2012年全国中考数学试题分类解析汇编(160套63专 )专题9:一元二次方程
- 格式:doc
- 大小:647.50 KB
- 文档页数:25
1. (2012浙江衢州12分)如图,把两个全等的Rt △AOB 和Rt △COD 分别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线y =ax 2+bx +c 经过O 、A 、C 三点. (1)求该抛物线的函数解析式;(2)点P 为线段OC 上一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由.(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移过程中与△COD 重叠部分面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2. (2012浙江义乌12分)如图1,已知直线y =kx 与抛物线2422y=x +x 273交于点A (3,6). (1)求直线y =kx 的解析式和线段OA 的长度; (2)点P 为抛物线第一象限内的动点,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE =∠BED =∠AOD .继续探究:m 在什么范围时,符合条件的E 点的个数分别是1个、2个?3.(2012江苏苏州10分)如图,已知抛物线()211by=x b+1x+444-(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .⑴点B 的坐标为 ▲ ,点C 的坐标为 ▲ (用含b 的代数式表示);⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;⑶请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.4.(2012福建龙岩)在平面直角坐标系xoy 中, 一块含60°角的三角板作如图摆放,斜边 AB 在x 轴上,直角顶点C 在y 轴正半轴上,已知点A (-1,0).(1)请直接写出点B 、C 的坐标:B ( , )、C ( , );并求经过A 、B 、C 三点的抛物线解析式; (2)现有与上述三角板完全一样的三角板DEF (其中∠EDF =90°,∠DEF =60°),把顶点E 放在线段AB 上(点E 是不与A 、B 两点重合的动点),并使ED 所在直线经过点C . 此时,EF 所在直线与(1)中的抛物线交于第一象限的点M .①设AE =x ,当x 为何值时,△OCE ∽△OBC ; ②在①的条件下探究:抛物线的对称轴上是否存在点P 使△PEM 是等腰三角形,若存在,请求点P 的坐标;若不存在,请说明理由.xyPOC BA5. (2012湖北荆门)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=13,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.6.(2012湖南永州)如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过点(0,﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PH⊥l,H为垂足.(1)求二次函数y=ax2+bx﹣1(a≠0)的解析式;(2)请直接写出使y<0的对应的x的取值范围;(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;(4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由.7. (2012四川广安)如图,在平面直角坐标系xOy 中,AB ⊥x 轴于点B ,AB =3,tan ∠AOB =34,将△OAB 绕着原点O 逆时针旋转90°,得到△OA 1B 1;再将△OA 1B 1绕着线段OB 1的中点旋转180°,得到△OA 2B 1,抛物线y =ax 2+bx +c (a ≠0)经过点B 、B 1、A 2. (1)求抛物线的解析式.(2)在第三象限内,抛物线上的点P 在什么位置时,△PBB 1的面积最大?求出这时点P 的坐标.(3)在第三象限内,抛物线上是否存在点Q ,使点Q 到线段BB 1的距离为22?若存在,求出点Q 的坐标;若不存在,请说明理由.8. (2012四川德阳)在平面直角坐标xOy 中,(如图)正方形OABC 的边长为4,边OA 在x 轴的正半轴上,边OC 在y 轴的正半轴上,点D 是OC 的中点,BE ⊥DB 交x 轴于点E .⑴求经过点D 、B 、E 的抛物线的解析式;⑵将∠DBE 绕点B 旋转一定的角度后,边BE 交线段OA 于点F ,边BD 交y 轴于点G ,交⑴中的抛物线于M (不与点B 重合),如果点M 的横坐标为512,那么结论OF =21DG 能成立吗?请说明理由. ⑶过⑵中的点F 的直线交射线CB 于点P ,交⑴中的抛物线在第一象限的部分于点Q ,且使△PFE 为等腰三角形,求Q 点的坐标.9. (2012青海西宁)如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,O 在x 轴的正半轴上,已知A (0,4)、C (5,0).作∠AOC 的平分线交AB 于点D ,连接CD ,过点D 作DE ⊥CD 交OA 于点E . (1)求点D 的坐标; (2)求证:△ADE ≌△BCD ;(3)抛物线y = 4 5x 2- 245x +4经过点A 、C ,连接AC .探索:若点P 是x 轴下方抛物线上一动点,过点P 作平行于y 轴的直线交AC 于点M .是否存在点P ,使线段MP 的长度有最大值?若存在,求出点P 的坐标;若不存在,请说明理由.10. (2012四川绵阳)如图1,在直角坐标系中,O 是坐标原点,点A 在y 轴正半轴上,二次函数y =ax 2+16x +c 的图象F 交x 轴于B 、C 两点,交y 轴于M 点,其中B (-3,0),M (0,-1)。
2012年全国各地中考数学试题分类解析汇编第一章有理数(1)1、(2012•遵义)-(-2)的值是()A.-2 B.2 C.±2 D.4考点:相反数.专题:存在型.分析:根据相反数的定义可知,-(-2)是-2的相反数,由于-2<0,所以-(-2)=2.解答:∵-(-2)是-2的相反数,-2<0,∴-(-2)=2.故选B.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2、(2012•遵义)据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示()A.2.02×102 B.202×108 C.2.02×109 D.2.02×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将202亿用科学记数法表示为:202亿元=20200000000元=2.02×1010元,故选D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2012•自贡)|-3|的倒数是()A.-3 B.-1/3 C.3 D.1 /3考点:倒数;绝对值.分析:先计算|-3|=3,再求3的倒数,即可得出答案.解答:∵|-3|=3,∴|-3|的倒数是1 /3 .故选:D.点评:本题考查了倒数、绝对值的概念,熟练掌握绝对值与倒数的意义是解题关键.4、(2012•自贡)自贡市约330万人口,用科学记数法表示这个数为()A.330×104 B.33×105 C.3.3×105 D.3.3×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将330万=3300000用科学记数法表示为:3.3×106.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、(2012•重庆)在-3,-1,0,2这四个数中,最小的数是()A.-3 B.-1 C.0 D.2考点:有理数大小比较.分析:画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.解答:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是-3.故选A.点评:本题考查的是有理数的大小比较,利用数形结合比较出有理数的大小是解答此题的关键•.6、(2012•肇庆)计算-3+2的结果是()A.1 B.-1 C.5 D.-5考点:有理数的加法.专题:计算题.分析:根据有理数的加法运算法则计算即可得解.解答: -3+2,=-(3-2),=-1.故选B.点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.7、(2012•肇庆)用科学记数法表示5700000,正确的是()A.5.7×106 B.57×105 C.570×104 D.0.57×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5700000有7位,所以可以确定n=7-1=6.解答: 5 700 000=5.7×106.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.8、(2012•张家界)-2012的相反数是()A.-2012 B.2012 C.-1/2012 D.1 /2012考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:根据概念,(-2012的相反数)+(-2012)=0,则-2012的相反数是2012.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.9、(2012•湛江)2的倒数是()A.2 B.-2 C.1/2 D.-1 /2考点:倒数.分析:直接根据倒数的定义进行解答即可.解答:∵2×1 /2 =1,∴2的倒数是1 /2 .故选C.点评:本题考查的是倒数的定义,即乘积是1的两数互为倒数.10、(2012•湛江)国家发改委已于2012年5月24日核准广东湛江钢铁基地项目,项目由宝钢湛江钢铁有限公司投资建设,预计投产后年产10200000吨钢铁,数据10200000用科学记数法表示为()A.102×105 B.10.2×106 C.1.02×106 D.1.02×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将10200000用科学记数法表示为:1.02×107.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、(2012•玉林)计算:22 =()A.1 B.2 C.4 D.8考点:有理数的乘方.分析:利用有理数乘方的意义求得结果即可.解答:原式=2×2=4,故选C.点评:本题考查了有理数的乘方,属于基本运算,比较简单.12、(2012•益阳)-2的绝对值等于()A.2 B.-2 C.1/2 D.±2考点:绝对值.专题:计算题.分析:根据绝对值的性质,当a是正有理数时,a的绝对值是它本身a;即可解答.解答:根据绝对值的性质,|2|=2.故选A.点评:本题考查了绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.13、(2012•义乌市)-2的相反数是()A.2 B.-2 C.±2 D.-1/2考点:相反数.分析:根据相反数的定义进行解答即可.解答:由相反数的定义可知,-2的相反数是-(-2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.14、(2012•宜昌)如图,数轴上表示数-2的相反数的点是()A.点P B.点Q C.点M D.点N考点:数轴;相反数.分析:根据数轴得出N、M、Q、P表示的数,求出-2的相反数,根据以上结论即可得出答案.解答:从数轴可以看出N表示的数是-2,M表示的数是-0.5,Q表示的数是0.5,P表示的数是2,∵-2的相反数是2,∴数轴上表示数-2的相反数是点P,故选A.点评:本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.15、(2012•宜昌)2012年4月30日,我国在西昌卫星发射中心用“长征三号乙”运载火箭成功发射两颗北斗导航卫星,其中静止轨道卫星的高度约为36000km.这个数据用科学记数法表示为()A.36×103km B.3.6×103km C.3.6×104km D.0.36×105km考点:科学记数法—表示较大的数.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:36000=3.6×104km.故选C.点评:用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).16、(2012•宜宾)-3的倒数是()A.1/3 B.3 C.-3 D.-1 /3考点:倒数.分析:据倒数的定义,互为倒数的两数乘积为1,-3×(-1 /3)=1.解答:根据倒数的定义得:-3×(-1 /3 )=1,因此倒数是-1/ 3 .故选:D.点评:此题考查的是倒数,关键明确倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.需要注意的是负数的倒数还是负数.17、(2012•扬州)-3的绝对值是()A.3 B.-3 C.-3 D.1/3考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:-3的绝对值是3.故选:A.点评:此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18、(2012•扬州)今年我市参加中考的人数大约有41300人,将41300用科学记数法表示为()A.413×102 B.41.3×103 C.4.13×104 D.0.413×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答: 41300=4.13×104,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19、(2012•孝感)我国平均每平方千米的土地上,一年从太阳得到的能量相当于燃烧130000吨煤所产生的能量.130000用科学记数法表示为()A.13×104 B.1.3×105 C.0.13×106 D.1.3×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:130000=1.3×105,故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20、(2012•襄阳)一个数的绝对值等于3,这个数是()A.3 B.-3 C.±3 D.1/3考点:绝对值.分析:根据绝对值的定义即可求解.解答:因为|3|=3,|-3|=3,所以绝对值等于3的数是±3.故选C.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才只有一个为0.21、(2012•襄阳)李阳同学在“百度”搜索引擎中输入“魅力襄阳”,能搜索到与之相关的结果个数约为236 000,这个数用科学记数法表示为()A.2.36×103 B.236×103 C.2.36×105 D.2.36×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:236 000=2.36×105,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22、(2012•咸宁)-8的相反数是()A.-8 B.8 C.-1/8 D.1/8考点:相反数.分析:直接根据相反数的定义进行解答即可.解答:由相反数的定义可知,-8的相反数是-(-8)=8.故选B.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.23、(2012•咸宁)南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法表示为()A.3.6×102 B.360×104 C.3.6×104 D.3.6×106考点:科学记数法—表示较大的数.分析:单位为“万”,换成计数单位为1的数,相当于把原数扩大10000倍,进而把得到的数表示成a×10n的形式,a为3.6,n为整数数位减去1.解答:360万=3600000=3.6×106,故选D.点评:考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.24、(2012•武汉)在2.5,-2.5,0,3这四个数种,最小的数是()A.2.5 B.-2.5 C.0 D.3考点:有理数大小比较.分析:根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可.解答:∵-2.5<0<2.5<3,∴最小的数是-2.5,故选B.点评:本题考查了有理数的大小比较法则的应用,有理数的大小比较法则是:负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.25、(2012•武汉)某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为()A.23×104 B.2.3×105 C.0.23×103 D.0.023×106考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于23万有6位,所以可以确定n=6-1=5.解答:23万=230 000=2.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.26、(2012•潍坊)许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水,若1年按365天计算,这个水龙头1年可以流掉()千克水.(用科学记数法表示,保留3个有效数字)A.3.1×104 B.0.31×105 C.3.06×104 D.3.07×104考点:科学记数法与有效数字.分析:先列式表示1年水龙头滴水的重量,再把结果用科学记数法表示.有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:3.5×24×365=30660=3.066×104≈3.07×104故选D.点评:此题主要考查了有理数的乘法在实际生活中的应用,科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.27、(2012•铜仁地区)从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分之一,299.7万平方公里用科学记数法表示为()平方公里(保留两位有效数字)A.3×106 B.0.3×107 C.3.0×106 D.2.99×106考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于299.7万有7位,所以可以确定n=7-1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:299.7万=2.997×106≈3.0×106.故选:C.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.28、(2012•天门)2012的绝对值是()A.2012 B.-2012 C.1/2012 D.-1/2012考点:绝对值.专题:计算题.分析:根据绝对值的性质直接解答即可.解答:∵2012是正数,∴|2012|=2012,故选A.点评:本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.29、(2012•天门)吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数大约为600万,数据600万用科学记数法表示为()A.0.6×107 B.6×106 C.60×105 D.6×105考点:科学记数法—表示较大的数.分析:首先把600万化为6000000,再用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:600万=6000000=6×106,故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.30、(2012•天津)据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET”域名注册量约为560000个,居全球第三位,将560000用科学记数法表示应为()A.560×103 B.56×104 C.5.6×105 D.0.56×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于560000有6位,所以可以确定n=6-1=5.解答:560 000=5.6×105.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.31、(2012•泰州)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×105 B.3.12×106 C.31.2×105 D.0.312×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将3120000用科学记数法表示为:3.12×106.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.32、(2012•泰安)下列各数比-3小的数是()A.0 B.1 C.-4 D.-1考点:有理数大小比较.分析:首先判断出1>-3,0>-3,求出每个数的绝对值,根据两负数比较大小,其绝对值大的反而小,求出即可.解答:根据两负数比较大小,其绝对值大的反而小,正数都大于负数,零大于一切负数,∴1>-3,0>-3,∵|-3|=3,|-1|=1,|-4|=4,∴比-3小的数是负数,是-4.故选C .点评:本题考查了有理数的大小比较法则和绝对值等知识点的应用,注意:正数都大于负数,两负数比较大小,其绝对值大的反而小,题型较好,但是一道比较容易出错的题目.33、(2012•泰安)已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为( )A .21×104-千克B .2.1×106-千克C .2.1×105-千克D .21×104-千克考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答: 0.000021=2.1×105-; 故选:C .点评:本题考查了用科学记数法表示较小的数,一般形式为a ×10n -,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.34、(2012•台州)计算-1+1的结果是( )A .1B .0C .-1D .-2考点:有理数的加法.专题:常规题型.分析:根据互为相反数的和等于0解答.解答: -1+1=0.故选B .点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.35、(2012•台湾)计算(-100051)×(5-10)之值为何?( )A .1000B .1001C .4999D .5001考点:有理数的乘法.专题:计算题.分析:将-100051化为-(1000+51),然后计算出5-10,再根据分配律进行计算. 解答:原式=-(1000+51)×(-5)=(1000+51)×5 =1000×5+51×5=5000+1=5001.故选D.点评:本题考查了有理数的乘法,灵活运用分配律是解题的关键.36、(2012•台湾)如图是利用短除法求出三数8、12、18的最大公因子的过程.利用短除法,求出这三数的最小公倍数为何?()A.12 B.72 C.216 D.432考点:有理数的除法.专题:常规题型.分析:继续完善短除法,然后根据最小公倍数的求法,把所有的数相乘即可.解答:如图,完成短除法如下最小公倍数为2×2×3×2×1×3=72.故选B.点评:本题考查了短除法求最小公倍数的方法,属于小学内容,比较简单,完善短除过程是解题的关键.37、(2012•台湾)已知某公司去年的营业额为四千零七十亿元,则此营业额可用下列何者表示?()A.4.07×109元 B.4.07×1010元 C.4.07×1011元 D.4.07×1012元考点:科学记数法—表示较大的数.分析:首先将四千零七十亿元可写成407000000000,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将四千零七十亿元可写成407000000000,407000000000=4.07×1011,故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38、(2012•随州)湿地旅游爱好者小明了解到鄂东南某市水资源总量为42.43亿立方米,其中42.43亿用科学记数法可表示为()A.42.43×109 B.4.423×108 C.4.243×109 D.0.423×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:根据42.43亿=4243000000,用科学记数法表示为:4.243×109.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.39、(2012•宿迁)-8的绝对值是()A.8 B.1/8 C.-1/8 D.-8考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答: -8的绝对值为|-8|=8.故选A.点评:本题考查了绝对值的性质,熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.40、(2012•沈阳)沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为()A.3.04×105 B.3.04×106 C.30.4×105 D.0.304×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将3040000用科学记数法表示为3.04×106.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.41、(2012•深圳)第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高,将数143 300 000 000用科学记数法表示为()A.1.433×1010 B.1.433×1011 C.1.433×1012 D.0.1433×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于143 300 000 000有12位,所以可以确定n=12-1=11.解答:143 300 000 000=1.433×1011.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.42、(2012•绍兴)3的相反数是()A.3 B.-3 C.1/3 D.-1/3考点:相反数.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:根据相反数的概念及意义可知:3的相反数是-3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.43、(2012•绍兴)据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108 B.46×108 C.4.6×109 D.0.46×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答: 4 600 000 000用科学记数法表示为:4.6×109.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.44、(2012•陕西)如果零上5℃记作+5℃,那么零下7℃可记作()A.-7℃ B.+7℃ C.+12℃ D.-12℃考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:∵“正”和“负”相对,∴零上5℃记作+5℃,则零下7℃可记作-7℃.故选A.点评:此题考查了正数与负数的定义.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.45、(2012•山西)为了实现街巷硬化工程高质量“全覆盖”,我省今年1-4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010 B.92.7×109 C.9.27×1011 D.9.27×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.46、(2012•日照)-5的相反数是()A.-5 B.-1/5 C.5 D.1/5考点:相反数.分析:根据相反数的定义解答.解答:只有符号不同的两个数称为互为相反数,则-5的相反数为5,故选C.点评:本题考查了相反数的定义,只有符号不同的两个数互为相反数,a的相反数是-a.47、(2012•日照)据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010 B.0.194×1010 C.19.4×109 D.1.94×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.48、(2012•泉州)-7的相反数是()A.-7 B.7 C.-1/7 D.1/7考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:根据概念,(-7的相反数)+(-7)=0,则-7的相反数是7.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.49、(2012•衢州)下列四个数中,最小的数是( ) A .2 B .-2 C .0 D .-1/2 考点:有理数大小比较. 专题:探究型.分析:根据有理数比较大小的法则进行比较即可. 解答:∵2>0,-2<0,-1/2 <0, ∴可排除A 、C ,∵|-2|=2,|-1 /2 |=1 2 ,2>1/ 2 , ∴-2<-1/ 2 . 故选B .点评:本题考查的是有理数的大小比较,熟知正数都大于0; 负数都小于0; 正数大于一切负数; 两个负数,绝对值大的其值反而小是解答此题的关键.50、(2012•衢州)衢州市是国家优秀旅游城市,吸引了众多的海内外游客.据衢州市2011年国民经济和社会发展统计报显示,全年旅游总收入达121.04亿元.将121.04亿元用科学记数法可表示为( )A .12.104×109元B .12.104×1010元C .1.2104×1010元D .1.2104××1011元 考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:将121.04亿用科学记数法表示为:121.04亿元=12104000000元=1.2104×1010元, 故选;C .点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 51、(2012•青岛)-2的绝对值是( )A .-1/2B .-2C .1 /2D .2 考点:绝对值.分析:根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则-2的绝对值就是表示-2的点与原点的距离.解答: |-2|=2, 故选:D .点评:此题主要考查了绝对值,关键是掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.52、(2012•黔西南州)-141的倒数是( ) A .-45 B .45 C .-54 D .54考点:倒数.。
2012年全国各地50份中考数学试题分类解析汇编 第1章有理数一、选择题1.(2012某某)3的相反数是A .-3B .13C .3 D .-13考点:相反数. 专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(2012某某)今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为A .48.9×104B .4.89×105C 9×104D 9×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3、(2012•某某)实数3的倒数是( ) A .﹣ B . C .﹣3 D .3 考点: 实数的性质。
专题: 常规题型。
分析: 根据乘积是1的两个数互为倒数解答.解答:解:∵3×=1,∴3的倒数是.故选B.点评:本题考查了实数的性质,熟记倒数的定义是解题的关键.4.(2012某某某某)2的倒数是()A.2B.﹣2C.D.﹣解析::∵2×=1,∴2的倒数是.故选C.5. (2012某某某某)国家发改委已于2012年5月24日核准某某某某钢铁基地项目,项目由宝钢某某钢铁某某投资建设,预计投产后年产10200000吨钢铁,数据10200000用科学记数法表示为()A.102×105B.10.2×106C.1.02×106D.1.02×107解析:将10200000用科学记数法表示为:1.02×107.故选:D.6.(2012某某)﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣考点:绝对值。
2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。
【考点】算术平方根,估算无理数的大小。
【分析】∵一个正方形的面积是15,∵9<15<16<4。
故选B 。
2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。
【考点】抛物线与x 轴的交点。
【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k 。
设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC =B 1,0),∴31,k k ==③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k == 。
∴能使△ABC 为等腰三角形的抛物线的条数是3条。
故选B 。
3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。
【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。
2012年全国中考数学试题分类解析汇编专题11:方程(组)的应用一、选择题1. (2012宁夏区3分)小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16 分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为【】A.3x5y1200x y16+=⎧⎨+=⎩B.35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩C.3x5y 1.2x y16+=⎧⎨+=⎩D.35x y12006060x y16⎧+=⎪⎨⎪+=⎩【答案】B。
【考点】由实际问题抽象出二元一次方程组。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,上坡用的时间+下坡用的时间=16。
把相关数值代入(注意单位的通一),得35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩。
故选B。
2. (2012宁夏区3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为【】.A.4030201.5x x-=B.403020x 1.5x-=C.304020x 1.5x-=D.3040201.5x x-=【答案】B。
【考点】由实际问题抽象出分式方程。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:甲种雪糕数量比乙种雪糕数量多20根。
而甲种雪糕数量为40x,乙种雪糕数量为301.5x。
(数量=金额÷价格)从而得方程:403020x 1.5x-=。
故选B。
3. (2012广东湛江4分)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是【】A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500【答案】D。
2012年全国中考数学压轴题分类解析汇编专题9:几何综合问题(答案部分)24. (2012湖北恩施12分)【答案】解:(1)证明:连接OB ,∵OB=OA,CE=CB ,∴∠A=∠OBA,∠CEB=∠ABC。
又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°。
∴∠OBA+∠ABC=90°。
∴OB⊥BC。
∴BC 是⊙O 的切线。
(2)连接OF ,AF ,BF ,∵DA=DO,CD⊥OA,∴△OAF 是等边三角形。
∴∠AOF=60°。
∴∠ABF=12∠AOF=30°。
(3)过点C 作CG⊥B E 于点G ,由CE=CB , ∴EG=12BE=5。
易证Rt△ADE∽Rt△CGE, ∴sin∠ECG=sin∠A=513, ∴EG 5CE ==13sin ECG 13=∠。
∴CG 12===。
又∵CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE 得AD DE CG GE =,即AD 2125=,解得24AD 5=。
∴⊙O 的半径为2AD=485。
【考点】等腰(边)三角形的性质,直角三角形两锐角的关系,切线的判定,圆周角定理,勾股定理,相似三角形的判定和性质,锐角三角函数定义。
【分析】(1)连接OB ,有圆的半径相等和已知条件证明∠OBC=90°即可证明BC 是⊙O 的切线。
(2)连接OF ,AF ,BF ,首先证明△OAF 是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF 的度数。
(3)过点C 作CG⊥BE 于点G ,由CE=CB ,可求出EG=12BE=5,由Rt△ADE∽Rt△CGE 和勾股定理求出DE=2,由Rt △ADE∽Rt△CGE 求出AD 的长,从而求出⊙O 的半径。
25. (2012黑龙江哈尔滨10分)【答案】解:(1)证明:∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°。
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第十一章 因式分解(分3个考点精选48题)11.1 提公因式法(2012北京,9,4)分解因式:269mn mn m ++= .【解析】原式=m (n 2+6n +9)=m (n +3)2【答案】m (n +3)2【点评】本题考查了提公因式及完全平方的知识点。
(2012广州市,13, 3分)分解因式a 2-8a 。
【解析】提取公因式即可分解因式。
【答案】:a(a -8).【点评】本题考查了因式分解的方法。
比较简单。
(2012浙江省温州市,5,4分)把24a a -多项式分解因式,结果正确的是( )A. ()4a a -B. (2)(2)a a +-C. (2)(2)a a a +-D. 2(2)4a --【解析】分解因式按“一提二套”原则:有公因式的先提取公因式,再套用平方差公式或完全平方公式,本题可直接提公因式.【答案】A【点评】有公因式的要先提取公因式,然后再考虑运用平方差公式或完全平方公式进行分解.因式分解要分解到每个多项式因式都不能再分解为止,此题较基础.(湖南株洲市3,9)因式分解:22a a -= .【解析】22(2)a a a a -=-【答案】(2)a a -【点评】本题主要考查因式分解的常用方法及步骤:先提取公因式,再运用公式法进行分解. (2012四川成都,1l ,4分)分解因式:25x x -=________.解析:因式分解的基本方法是提取公因式法、公式法、分组分解法。
本题只有两项,所以,只能用提取公因式法和平方差公式法。
观察可知有公因式x ,提取公因式法分解为x(x-5)。
答案:x(x-5)。
点评:公因式的确定方法是:系数是各项系数的最大公约数,字母是各项都有的字母,指数取最小。
(2012湖北随州,11,4分)分解因式:249x -=______________________。
解析:22249(2)3(23)(23)x x x x -=-=+-。
2012年全国各地中考数学真题分类汇编第13章 二次函数一、选择题1.(2012菏泽)已知二次函数2y ax bx c =++的图像如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图像大致是( )A .B .C .D .考点:二次函数的图象;一次函数的图象;反比例函数的图象。
解答:解:∵二次函数图象开口向下,∴a <0,∵对称轴x=﹣<0, ∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数a y x=位于第二四象限, 纵观各选项,只有C 选项符合.2.(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个考点: 二次函数的性质。
专题: 常规题型。
分析: 结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.解答: 解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;综上所述,说法正确的有④共1个.故选A .点评: 本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.(2012•广州)将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )A .y=x 2﹣1B .y=x 2+1C .y=(x ﹣1)2D .y=(x+1)2考点: 二次函数图象与几何变换。
专题: 探究型。
分析: 直接根据上加下减的原则进行解答即可.解答: 解:由“上加下减”的原则可知,将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x 2﹣1.故选A .点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.(2012泰安)将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--考点:二次函数图象与几何变换。
2012中考数学试题解析继承发展创新西安铁一中初三数学备课组组长高级教师王丽莉数学今年的数学试卷,紧贴《课程标准》与《中考说明》,在重基础、重能力、重过程、重方法、重思维品质考察的基础上,力求稳定中有变化,变化中有发展,发展中有创新。
主要体现在以下几个方面:相对稳定——试卷的结构、题量、分值、考查内容、考查模式及各题位所考查的知识点,延续了近几年的命题风格,难易程度与往年相当,试题起点低,入口宽,重视基础,所涵盖的知识、方法与过去也大致相同,说明我省的考题趋于成熟稳定,并具有可继承性和可发展性的特点,考生复习时有章可循,有据可依,见到试题倍感亲切,有助于克服紧张心理,考出真正水平。
凸显变化——根据发展的需要,试题继承了以往全面考查“四基”的特点,更加突出了对核心知识与能力的考察,如在选择题和解答题中,多次不同程度涉及相似三角形知识,在试题的制高点渗透了位似图形,第10题、16题、25题均从不同程度考察了最优化问题,在填空题中增设开放的结论,加大了有助于考生持续发展的内容的考察力度,和去年相比,试题的跨度也有适度加大,更有助于发挥试题的甄别与选拔的功能。
和谐人文——试题图文并茂,表述简约,对重点字词加着重符号,温馨提示,体现出试题的人文关怀;应用题多以群众喜闻乐见的内容为背景,如空气质量、借阅图书等,贴近生活热点,积极向上,体现出试题独特的教育价值取向;第13题设计了自主选择,我市多数学生选择用计算器直接计算,爽快、温和的题感,愉悦的氛围,兼顾了不同地区考生的差别,增加了考生的自信心。
这也是今年我省试题的创新点和亮点之一。
立足发展——试题延伸与发展的生长点,在18题、20题、25题中均有不同程度的体现。
18题增设了运用基本相似图形的简单计算,20题则在去年对测量问题直接考察的基础上,延伸为对方程、几何模型和转化能力的综合考察,25题既求最小值,又求最大值,增加了量化的维度,同时也加大了探究的深度与广度;试题的创新点还表现在试题的原创性,如16题的学科间综合,24题的在阅读理解中经历“再发现”和“再创造”的过程等。
2012年全国中考数学试题分类解析汇编(159套63专题)专题9:一元二次方程一、选择题1. (2012天津市3分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x 1≠x2,有下列结论:①x1=2,x2=3;②1m4>-;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】(A)0 (B)1 (C)2 (D)3【答案】C【考点】抛物线与x轴的交点,一元二次方程的解,一元二次方程根的判别式和根与系数的关系。
【分析】①∵一元二次方程实数根分别为x1、x2,∴x1=2,x2=3,只有在m=0时才能成立,故结论①错误。
②一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,∵方程有两个不相等的实数根x1、x2,∴△=b2-4ac=(-5)2-4(6-m)=4m+1>0,解得:1m4>-。
故结论②正确。
③∵一元二次方程x2-5x+6-m=0实数根分别为x1、x2,∴x1+x2=5,x1x2=6-m。
∴二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3)。
令y=0,即(x-2)(x-3)=0,解得:x=2或3。
∴抛物线与x轴的交点为(2,0)或(3,0),故结论③正确。
综上所述,正确的结论有2个:②③。
故选C。
2. (2012广东佛山3分)用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是【】 A.(x-1)2=2 B.(x-1)2=4 C.(x-1)2=1 D.(x-1)2=7【答案】B。
【考点】用配方法解一元二次方程。
【分析】由x2-2x-3=0移项得:x2-2x=3,两边都加上1得:x2-2x+1=3+1,即(x-1)2=4。
则用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是(x -1)2=4。
故选B 。
3. (2012江苏淮安3分)方程032=-x x 的解为【 】A 、0=xB 、3=xC 、3,021-==x xD 、3,021==x x 【答案】D 。
【考点】方程的解,因式分解法解一元二次方程。
【分析】解出方程与所给选项比较即可:()212303003003x x x x x x x x -=⇒-=⇒=-=⇒==,,。
故选D 。
4. (2012福建莆田4分)方程()()x 1x 20-+=的两根分别为【 】A .1x =-1,2x =2B .1x =1,2x =2C .1x =―l,2x =-2D .1x =1,2x =-2 【答案】D 。
【考点】因式分解法解一元二次方程。
【分析】(x -1)(x +2)=0,可化为:x -1=0或x +2=0,解得:x 1=1,x 2=-2。
故选D 。
5. (2012湖北武汉3分)若x 1、x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是【 】A .-2B .2C .3D .1 【答案】C 。
【考点】一元二次方程根与系数的关系。
【分析】根据一元二次方程根与系数的关系,得x 1+x 2=3。
故选C 。
6. (2012湖北荆门3分)用配方法解关于x 的一元二次方程x 2﹣2x ﹣3=0,配方后的方程可以是【 】A .(x ﹣1)2=4B .(x+1)2=4C .(x ﹣1)2=16D .(x+1)2=16 【答案】A 。
【考点】配方法。
【分析】把方程x 2﹣2x ﹣3=0的常数项移到等号的右边,得到x 2﹣2x=3,方程两边同时加上一次项系数一半的平方,得到x 2﹣2x+1=3+1,即(x﹣1)2=4。
故选A。
7. (2012湖北天门、仙桃、潜江、江汉油田3分)如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为【】A.3 B.﹣3 C.13 D.﹣13 【答案】B。
【考点】一元二次方程根与系数的关系。
【分析】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1+x2=﹣4,x1x2=a。
∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+3=0,解得,a=﹣3。
故选B。
8. (2012湖北荆州3分)用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是【】A.(x﹣1)2=4 B.(x+1)2=4 C.(x﹣1)2=16 D.(x+1)2=16【答案】A。
【考点】配方法。
【分析】把方程x2﹣2x﹣3=0的常数项移到等号的右边,得到x2﹣2x=3,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=3+1,即(x﹣1)2=4。
故选A。
9. (2012湖北襄阳3分)如果关于x的一元二次方程2kx10-+=有两个不相等的实数根,那么k的取值范围是【】A.k<12B.k<12且k≠0 C.﹣12≤k<12D.﹣12≤k<12且k≠0【答案】D。
【考点】一元二次方程定义和根的判别式,二次根式有意义的条件。
【分析】由题意,根据一元二次方程二次项系数不为0定义知:k≠0;根据二次根式被开方数非负数的条件得:2k+1≥0;根据方程有两个不相等的实数根,得△=2k+1﹣4k>0。
三者联立,解得﹣12≤k<12且k≠0。
故选D。
10. (2012湖南常德3分)若一元二次方程2x2x m0++=有实数解,则m的取值范围是【】A. m1≤- B. m1≤ C. m4≤ D.m1 2≤【答案】B。
【考点】一元二次方程根的判别式。
【分析】由一元二次方程有实数根,得到根的判别式大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值范围:∵一元二次方程2x2x m0++=有实数解,∴△=b2-4ac=22-4m≥0,解得:m≤1。
∴m的取值范围是m≤1。
故选B。
11. (2012湖南株洲3分)已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为【】A.b=﹣1,c=2 B.b=1,c=﹣2 C.b=1,c=2 D.b=﹣1,c=﹣2 【答案】D。
【考点】一元二次方程根与系数的关系。
【分析】∵关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,∴x1+x2=b=1+(﹣2)=﹣1,x1•x2=c=1×(﹣2)=﹣2。
∴b=﹣1,c=﹣2。
故选D。
12. (2012四川攀枝花3分)已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x 12x2+x1x22的值为【】A.﹣3 B. 3 C.﹣6 D. 6【答案】A。
【考点】一元二次方程根与系数的关系,求代数式的值。
【分析】由一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,根据一元二次方程根与系数的关系得,x1+x2=3,x1x2=―1,∴x12x2+x1x22=x1x2(x1+x2)=(-1)·3=-3。
故选A。
13. (2012四川广安3分)已知关于x的一元二次方程(a﹣l)x2﹣2x+l=0有两个不相等的实数根,则a的取值范围是【】A.a>2 B.a<2 C.a<2且a≠l D.a<﹣2【答案】C。
【考点】一元二次方程根的判别式,一元二次方程定义。
【分析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围,结合一元二次方程定义作出判断:∵由△=4﹣4(a﹣1)=8﹣4a>0解得:a<2。
又根据一元二次方程二次顶系数不为0的定义,a﹣1≠0,∴a<2且a≠1。
故选C。
14. (2012四川泸州2分)若关于x的一元二次方程x2-4x + 2k = 0有两个实数根,则k的取值范围是【】A、k≥2B、k≤2C、k>-2D、k<-2【答案】B。
【考点】一元二次方程根的判别式,解一元一次不等式。
【分析】由于已知方程有两个实数根,根据一元二次方程的根与判别式的关系,建立关于k 的不等式,解不等式即可求出k的取值范围:∵a=1,b=-4,c=2k,且方程有两个实数根,∴△=b2-4ac=16-8k≥0,解得,k≤2。
故选B。
15. (2012四川南充3分)方程x(x-2)+x-2=0的解是【】(A)2 (B)-2,1 (C)-1 (D)2,-1【答案】D。
【考点】因式分解法解一元二次方程。
【分析】先利用提公因式因式分解,再化为两个一元一次方程,解方程即可:由x(x﹣2)+(x-2)=0,得(x-2)(x+1)=0,∴x-2=0或x+1=0,∴x1=2,x2=-1。
故选D。
16. (2012贵州安顺3分)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是【】A.1 B.﹣1 C.0 D.无法确定【答案】B。
【考点】一元二次方程的解,一元二次方程的定义。
【分析】根据题意得:(m﹣1)+1+1=0,解得:m=﹣1。
故选B。
17. (2012山东东营3分)方程()21k1x=04--有两个实数根,则k的取值范围是【】.A . k≥1B . k≤1 C. k>1D . k<1【答案】D 。
【考点】一元二次方程的意义和根的判别式。
【分析】当k=1时,原方程不成立,故k≠1,当k≠1时,方程()21k 1x =04--为一元二次方程。
∵此方程有两个实数根,∴221b 4ac 4k 11k k 122k 04-=--⨯-⨯=---=-≥(()(),解得:k≤1。
综上k 的取值范围是k <1。
故选D 。
18. (2012山东莱芜3分)已知m 、n 是方程x 2+22x +1=0的两根,则代数式m 2+n 2+3mn 的值为【 】A .9B .±3 C.3 D .5 【答案】C 。
【考点】一元二次方程根与系数的关系,求代数式的值。
【分析】∵m、n 是方程x 2+22x +1=0的两根,∴m+n=-mn=1。
故选C 。
19. (2012山东临沂3分)用配方法解一元二次方程245x x -=时,此方程可变形为【 】 A . ()221x += B . ()221x -= C . ()229x +=D . ()229x -=【答案】D 。
【考点】配方法解一元二次方程。
【分析】()222454+45+42=9x x x x x -=⇒-=⇒-。
故选D 。
20. (2012山东日照4分)已知关于x 的一元二次方程(k -2)2x 2+(2k +1)x +1=0有两个不相等的实数根,则k 的取值范围是【 】 (A) k>34且k≠2 (B)k≥34且k≠2 (C) k >43且k≠2 (D)k≥43且k≠2【答案】C 。