速为16km/h,他顺骑4个小时的路程是多少千米?逆风骑2个小时的路程是多少千米?两个路程相差多少千米?考点:整式的加减.分析:先根据顺风骑的路程=(a+16)×4,逆风骑的路程=(a﹣16)×2,再作查差比较其大小即可.解答:解:∵周助平时骑自行车的速度为a km/h.今天风速为16km/h,∴顺风骑的路程=(a+16)×4=(4a+64)千米,逆风骑的路程=(a﹣16)×2=(2a﹣32)千米,∴(4a+64)﹣(2a﹣32)=4a+64﹣2a+32=(2a+96)(千米).答:周助顺骑4个小时的路程是(4a+64)千米,逆风骑2个小时的路程是(2a﹣32)千米,两个路程相差(2a+96)千米.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.21.(10分)(2014秋•旬阳县期中)某儿童服装店老板以25元的价格买进30件连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 ﹣1 ﹣1问该服装店在售完这30件连衣裙后,赚了多少钱?考点:正数和负数.分析:认真审题,首先求出总售价的变化,再求出按标准售价进行出售所赚的钱数,加在一起就是最后赚的钱数.解答:解:7×3+6×2+3×1+5×0+4×(﹣1)+5×(﹣2)=21+12+3+0﹣4﹣10=22(元),(45﹣25)×30+22=20×30+22=622(元).答:赚了622元.点评:本题主要考查了正数与负数的意义,让学生理解正数与负数只是一种“记法”,理解“记法”与原数之间的关系是解题的关键,注意认真总结.22.(12分)(2014秋•旬阳县期中)某商场为了促销,推出两种促销方式:方式①:一次性购物超过100元,所有商品打七折;方式②:一次性购物超过100元,超过的部分减半.(1)若单老师一下性购买的商品的标价总额为a(a>100)元,按照方式①付款,单老师实际应付多少钱?按照方式②付款,单老板实际应付多少钱?(2)夏目帮叔叔一次性购买的商品的标价总额为170元,参加促销活动,哪种方式更划算?为什么?若一次性购买的商品的标价总额为370元呢?考点:列代数式;代数式求值.分析:(1)按照两种方式直接列出代数式即可;(2)分别代入数值计算,比较得出答案即可.解答:解:(1)方式①付款:0.7a(元)方式②付款:100+0.5(a﹣100)=0.5a+50(元);(2)商品的标价总额为170元,参加促销活动,方式①更划算;方式①:170×0.7=119(元)方式②:0.7×170+50=135(元)119<135所以方式①更划算;商品的标价总额为370元,参加促销活动,方式②更划算;方式①:370×0.7=259(元)方式②:0.7×370+50=235(元)259>235所以方式②更划算.点评:此题考查列代数式以及代数式求值,理解优惠方法,列出代数式是解决问题的前提.。
河南省信阳市七年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2016七上·武汉期中) ﹣的相反数是()A .B .C . ﹣D .2. (2分) (2019七上·义乌期中) 如图,在数轴上有a、b两个数,则下列结论错误的是().A . a+b < 0B . a-b > 0C . a×b < 0D .3. (2分)地球上水的总储量为1.39×1018m3 ,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m3 ,因此我们要节约用水.请将0.0107×1018m3用科学记数法表示是()A . 1.07×1016m3B . 0.107×1017m3C . 10.7×1015m3D . 1.07×1017m34. (2分) (2018七上·岳池期末) 单项式−23a2b3的系数和次数分別是()A . −2,8B . −8,5C . 2,8D . −2,55. (2分) (2019八上·海淀月考) 如图所示,已知边长为a的正方形纸片,减掉边长为b的小正方形后,将剩下的三块拼接成一个长方形,则这个长方形较长的边长为()A . a+bB . a﹣bC . a+2bD . 2a+2b6. (2分)(2017·高邮模拟) 若数轴上的A、B、C三点表示的实数分别为a、1、﹣1,则|a+1|表示()A . A、B两点间的距离B . A、C两点间的距离C . A、B两点到原点的距离之和D . A、C两点到原点的距离之和二、填空题 (共6题;共6分)7. (1分) (2017七上·鄞州月考) =________.8. (1分) (2019七上·东莞期末) 2xy﹣6xy=________.9. (1分)用“<”、“=”或“>”号填空:-2________0 ________ ________10. (1分) (2019七上·舒兰期中) 已知代数式的值为9,则的值为________.11. (1分)多项式 x+3x2-5的各项分别为________,次数最高的项是________,它的次数是________,一次项系数是________,常数项是________,它是________次________项式.12. (1分)已知a,b互为倒数,c,d互为相反数,m的绝对值为2,求 +(c+d)﹣m的值________.三、解答题 (共12题;共84分)13. (5分)(2016八上·淮阴期末) 计算或解方程:(1) |﹣3|﹣(π﹣1)0﹣(2)(2x+1)3=﹣1.14. (5分) (2019七上·右玉月考) 用适当的方法计算:(1) 0.36+(-7.4)+0.5+(-0.6)+0.14;(2) (-2.125)++(-3.2);(3) .(4) |-0.75|+(-3)-(-0.25)+ .(5)15. (5分) (2019七上·忻城期中) 计算:(1)(2)(3) +(﹣16);(4)16. (5分) (2019七上·保山期中) 计算(1)÷(2)(3)(- - + )÷(4)17. (5分) (2019七上·滨海月考) 先化简,再求值:,其中, .18. (5分)已知-2ambc2与4a3bnc2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.19. (5分) (2017七上·启东期中) 先化简,再求值:x2y﹣2( xy2﹣3x2y)+(﹣ xy2﹣x2y),其中|x﹣ |+(y+2)2=0.20. (5分) (2019七上·包河期中) 先化简,再求值:x2-(2x2-4y)+2(x2-y),其中x=-1,y=21. (15分) (2018七上·紫金期中) 为了有效控制酒后驾车,某市交警开车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为(单位:千米):+2,-3,+2,+1,-2,1,-2 (1)此时,这辆交警的汽车司机如何向队长描述他的位置?(2)这次巡逻共耗油多少升?(己知每千米耗油0.2升)22. (6分) (2018七上·湖州期中) 已知有理数a , b满足,(1)试求a , b的值.(2)若对于有理数x、y ,定义运算:,例如:,试求的值.23. (11分)综合题。
2015-2016学年河南省信阳市罗山县七年级(上)期中数学试卷一、选择题(每小题3分,满分24分)1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.22.钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A.634×104B.6.34×106 C.63.4×105 D.6.34×1073.下列各式中,不相等的是()A.(﹣5)2和52B.(﹣5)2和﹣52C.(﹣5)3和﹣53D.|﹣5|3和|﹣53| 4.下列运算正确的是()A.2x2﹣x2=2 B.5c2+5d2=5c2d2C.5xy﹣4xy=xy D.2m2+3m3=5m55.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A.﹣x2+2x+2 B.﹣x2+x+2 C.x2﹣x+2 D.﹣x2+x﹣26.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式的值为()A.﹣3 B.3 C.﹣5 D.3或﹣57.去括号正确的是()A.﹣(2a+b﹣c)=2a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b+c)=﹣ab+c D.﹣(a﹣b﹣c)=﹣a+b﹣c8.按如图所示的程序计算:若开始输入的x值为﹣2,则最后输出的结果是()A.352 B.160 C.112 D.198二、填空题(每小题3分,满分21分)9.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有______个.10.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为______℃.11.代数式﹣的系数是______.12.已知|x|=4,|y|=,且xy<0,则的值等于______.13.若代数式(m﹣2)x|m|y是关于字母x、y的三次单项式,则m=______.14.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有______ 人.15.假设有足够多的黑白围棋子,按照一定的规律排成一行:请问第2015个棋子是黑的还是白的?答:______.三、解答题(共75分)16.计算题(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣14+(﹣5)2×(﹣)×|0.8﹣1|17.合并同类项:(1)x3﹣2x2﹣x3+5x2+4;(2)4xy﹣3x2﹣3xy﹣2y+2x2.18.先化简再求值:(ab+3a2)﹣2b2﹣5ab﹣2(a2﹣2ab),其中:a=1,b=﹣2.19.有理数在数轴上的对应的点如图,化简代数式:|a﹣b|+|a+b|﹣2|c﹣a|20.如图是由一些火彩棒搭成的图案:(1)摆第①个图案用______根火柴棒;摆第②个图案用______根火柴棒;摆第③个图案用______根火柴棒;摆第④个图案用______根火柴棒;(2)按照这种方式摆下去,摆第n个图案用多少根火柴棒?摆第2015个图案需要用多少根火柴棒?21.我市出租车收费标准如下:乘车里程不超过2公里的一律收费5元;乘车里程超过2公里的,除了收费5元外超过部分按每公里1.5元计费,问:(1)如果有人乘出租车行驶了x公里(x>2),那么他应付车费多少元?(列代数式)(2)某乘客乘出租车从上车点到下车点有8公里,那么他应付车费少元?22.在教师节晚会上,主持人小丽和小蓉进行一场游戏,游戏规则如下:(1)每人每次抽取4张卡片;如果抽取到形如“□”的卡片,那么加上卡片上的数字,如果抽取到形如“○”的卡片,那么减去卡片上的数字.(2)比较两人所抽取的4张卡片计算结果,结果大的为胜,结果小的为大家唱歌.小丽和小蓉所抽取的卡片如图所示.你知道本次游戏结束后谁会为大家唱歌?请说明理由.23.某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的()根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______辆;(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?2015-2016学年河南省信阳市罗山县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.﹣2的绝对值等于()A.﹣B.C.﹣2 D.2【考点】绝对值.【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选D.2.钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A.634×104B.6.34×106 C.63.4×105 D.6.34×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6340000用科学记数法表示为6.34×106,故选:B.3.下列各式中,不相等的是()A.(﹣5)2和52B.(﹣5)2和﹣52C.(﹣5)3和﹣53D.|﹣5|3和|﹣53|【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:A、(﹣5)2=25,52=25,所以(﹣5)2=52;B、(﹣5)2=25,﹣52=﹣25,所以(﹣5)2≠﹣52;C、(﹣5)3=﹣125,﹣53=﹣125,所以(﹣5)3=﹣53;D、|﹣5|3=125,|﹣53|=125,所以|﹣5|3=|﹣53|,故选:B.4.下列运算正确的是()A.2x2﹣x2=2 B.5c2+5d2=5c2d2C.5xy﹣4xy=xy D.2m2+3m3=5m5【考点】合并同类项.【分析】根据合并同类项,系数相加字母和字母的指数不变,可得答案.【解答】解:A、合并同类项,系数相加字母和字母的指数不变,故A错误;B、不是同类项不能合并,故B错误;C、合并同类项,系数相加字母和字母的指数不变,故C正确;D、不是同类项不能合并,故D错误;故选:C.5.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A.﹣x2+2x+2 B.﹣x2+x+2 C.x2﹣x+2 D.﹣x2+x﹣2【考点】整式的加减.【分析】设此多项式为A,再根据整式的加减法则进行计算即可.【解答】解:设此多项式为A,则A=(x2﹣2x﹣3)﹣(2x2﹣3x﹣1)=﹣x2+x﹣2.故选D.6.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式的值为()A.﹣3 B.3 C.﹣5 D.3或﹣5【考点】代数式求值.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选B.7.去括号正确的是()A.﹣(2a+b﹣c)=2a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b+c)=﹣ab+c D.﹣(a﹣b﹣c)=﹣a+b﹣c【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、﹣(2a+b﹣c)=﹣2a﹣b+c,故本选项错误;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,故本选项正确;C、﹣(﹣a﹣b+c)=a+b﹣c,故本选项错误;D、﹣(a﹣b﹣c)=﹣a+b+c,故本选项错误;故选:B.8.按如图所示的程序计算:若开始输入的x值为﹣2,则最后输出的结果是()A.352 B.160 C.112 D.198【考点】代数式求值.【分析】观察图形我们首先要理解其计算顺序,可以看出当x≥0时就计算上面那个代数式的值,反之计算下面代数式的值,不管计算哪个式子当结果出来后又会有两种情况,第一种是结果大于等于100,此时直接输出最终结果;第二种是结果小于100,此时刚要将结果返回再次计算,直到算出的值大于等于100为止,即可得出最终的结果.【解答】解:∵x=﹣2<0,∴代入代数式x2+6x计算得,(﹣2)2+6×(﹣2)=﹣8<100,∴将x=﹣8代入继续计算得,(﹣8)2+6×(﹣8)=16<100,∴需将x=16代入继续计算,注意x=16>0,所以应该代入计算得,结果为160>100,∴所以直接输出结果为160.故选:B.二、填空题(每小题3分,满分21分)9.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有3个.【考点】数轴.【分析】根据数轴上已知整数,求出墨迹盖住部分的整数个数.【解答】解:根据数轴得:墨迹盖住的整数共有0,1,2共3个.故答案为:3.10.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.11.代数式﹣的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来解答,单项式中数字因数叫做单项式的系数.【解答】解:∵代数式﹣的数字因数是﹣,∴此代数式的系数是﹣.故答案为:﹣.12.已知|x|=4,|y|=,且xy<0,则的值等于﹣8.【考点】有理数的除法;绝对值.【分析】先根据绝对值的定义求出x,y的值,再根据xy<0确定的值即可.【解答】解:∵|x|=4,|y|=,∴x=±4,y=±;又∵xy<0,∴x=4,y=﹣或x=﹣4,y=,则=﹣8.故答案为:﹣8.13.若代数式(m﹣2)x|m|y是关于字母x、y的三次单项式,则m=﹣2.【考点】单项式.【分析】根据单项式的次数的概念求解.【解答】解:∵(m﹣2)x|m|y是关于字母x、y的三次单项式,∴m﹣2≠0,|m|=2,则m≠2,m=±2,故m=﹣2.故答案为:﹣2.14.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有12人.【考点】正数和负数.【分析】根据有理数的加法,可得答案.【解答】解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:1215.假设有足够多的黑白围棋子,按照一定的规律排成一行:请问第2015个棋子是黑的还是白的?答:白.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题的关键是找出黑白棋子的变化规律,然后根据规律来判断第n个棋子的颜色.【解答】解:根据题意得:每6个围棋子的顺序都是一致的,∵2015÷6=335…5,∴如果把6个围棋子看作一个循环,第2015个棋子经过了335个循环,是第336个循环中的第5个棋子,∴根据第5个棋子是白色的,∴第2015个也应该是白色的.故答案为:白.三、解答题(共75分)16.计算题(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣14+(﹣5)2×(﹣)×|0.8﹣1|【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=23﹣17+7﹣16=30﹣33=﹣3;(2)原式=﹣1+25×(﹣)×=﹣1﹣=﹣.17.合并同类项:(1)x3﹣2x2﹣x3+5x2+4;(2)4xy﹣3x2﹣3xy﹣2y+2x2.【考点】合并同类项.【分析】(1)根据合并同类项的法则:系数相加字母部分不变,可得答案;(2)根据合并同类项的法则:系数相加字母部分不变,可得答案.【解答】解:(1)原式=(x3﹣x3)+(﹣2x2+5x2)+4=3x2+4;(2)原式=(4xy﹣3xy)+(﹣3x2+2x2)﹣2y=xy﹣x2﹣2y.18.先化简再求值:(ab+3a2)﹣2b2﹣5ab﹣2(a2﹣2ab),其中:a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=ab+3a2﹣2b2﹣5ab﹣2a2+4ab=a2﹣2b2,当a=1,b=﹣2时,原式=1﹣8=﹣7.19.有理数在数轴上的对应的点如图,化简代数式:|a﹣b|+|a+b|﹣2|c﹣a|【考点】整式的加减;数轴.【分析】根据数轴可以得到a、b、c的关系,从而可以将题目中绝对值的符号去掉,从而可以解答本题.【解答】解:由数轴可得,a<b<0<c,∴|a﹣b|+|a+b|﹣2|c﹣a|=b﹣a﹣(a+b)﹣2(c﹣a)=b﹣a﹣a﹣b﹣2c+2a=﹣2c.20.如图是由一些火彩棒搭成的图案:(1)摆第①个图案用5根火柴棒;摆第②个图案用9根火柴棒;摆第③个图案用13根火柴棒;摆第④个图案用17根火柴棒;(2)按照这种方式摆下去,摆第n个图案用多少根火柴棒?摆第2015个图案需要用多少根火柴棒?【考点】规律型:图形的变化类.【分析】(1)由图直接可得;(2)根据图形中的四个图案知,每个图案都比上一个图案多一个五边形,但是只增加4根火柴,根据此规律来分析,可得答案.【解答】解:(1)由题目得,第①个图案所用的火柴数:1+4=1+4×1=5,第②个图案所用的火柴数:1+4+4=1+4×2=9,第③个图案所用的火柴数:1+4+4+4=1+4×3=13,第④个图案所用的火柴数:1+4+4+4+4=1+4×4=17,故答案为:5,9,13,17;(2)按(1)的方法,依此类推,第n个图案中,所用的火柴数为:1+4+4+…+4=1+4×n=4n+1;故摆第n个图案用的火柴棒是4n+1;当n=2015时,4n+1=8061,故摆第2015个图案需要用8061根火柴棒.21.我市出租车收费标准如下:乘车里程不超过2公里的一律收费5元;乘车里程超过2公里的,除了收费5元外超过部分按每公里1.5元计费,问:(1)如果有人乘出租车行驶了x公里(x>2),那么他应付车费多少元?(列代数式)(2)某乘客乘出租车从上车点到下车点有8公里,那么他应付车费少元?【考点】列代数式;代数式求值.【分析】(1)车费=起步价+超过2千米需出的钱.(2)当x=8时,求出价钱即可.【解答】解:依题意得:(1)5+1.5(x﹣2)=1.5x+2(元).答:他应付车费1.5x+2元.(2)5+1.5×(8﹣2)=14(元).答:他应付车费14元.22.在教师节晚会上,主持人小丽和小蓉进行一场游戏,游戏规则如下:(1)每人每次抽取4张卡片;如果抽取到形如“□”的卡片,那么加上卡片上的数字,如果抽取到形如“○”的卡片,那么减去卡片上的数字.(2)比较两人所抽取的4张卡片计算结果,结果大的为胜,结果小的为大家唱歌.小丽和小蓉所抽取的卡片如图所示.你知道本次游戏结束后谁会为大家唱歌?请说明理由.【考点】有理数的加减混合运算.【分析】根据题中的游戏规则计算出两人的得分,比较即可得到结果.【解答】解:根据题意得:小丽:﹣(﹣)+(﹣5)﹣4=+﹣5﹣4=﹣7;小蓉:﹣2﹣(﹣)+(﹣5)﹣(﹣)=﹣2+﹣5+=﹣7+=﹣6,∵﹣7<﹣6,∴小蓉获胜,小丽为大家唱歌.23.某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售29辆;(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格解答即可.【解答】解:(1)4﹣3﹣5+300=296.(2)21+8=29.(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(﹣3﹣5﹣8﹣6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.故答案为:296;292016年9月21日。