2009综述-TO化合物的纳米结构和在锂离子电池中应用
- 格式:pdf
- 大小:2.74 MB
- 文档页数:11
纳米材料在电池中的应用【摘要】纳米材料在电池中的应用具有重要意义。
在电池制造领域,纳米材料的应用可以大大提高电池性能,增加电池的存储容量,提高电池的循环寿命,降低电池的成本。
纳米材料还可以应用于不同类型的电池中,包括锂离子电池、钠离子电池等。
纳米材料在电池中的广泛应用前景显示了其为电池技术发展带来的新机遇,为推动电池技术的进步和应用奠定了基础。
随着纳米材料技术的不断发展,电池性能将得到进一步提升,为电动汽车、手机等设备提供更加高效和稳定的能源支持。
【关键词】关键词:纳米材料、电池、性能、存储容量、循环寿命、成本、应用、技术发展、机遇、广泛应用、新机遇1. 引言1.1 纳米材料在电池中的应用纳米材料在电池中的应用已经成为当前研究的热点之一。
随着纳米科技的发展,纳米材料在电池中的应用呈现出了巨大的潜力和优势。
纳米材料具有特殊的表面积和电化学活性,能够显著提高电池的性能。
由于纳米材料的微观结构和性质的特殊优势,可以有效增加电池的存储容量,提高电池的循环寿命。
纳米材料还可以降低电池的成本,提高电池的能量密度和电荷速度。
纳米材料在不同类型电池中的应用也具有广泛的前景,包括锂离子电池、钠离子电池、锌空气电池等。
纳米材料在电池中的应用有望为电池技术的发展带来新的机遇和挑战,展现出了巨大的潜力和广阔的应用空间。
纳米材料在电池中的广泛应用前景令人期待,为电池技术的不断进步和创新注入了新的活力和动力。
2. 正文2.1 纳米材料提高电池性能纳米材料在电池中的应用正文部分:随着科技的不断进步,纳米材料在电池中的应用也日益广泛。
纳米材料具有较大的比表面积和独特的电化学性质,可以显著提高电池性能。
纳米材料具有更高的导电性和热稳定性,可以有效降低电池内部电阻,提高电池的充放电效率和功率密度。
纳米材料能够提供更多的活性位点,从而增加电极表面与电解质的接触面积,提高电化学反应速率,进而提高电池的能量密度和循环稳定性。
纳米材料还能有效抑制电池内部的极化现象,提高电池的循环寿命和使用安全性。
河南科技Journal of Henan Science and Technology自从Osaka 及Barousse 等[1,2]提出SnS 2作为锂离子电池负极材料以来,锡硫化合物由于具有较低的放电平台和较高的理论比容量而引起研究者的关注,成为锂离子负极材料研究的热点。
SnS 2具有层状的六边形CdI 2结构(a=0.3648nm ,c=0.5899nm ),两层S 原子将Sn 原子夹于其中(类“三明治夹心”结构),邻近的硫层之间靠范德华力结合,这种层状结构有利于锂离子的嵌入和脱出,预示着SnS 2作为锂离子电池负极材料具有良好前景。
SnS 2与Li 反应的机理分为两步:首次放电,Li +嵌入SnS 2形成金属Sn 和无定形的Li 2S ,该过程不可逆,无定形的Li 2S 可以作为惰性矩阵围绕在活性的Sn 晶粒周围;在之后的充放电过程中,Li +可逆的从生成的金属Sn 中嵌入和脱出。
与块状结构材料相比,纳米结构材料在电学、光学、磁学等研究领域都展示出优越的性能[3]。
迄今为止,已有多种不同纳米结构的SnS 2被合成出来,例如,类富勒烯结构的纳米颗粒、纳米线、纳米带、纳米板、3D-花状结构、芦荟结构、叶状结构等。
本文系统性的介绍了不同纳米结构SnS 2的制备方法及其作为锂离子电池负极材料在国内外的最新研究进展。
1纳米结构SnS 2的制备方法纳米结构SnS 2的合成方法有很多,包括:机械球磨法、水热法、化学浴沉积法、分子束取向附生法、化学气相沉积法、固态反应法等,但是其中有些制备方法需要高温高压、有毒的有机试剂、繁琐的步骤,不利于SnS 2的制备。
下面详细讲述纳米结构SnS 2的常用制备方法。
1.1一维纳米结构SnS 2的制备一维纳米结构包括纳米线、纳米棒、纳米带、纳米纤维、纳米管等,低维度纳米结构材料有利于理解量子尺度收稿日期:2015-5-18作者简介:吴琼(1988.7-),女,硕士研究生,研究实习员,研究方向:电化学。
纳米材料在新能源领域的研究进展随着环保意识的提高和全球能源危机的加剧,新能源技术的开发与应用越来越受到人们的重视。
纳米技术作为当今前沿领域之一,已经在新能源领域展现出了强大的应用潜力。
本文将对纳米材料在新能源领域的研究进展进行探讨。
一、纳米材料在太阳能电池中的应用太阳能电池是目前应用最为广泛的新能源设备之一。
纳米技术可以通过制备纳米粒子、纳米棒和膜的形式在太阳能电池中实现新能源的高效转换。
例如,通过在硅太阳能电池表面或内部引入纳米结构,可以增加其自吸收强度和提高载流子分离效率,大大提高太阳能电池的转换效率。
同时,已有研究表明,在天然染料敏化太阳能电池中,采用纳米结构材料作为电子传输路径会显著提高能量转换效率。
此外,还有人尝试使用纳米量子点作为太阳能电池中的光吸收剂,将太阳能转化成电流产生更高的效率。
二、纳米材料在燃料电池中的应用燃料电池是一种能够将燃料与氧气反应生成能量的设备,其比传统燃烧产生更加清洁的能源,具有广泛的应用前景。
纳米技术可以提高燃料电池催化剂的活性,降低反应温度和提高催化剂的稳定性。
例如,通过制备高分散、高表面积的纳米复合催化剂,可以提高燃料电池的功率密度和催化剂的使用寿命。
此外,在固态氧化物燃料电池中,通过在氧化物电解质膜表面制备纳米枝状结构,能够显著提高电池的性能和长期稳定性。
三、纳米材料在锂离子电池中的应用锂离子电池是现代电子设备中广泛使用的一种电池,其能够以高比能量、高比功率和长寿命的方式存储和释放电能。
纳米技术在锂离子电池中的应用主要涉及锂离子电池正极材料和负极材料的制备。
例如,采用纳米碳管、纳米金属氧化物和纳米结构的锂离子电池正极材料,能够提高电池的能量密度和功率密度。
此外,在锂离子电池负极材料方面,纳米技术能够有效地提高其容量和增加其循环寿命。
四、纳米材料在光催化水分解中的应用光催化水分解技术是利用太阳能光照与催化剂共同作用将水分解为氢气和氧气的技术。
纳米技术能够提高催化剂的光催化活性和稳定性,增强其吸收光子和促进光生电荷的分离与传输。
纳米材料在电池制造中的应用研究随着科技的迅速发展,电池作为现代生活中不可或缺的能源供应装置,其性能的不断提升已成为人们研究的焦点。
而纳米材料在电池制造中的应用研究,恰好是一种可以增强电池性能的有效途径。
纳米材料具有较高的比表面积和量子效应,可以大幅度提高电池的电容量、循环寿命和充电速度。
以下将针对纳米材料在电池制造中的应用进行探讨。
一、纳米材料在锂离子电池中的应用研究纳米材料在锂离子电池的正、负极材料中应用已被广泛研究。
锂离子电池的正极主要是由钴、镍、锰、铁等金属氧化物或氧化磷酸锂等化合物组成。
其中,纳米结构的金属氧化物如二氧化钛、氧化钴、氧化镍等被广泛研究。
纳米结构的金属氧化物具有较大的比表面积和良好的离子传输性能,有助于提高锂离子电池的容量、循环寿命和功率密度。
以二氧化钛为例,纳米二氧化钛在锂离子电池正极材料中具有较高的比表面积和良好的化学稳定性,可提高电池的储能性能和充电速度。
研究发现,相比于微米级二氧化钛,纳米二氧化钛在锂离子电池的充放电过程中具有更好的电化学性能。
而锂离子电池的负极材料主要是由碳基材料如石墨、纳米晶体硅、碳纳米管、氧化石墨等组成。
其中,纳米碳材料具有较高的电容量、导电性能和循环寿命,能够大幅度提高锂离子电池的容量和充电速度。
研究表明,纳米晶体硅作为锂离子电池的负极材料,可实现极高的锂离子比容量,远远超出了目前市场上所使用的其他负极材料。
二、纳米材料在钠离子电池中的应用研究纳米材料在钠离子电池的正、负极材料中也有着广泛的应用研究。
目前,国内外学者已经针对纳米材料在钠离子电池中的应用进行了大量研究。
钠离子电池的正极材料主要是由钴、磷酸铁、锰酸钠等化合物组成。
其中,纳米结构的化合物材料具有较大的比表面积和较好的离子传输性能,可提高钠离子电池的储能性能和充电速度。
研究表明,纳米结构的锰酸钠材料作为钠离子电池正极材料,其比容量可达到可使人满意的水平,缩短充放电时间,延长电池使用寿命。
纳米材料在能源存储与转换领域中的应用近年来,纳米材料在能源存储与转换领域中的应用引起了广泛关注。
纳米材料具有独特的物理、化学和电子特性,使其成为能源存储与转换领域的理想候选材料。
本文将重点探讨纳米材料在锂离子电池、太阳能电池和燃料电池等能源技术中的应用。
首先,纳米材料在锂离子电池中的应用已经取得了显著进展。
锂离子电池是目前最为广泛应用的可充电电池技术,其性能关键在于正负极材料。
纳米材料的小尺寸效应、高比表面积和容易调控的结构使其在锂离子电池中表现出良好的性能。
例如,纳米结构的二氧化钛可以作为锂离子电池的负极材料,具有优异的离子扩散能力和高电容量,能够提高电池的循环寿命和比能量密度。
此外,纳米材料还可以用于正极材料的改性,如纳米结构的锂离子正极材料(如锂铁磷酸盐和锰酸锂)能够提供更高的电容量和更稳定的循环性能。
其次,纳米材料在太阳能电池中的应用也受到了广泛关注。
太阳能电池是转化太阳能为电能的一种可再生能源技术。
通过吸收光能,纳米材料可以提供充足的载流子,从而增加太阳能电池的效率。
例如,纳米颗粒的二氧化钛可以作为染料敏化太阳能电池(DSSC)的光电转换材料。
其具有高比表面积和良好的电子传输,能够有效地捕获光子和提供电荷传输通道,从而提高太阳能电池的光电转化效率。
此外,纳米材料还可以用于薄膜太阳能电池的制备,如纳米线阵列材料可以提供更大的光吸收面积和更高的光电转化效率。
最后,纳米材料在燃料电池中的应用也显示出巨大潜力。
燃料电池是一种通过氢气、甲醇等燃料进行电化学反应产生电能的设备。
纳米材料的高比表面积和良好的导电性使其成为燃料电池的理想催化剂。
例如,纳米金属颗粒可以用作负载在电极表面的催化剂,提供更多的活性位点和更高的催化活性,从而增强燃料电池的性能。
此外,纳米材料还可以用于电子导体材料的改性,如纳米结构的碳材料(如碳纳米管和石墨烯)具有良好的导电性和电化学活性,能够提高燃料电池的电导率和电化学反应速率。
纳米结构材料在全固态锂电池高性能固体电解质中的应用能源与人类社会的生存和发展密切相关,持续发展是全人类的共同愿望与奋斗目标。
随着能源消耗量的增长,开发新的能源迫在眉睫~在各种新能源中,20世纪60,70年代发展起来的锂离子二次电池具有鲜明的特色。
它的应用领域涉及电子产品,如:手机,笔记本电脑、数码摄像机、数码照相机、PDA、MP3播放器等等,还有在航空航天,军事领域也在渗透,被称为“世纪的主导电源”。
目前,锂离子电池最为引人瞩目的应用是在电动汽车领域,估计在2011年左右锂离子二次电池能成熟地用在电动车领域。
因此全球科技界都在大力发展锂离子电池及相关技术,研究和开发新型锂离子电池相关材料,提高电池的性能和降低电池成本。
全固态锂离子电池,即固体电解质锂离子电池,是新近发展起来的新一代锂离子电池,它的实用化将能有效消除现在商品化液体电解质锂离子电池的安全性差与能量密度低的问题。
而且具有安全性能好、化学性能稳定、使用寿命长、充放电循环性能优越,自放电速率小、比能量和能量密度高、易于将锂电池小型化、工作温度范围大,可用于许多极端的场合等诸多优点。
正是被这些优点所吸引,近年来国际上对全固态锂离子电池的开发和研究非常活跃。
如图1所示是采用磁脉冲压实技术制备全固态锂离子电池单电池结构示意图,其优化的设计能够很好的避免电池的短路。
采用磁脉冲压实技术,能够很好的制备出全固态锂电池堆,如图2所示。
从而使为大型移动设备供电成为可能,最后得到的绕式全固态锂电池堆各层厚度均匀,接触致密,而且制备过程中不需要经历热处理的过程,这样就使很多在一定高温不稳定的电极或电解质材料的应用成为可能,很适合大规模地制备大型的固态锂电池堆。
但是,现在限制全固态无机电解质锂离子电池大规模使用的主要因素是电解质材料的性能迫切需要提高,尤其是室温离子电导率,对无机固体电解质材料而言,决定其离子电导率的因素主要包括两个方面:材料的致密性与导电载流子的浓度。
电化学制备纳米结构金属材料及其应用研究导言纳米材料作为当今科学技术领域的热点研究对象,已经在各个领域展现出强大的应用潜力和广阔的发展空间。
而电化学制备纳米结构金属材料作为一种重要的制备方法,在纳米材料的制备和应用研究中占据着重要地位。
本文将从电化学制备纳米结构金属材料的原理和方法入手,进一步探讨其在能源储存、催化剂和生物传感等领域的应用研究。
电化学制备纳米结构金属材料的原理与方法电化学制备纳米结构金属材料是通过控制电极表面电位和电极反应速率,使金属离子在电解溶液中还原成纳米颗粒并沉积在电极表面的过程。
其原理主要基于电极反应、溶液中金属离子的还原和晶体生长过程。
一种常用的电化学制备纳米结构金属材料的方法是通过调节电解液中的配体浓度、电极电位和电解时间等参数来控制沉积的纳米金属颗粒的尺寸、形貌和分散度。
此外,还可以利用外加磁场、超声波或高温等外界因素来进一步控制纳米颗粒的形貌和结构。
应用研究:能源储存纳米结构金属材料在能源储存领域具有重要的应用价值。
以锂离子电池为例,采用电化学制备纳米结构金属材料可以显著提高材料的锂离子嵌入/脱嵌能力和循环稳定性。
通过制备纳米颗粒,可以增加金属表面积和缩短电子和离子的传输距离,提高材料的充放电速率和循环寿命。
此外,在超级电容器、燃料电池和柔性储能器件等能源储存领域,纳米结构金属材料也展现出良好的应用前景。
通过精确控制纳米颗粒的形貌和尺寸,可以实现更高的比表面积和更好的电荷传输效率,从而提高能源储存设备的性能和能量密度。
应用研究:催化剂纳米结构金属材料还可以作为催化剂在化学反应中发挥重要作用。
由于其高比表面积、丰富的表面活性位点和可调控的物理化学性质,纳米结构金属催化剂展现出出色的催化活性和选择性。
例如,在催化氧化还原反应中,纳米结构金属材料可以作为电催化剂用于氧还原反应、氢氧化反应和氢化反应等,具有高催化活性和较低的活化能。
此外,纳米结构金属催化剂还可以应用于有机合成反应、环境净化和废物处理等领域,提高反应效率和产物选择性。
纳米材料在电池中的应用纳米材料在电池中的应用随着全球的经济发展和社会进步,对能源需求的增加已经成为了公认的焦点问题。
同时,随着全球环境的恶劣和二氧化碳排放的不断增加,人们迫切地需要一种清洁和可再生的能源来替代传统的化石能源,以实现环境和经济的可持续发展。
在这样的背景下,电池作为一种重要的清洁能源技术已经成为了目前科学研究领域的热点问题之一。
而在电池技术的发展中,纳米材料因其独特的物理和化学性能逐渐成为了电池中的突破口。
纳米材料指的是尺寸在1-100纳米范围内的材料,其表面积大,与其他物质的相互作用强,导致了其具有高度的催化、电学、热学等性质。
基于这种性质,纳米材料在电池领域中的应用已逐渐展现出其重要性和前景。
首先,纳米材料作为电池正、负极材料的核心,在提高电池效率、性能、寿命方面发挥了重要作用。
以锂离子电池为例,传统的电极材料多采用硅、石墨等材料,但是这些材料容易发生体积膨胀、表面改变等问题,导致材料结构破坏、电池寿命缩短。
而纳米材料的表面积大、离子扩散速率快、化学稳定性高的特点,可以提高电池充放电速率、储能密度、循环寿命等方面的性能指标。
近年来,锂离子电池中纳米结构材料的应用已经逐渐成为了研究的热点问题,例如硫化锂纳米粒子、碳纳米管、硅纳米颗粒等纳米结构材料均能够有效提高材料的电化学性能。
其次,纳米材料作为电池电解质中添加剂,也发挥了重要作用。
传统的电池中,电解质主要由液态电解质和固态电解质组成。
然而,典型的液态电解质在充电和放电过程中有很多问题,例如易燃、腐蚀性强、蒸发等,这些问题都限制了电解质的应用。
而纳米材料作为电解质中添加剂,可以增强电解质的稳定性和离子扩散速率,例如添加氧化铝纳米粒子能够有效增强电解质的化学稳定性和热稳定性;添加量子点能够实现高速的离子传输和高效的太阳能转换等效果。
最后,纳米材料还可以在电池装配、制备过程中发挥重要作用。
传统的锂离子电池需要采用液态电解质等技术,难以达到高能量密度和高化学稳定性的要求。
锂硅合金材料在锂离子电池中的应用状况综述锂离子电池作为可充电电池的一种,已经广泛应用于各个领域,如电动汽车、储能系统、移动设备等。
而锂硅合金材料作为一种新兴材料,在锂离子电池中的应用得到了广泛关注。
本文将综述锂硅合金材料在锂离子电池中的应用状况。
1. 简介锂硅合金材料是由锂和硅两种元素组成的合金,其中硅的含量一般在10%~90%之间。
与传统的锂离子电池正极材料相比,锂硅合金材料具有更高的容量和更低的成本,因此备受关注。
然而,由于锂硅合金材料的容量膨胀率较大,容易导致电极损坏和循环性能下降的问题。
2. 锂硅合金作为负极材料锂离子电池的负极通常采用碳材料,如石墨。
然而,石墨材料的容量有限,无法满足需求。
锂硅合金作为一种高容量负极材料,具有很大的潜力。
通过改变锂硅合金材料中硅的含量,可以调节其容量和循环性能。
研究表明,硅含量较高的锂硅合金材料可以达到较高的容量,但循环性能较差。
因此,研究者采用了各种方法来改善锂硅合金材料的循环性能,如纳米结构设计、碳包覆等。
3. 锂硅合金作为正极材料锂离子电池的正极材料一般采用钴酸锂、锰酸锂等材料。
然而,由于这些材料的成本较高且资源有限,人们开始寻找新的正极材料。
锂硅合金材料作为一种新兴的正极材料,具有较高的容量和较低的成本,备受关注。
研究表明,锂硅合金材料可以通过调节硅的含量来改变其容量和循环性能。
此外,锂硅合金材料还可以与其他材料进行复合,以提高其电化学性能。
4. 锂硅合金材料的改进虽然锂硅合金材料具有较高的容量和较低的成本,但其循环性能仍然存在问题。
由于锂硅合金材料的容量膨胀率较大,容易造成电极的损坏和循环性能的下降。
因此,研究者通过各种方法来改善锂硅合金材料的循环性能。
一种常见的方法是将锂硅合金材料包覆在碳壳中,以减少容量膨胀。
另一种方法是通过纳米结构设计来改善锂硅合金材料的循环性能。
5. 锂硅合金材料的商业化进展目前,锂硅合金材料已经在某些领域的锂离子电池中实现了商业化应用。
锂离子电池的研究进展综述锂离子电池的研究进展刘文 2015200807近十年以来,通过对新电极材料和新存储机理的开发研究,基于锂的可重复充电电池技术得到了飞跃发展,电池性能不断提高。
得益于纳米技术的不断探索发现,传统电池材料存在的许多重难点基础问题极有希望得到解决。
一、纳米技术致力于解决传统电池领域的哪些重大问题?1. 体积变化导致活性颗粒和电极的开裂与破碎传统嵌入式电极材料在充放电过程中的体积变化较小。
而对于新型的高容量电极材料而言,由于充放电过程中,大量Li物种嵌入和脱嵌,发生巨大的体积变化。
经过多次循环之后,活性颗粒和电极材料会开裂和破碎,影响电学传导,并造成容量降低,最终导致电池失效,大大缩短了电池的使用寿命。
据报道,合金型负极材料的体积膨胀率中,Si为420%,Ge和Sn为260%,P为300%。
而传统的石墨负极只有10%。
图1. 活性颗粒和电极材料在充放电过程中开裂和破碎的过程硅极负极的解决方案纳米材料一个天然优势就在于,其尺寸较小,可以在颗粒和电极层面上有效抵抗力学上的破坏。
高容量电极材料有一个基本参数,叫做临界破碎尺寸。
这个参数值取决于材料的反应类型(譬如合金反应,转化反应)、力学性能、结晶度、密度、形貌以及体积膨胀率等一系列参数。
而且,电化学反应速率对于颗粒的开裂和破碎影响重大,充放电速率越快,产生的应力就越大。
当颗粒尺寸小于这个临界尺寸时,锂化反应引起的应力就能得到有效控制,从而缓解颗粒的的开裂和破碎行为。
研究表明,Si纳米柱的临界尺寸是240-360 nm,Si纳米线的临界尺寸是300-400 nm,这一区间范围主要是受到电化学发宁速率的影响。
晶化Si纳米颗粒的临界尺寸大约是150 nm。
图2. Si纳米线负极材料可以适应应力的影响因此,颗粒的破碎问题可以通过使用低于临界尺寸的各种纳米结构材料来实现,譬如纳米柱、纳米线、纳米颗粒、纳米管、纳米棒、以及纳米复合材料等。
至于电极的破碎问题主要是采用一系列胶粘方法将Si纳米颗粒粘结在集流器上实现。
Journal of Power Sources 192(2009)588–598Contents lists available at ScienceDirectJournal of PowerSourcesj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j p o w s o urReviewNanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides:A reviewZhenguo Yang ∗,Daiwon Choi,Sebastien Kerisit,Kevin M.Rosso,Donghai Wang,Jason Zhang,Gordon Graff,Jun LiuPacific Northwest National Laboratory,Richland,WA 99352,USAa r t i c l e i n f o Article history:Received 3January 2009Received in revised form 13February 2009Accepted 13February 2009Available online 28February 2009Keywords:Li-ion batteries AnodeNanostructured materials Titanium oxides Titanitea b s t r a c tBeing inherently safe and chemically compatible with the electrolyte,titanium oxide-based materials,including both Li-titanites and various TiO 2polymorphs,are considered alternatives to carbonaceous anodes in Li-ion batteries.Given the commercial success of the spinel lithium titanites,TiO 2poly-morphs,in particular in nanostructured forms,have been fabricated and investigated for the applications.Nanostructuring leads to increased reaction areas,shortened Li +diffusion and potentially enhanced solu-bility/capacity.Integration with an electron-conductive second phase into the TiO 2-based nanostructures eases the electron transport,resulting in further improved lithium electrochemical activity and the overall electrochemical performance.This paper reviews structural characteristics and Li-electrochemical reac-tivity,along with synthetic approaches,of nanostructures and nano-composites based on lithium titanites and TiO 2polymorphs that include rutile,anatase,bronze and brookite.©2009Elsevier B.V.All rights reserved.Contents 1.Introduction .........................................................................................................................................5882.Lithium titanites.....................................................................................................................................5893.Titanium oxide (TiO 2)polymorphs .................................................................................................................5893.1.Rutile .........................................................................................................................................5913.2.Anatase.......................................................................................................................................5923.3.Bronze or TiO 2-B.............................................................................................................................5943.4.Brookite......................................................................................................................................5964.Hierarchical,composite nanostructures of TiO 2polymorphs ......................................................................................5965.Concluding remarks.................................................................................................................................597References...........................................................................................................................................5971.IntroductionWith great success in the portable electronic sector,Li-ion bat-teries are considered the most promising energy storage technology for hybrid,plug-in hybrid,and electric vehicle applications.It is also among the technologies increasingly interested in to smooth out intermittency of wind and solar power and improve reliabil-ity and efficiency of electrical grids.For the emerging large-scale applications,however,fundamental improvements are needed with regard to power,safety,cycle life,cost,etc.[1–5].Given∗Corresponding author.Tel.:+15093753756;fax:+15093752186.E-mail address:Zgary.yang@ (Z.Yang).that the performance of Li-ion batteries strongly depends on the electrodes properties,significant improvement in the electrochem-ical properties of electrodes materials are essential to meet the demanding requirements of these applications.One example of this improvement is the rapid development of nanomaterials.The size reduction into the nano-scale (<100nm)leads to increased electrode/electrolyte contact areas and shortened Li +transport dis-tance,permitting batteries to operate at higher power [6–9].The benefits of nanostructuring are in particular applicable to the mate-rials that exhibit low electronic and/or ionic conductivity,while with appropriate reactivity with electrolyte.The increased reactiv-ity to electrolytes due to the size reduction and increased reaction areas may adversely affects the Li-ion battery performance.Among the materials that greatly benefit from nanostructuring are tita-0378-7753/$–see front matter ©2009Elsevier B.V.All rights reserved.doi:10.1016/j.jpowsour.2009.02.038Z.Yang et al./Journal of Power Sources192(2009)588–598589nium oxides-based compositions,including both lithium titanites and various polymorphs of TiO2.Being abundant,low cost,and environmentally benign,along with some performance advantages, nanostructured titanium oxide-based materials have been widely studied and are considered good alternatives to the carbon-based anode materials in some Li-ion batteries.This paper provides an overview on the titanium oxide-based nanostructures and their lithium electrochemical reactivity as anodes in Li-ion batteries, while exploring routes of materials and synthetic modifications for further improved battery performance.2.Lithium titanitesInterests in titanium oxide-based materials for anode applica-tions can be traced back to thefinding of Li-insertion activities in the lithium titanites.Since early1990s,Dahn,Thackeray,and Ohzuku et al.[10–12]studied and reported Li-insertion properties of spinel oxides Li1+x Ti2−x O4,0≤x≤1/3.Both metallic LiTi2O4and semiconducting Li4/3Ti5/3O4(Li4Ti5O12)exhibit similar Li-insertion electrochemistry with Li-insertion potential being1.36–1.338V for LiTi2O4and1.55–1.562V for Li4Ti5O12,respectively[10,13].The relatively high potential vs.Li makes the titanite electrodes intrin-sically safer compared to graphite,which has an operating voltage close to Li electroplating potential and thus raises concerns over its safety.Li4Ti5O12accommodates Li with a theoretical capacity of175mAh g−1,based on the mass of the starting host material, according to the equation[Li]8a[Li1/3,Ti5/3]16d[O4]32e+e−+Li+↔[Li2]16c[Li1/3,Ti5/3]16d[O4]32e(1) where the superscripts stand for the number of equivalent sites with Wyckoff symbols for the space group Fd¯3m.Li-insertion/deinsertion in the Li-titanites is accompanied by little or no volume change or structural straining.Consequently,these materials have demonstrated excellent cycle life[12].Their Li+dif-fusion coefficients of about10−6cm2s−1by neutron radiography[14]or2×10−8cm2s−1by electrochemistry have been reported[15].The titanites have a spinel structure that consists of a cubic close packed oxygen array in which Li occupies tetrahedral(8a)and octa-hedral(16c,16d)sites,while Ti is located with part of Li ions at the 16d octahedral sites of a cubic unit cell(Fd¯3m)[10–12,16].The over-all Li-insertion capacity is limited by the number of free octahedral sites.In the titanite spinel,the[Li1/3Ti5/3]O4framework provides a three-dimensional network of channels for facile Li+diffusion[17] and exhibits a minimal volume expansion even after full lithiation. Accordingly,the minimal structural change during lithium inser-tion/extraction makes it an attractive anode for high rate,long-cycle life battery applications.Peramunage and Abraham[16]reported Li4Ti5O12/PAN electrolyte//LiMn2O4batteries that demonstrated an excellent rechargeability at nearly100%coulombic efficiency at a 1C rate.Importantly the authors introducedfirst time the concept of passivation-free negative electrodes and used aluminum as current collector for the negative electrode.Given lithium titanites have no side reactions with electrolytes that are directly related to the irreversible capacity,nanostructuring has been employed to improve their Li-intercalation properties by increasing electrode/electrolyte interfacial contact area and facil-itating charge transport.Kim and Cho[18]prepared Li4Ti5O12 nanowires of150nm diameter byfiring a mixture of TiO2·1.25H2O nanowires and Li acetates at800◦C for3h.The synthesized spinel nanowires demonstrated afirst discharge capacity of165mAh g−1 at a1/10C rate and93%capacity retention at10C rate(see Fig.1). Kavan and Grätzel[19]reported a thinfilm-nanocrystalline spinel with a thickness of2.0–6.0nm,showing an excellent ratecapabil-Fig.1.Voltage profiles of(a)Li4Ti5O12nanowires in a coin-type half-cell and dis-charge capacity as a function of cycle number and(b)rate capability test of the Li4Ti5O12nanowires at different C rates(0.5,1,5and10C).The charge rate wasfixed at0.1C(=16mA g−1)[18].ity compared to the composite spinels.The improved performance with nanostructuring,combined with their inherent structural stability,favorable interface chemistry,and safety,make nanos-tructured lithium titanites an excellent alternative anode for low cost,long-cycle life,high power Li-ion batteries.The nanostruc-tured titanites have been used as anodes in commercial Li-battery systems demonstrated for large-scale applications.3.Titanium oxide(TiO2)polymorphsFollowing thefinding of promising Li-insertion properties in the titanite spinels,lately there have been increasing interests in various TiO2polymorphs,in particular in their nanostructures for Li-ion battery applications.While Li4Ti5O12is an excellent host for reversible Li-insertion/extraction,its specific capacity is limited to 175mAh g−1.In comparison,TiO2offers a capacity up to its theo-retical value at335or1.0Ti per TiO2.TiO2polymorphs reported to date include rutile,anatase,brookite,TiO2-B(bronze),TiO2-R (ramsdellite),TiO2-H(hollandite),TiO2-II(columbite)and TiO2-III (baddeleyite).Table1lists details of these distinctive polymorph Table1Structural parameters of TiO2polymorphs.Structure Space group Density(g cm−3)Unit cell(Å)ReferenceRutile P42/mnm 4.13a=4.59,c=2.96[34,35,42] Anatase I41/amd 3.79a=3.79,c=9.51[34,35,42] Brookite Pbca 3.99a=9.17,b=5.46,c=5.14[34,36,42] TiO2(B)C2/m 3.64a=12.17,b=3.74,c=6.51,ˇ=107.29◦[34,37,42] TiO2-II Pbcn 4.33a=4.52,b=5.5,c=4.94[34,38,42] TiO2(H)I4/m 3.46a=10.18,c=2.97[34,39,42] TiO2-III P21/c C a=4.64,b=4.76,c=4.81,ˇ=99.2◦[40,42] TiO2(R)Pbnm 3.87a=4.9,b=9.46,c=2.96[41,42]590Z.Yang et al./Journal of Power Sources192(2009)588–598Fig.2.(a)Rutile,(b)anatase,(c)brookite,and(d)bronze(B)of TiO2.Z.Yang et al./Journal of Power Sources192(2009)588–598591structures.Among the TiO2polymorphs,rutile,anatase,brookite and TiO2-B(see Fig.2)have been reported for Lithium electro-chemical reactivity.It is generally considered that at low pressures only rutile has a truefield of stability;anatase and brookite form a metastable structure[20,21].Li-reaction with the TiO2polymorphs is conveniently expressed as:x Li++TiO2+x e−↔Li x TiO2.(2) This redox reaction implies not only the insertion of x Li+,but also the creation of charge compensating x Ti III cations in the Ti IV sublattice,as observed in X-ray photoelectron spectroscopy exper-iments[22,23]and supported by theoretical calculations[24–27], with sources of structural strain and relaxation associated with both types of induced defects[28].The capacity of various TiO2 polymorphs to undergo this reaction,and relative phase stabili-ties as a function of Li+content,have been examined closely with both experiment and computational molecular modeling.(Exper-imental studies are reviewed later below.)For modeling studies, both quantum mechanical and empirical potential atomistic mod-eling have been used to predict relative phase stabilities,but not without occasional contradiction or disagreement with experi-ment.In one of the earliest molecular modeling studies for this purpose,Mackrodt[26]performed periodic Hartree-Fock struc-ture optimizations for a number of TiO2and LiTiO2polymorphs with great success.Predicted relative stabilities of TiO2polymorphs include rutile>anatase>brookite>ramsdellite>spinel,with cal-culated energy difference between rutile and anatase to be 0.02–0.06eV,in excellent agreement with density functional the-ory calculations at the LDA level[29]and the measured H of Navrotsky and Kleppa[30].More recently,computational studies have focused on the diffusion kinetics of Li+in various TiO2poly-morphs,and have provided insight into the site occupation,local coordination,and energetics that underlie Li mobility[31–33].The redox reaction defined by Eq.(2)occurs typically at 1.5–1.8V vs.Li+/Li redox couple.Similar to the titanites,the rel-ative high potentials make the TiO2electrodes inherently safer than the graphite anode and render fewer reactions at the elec-trode/electrolyte interfaces.One draw back,however,is the poor conductivity of Li+and accompanying electrons in its bulk form,limiting the electro-chemical performance of TiO2electrode materials.To improve the charge/ion transport properties,TiO2polymorphs have been fabricated into varied nanostructures that resulted in improved Li-insertion properties.3.1.RutileAs the most thermodynamically stable polymorph of TiO2,rutile in its bulk crystalline form can only accommodate negligible Li (<0.1Li per TiO2unit)at room temperature[14,43].Increased Li-reactivity was reported at120◦C using polymeric rather than liquid electrolyte,withfirst discharge reversible capacities reaching0.5Li [44]and1Li[45]per TiO2formula unit.It is commonly agreed that Li diffusion in rutile is highly anisotropic,which proceeds through rapid diffusion along c-axis channels[46–51].Experimental and simulation studies showed that the Li+diffusion coefficient along c-axis is approximately10−6cm2s−1while in the ab-plane only about10−15cm2s−1[47,48,52].Therefore,transport is very slow in the ab-planes,restricting Li ions from easily reaching the ther-modynamically favorable octahedral sites and limiting Li in the c-channels.Furthermore,repulsive Li–Li interactions in c-channels together with trapped Li-ion pairs in the ab-planes may block the c-channels and restrict insertion well below its theoretical limit [48,51].Fig.3.Galvanostatic cycling curves of rutile TiO2samples using a30mA g−1current between3and1V in1M LiPF6EC/DMC electrolyte at20◦C.The capacity retention is reported for these different samples[54].Interestingly,however,the Li-reactivity increases with decreas-ing the particle size.Hu et al.[53]reported up to0.8mol Li-insertion into nanostructured rutile TiO2(10nm×40nm)at room temper-ature,while only0.1–0.25mol of Li into micrometer-sized rutile.A specific charge of approximately160mAh g−1was obtained at a rate of C/20after50cycles and that decreased to150mAh g−1 at C/5and100mAh g−1at10C.The authors found that Li-surface storage on the nano-size particles can be energetically more favor-able than bulk insertion.Particle size effects were further examined by Baudrin et al.[54],as shown in Fig.3.The study showed that nano-sized TiO2(50nm)could be inserted up to0.23Li per TiO2 rutile which corresponds to a specific capacity of77mAh g−1(at 1/10C)during thefirst reduction down to1.0V,out of which0.11 Li+can be extracted during the following oxidation.When the size was decreased to10nm,Li-reaction with the nanostructured rutile rod particles(10nm×200nm)was up to0.85Li during the first reduction under the same test conditions.The Li-reaction pro-gressed through two solid solution domains,and then through an irreversible phase transformation into electroactive rocksalt type LiTiO2(ccp)due to the volume expansion in the ab-plane.The subsequent oxidation and cycling were carried out on the nanos-tructured LiTiO2,giving a reversible capacity to0.5Li per oxide that592Z.Yang et al./Journal of Power Sources 192(2009)588–598Fig.4.(a,b)High-resolution TEM images of as-synthesized mesoporous crystalline TiO 2.Inset in (b)shows corresponding SAED pattern.(c)High-resolution TEM image of calcined mesoporous crystalline TiO 2.(d)TEM image of aggregated spherical anatase particles outside of nano-rod-based mesoporous rutile in mesoporous crystalline TiO 2.(e)SAED pattern from the oriented rodlike nanocrystal area circled in (d).The diffraction ring pattern is consistent with that of rutile crystal structure.(f)SAED pattern from spherical nano-particle area circled in (d).The diffraction ring pattern is consistent with that of the anatase crystal structure [58].is comparable to that of bulk anatase form of TiO 2,which is gener-ally considered to be a more electrochemically active Li-insertion host (to be discussed later).The nano-rutile exhibited smooth and continuous sloping voltage composition curves that resemble the Li-insertion/extraction into layered V 2O 5[55].Overall,it appeared that the main kinetic limitations were linked to mechanical strains that were reduced as the particle size decreased,thereby enabling more efficient Li-insertion.This size effect was expected to be more significant for nano-rods aligned along c -axis due to the main expansion occurring along the smaller dimension in ab -planes.Similarly,Anji Reddy et al.[56]confirmed the Li-insertion up to 1Li per formula unit at room temperature in nanocrystalline rutile TiO 2that was synthesized via sol–gel approach.Jiang et al.[57]reported recently that Li-insertion can be up to 1.0Li per TiO 2rutile nano-electrodes at the first discharge cycled at 0.05A g −1(or about 1/6C ),and 0.6–0.7Li can be reversibly cycled.After 100cycles,the discharge capacity of the ultra-fine nano-rutile electrodes was still of 132and 118mAh g −1when cycled at 5and 10A g −1(or about 16and 32C ),respectively.In addition to the aforementioned nanostructures of the rutile phase,Liu and co-workers [58]recently studied Li-insertion activ-ities in mesoporous rutile TiO 2(plus a residual amount of anatase)that was synthesized via a new low-temperature solution growth of TiO 2nanocrystals within an anionic surfactant matrix.The highly crystalline and high surface area (245–300m 2g −1)mesoporous TiO 2,as illustrated in Fig.4,are composed of aligned rutile nano-rodbuilding blocks grown along the [001]direction.Fig.5shows the Li-insertion properties of the new mesoporous crystalline rutile.It could accommodate more than 0.7Li (Li 0.7TiO 2,235mAh g −1)dur-ing the first discharge at a C /5rate between 1and 3V vs.Li +/Li,with a reversible capacity of 0.55Li (Li 0.55TiO 2,185mAh g −1).The meso-porous crystalline rutile shows excellent capacity retention with less than 10%capacity loss after more than 100cycles.Their study indicated that the rutile nano-rods were irreversibly transformed into cubic rocksalt LiTiO 2nano-rods during the first discharge.But thereafter the mesostructure of LiTiO 2remained stable during sub-sequent discharge/charge cycling.3.2.AnataseIn comparison with the rutile structure,the uptake of Li +appears more facile in the anatase lattice.It has a tetragonal body-centered space group I 41/amd ,and is comprised of TiO 6octahedra shar-ing two adjacent edges with two other octahedra so that planar double chains are formed [59].Diffusion of Li ions in an anatase framework occurs along a reaction path connecting the octahedral interstitial sites [60,33,31].With Li-insertion the symmetry of the anatase unit cell decreases and,when x =0.5(Li 0.5TiO 2),its original I 41/amd symmetry transforms into the orthorhombic Pmn 21space group due to loss of symmetry in the y direction [61].The change in symmetry is accompanied by a decrease of the unit cell along the c -axis and an increase along the b -axis,resulting in a net increaseZ.Yang et al./Journal of Power Sources 192(2009)588–598593Fig.5.(a)First three potential-capacity profiles of mesoporous crystalline TiO 2at a rate of C /5between voltage limits of 1and 3V vs.Li +/Li.(b)Fifth cycle discharge–charge capacity profile of the mesoporous crystalline TiO 2at the various rate (1C –C /10)between voltage limits of 1and 3V.(c)d Q /d V vs.potential plot of lithiated/delithiated mesoporous crystalline TiO 2.(d)Cycling behavior of mesoporous crystalline TiO 2up to 100cycles at a 1C rate [58].of ∼4%of the unit cell volume and a rapid capacity fade [62].As thus,for bulk anatase,x =0.5is most consistently reported as the maximum electrochemical insertion of Li [63–66].Further study by Wagemaker et al.[67–70]found that,during Li-insertion,the anatase undergone spontaneous phase separation into Li 0.01TiO 2and Li 0.6TiO 2domains on a scale of several tens of nanometers.As shown in Fig.6,bulk anatase demonstrates flat voltage curves,indicating a classical bi-phase electrochemical reaction process of the Li-insertion/extraction.Similar to the rutile structure,decreas-parison between the electrochemical behavior of rutile (nano-rod)and anatase type TiO 2after the first reduction in a galvanostatic mode with 30mA g −1between 3and 1V in 1M LiPF 6.EC/DMC electrolyte at 20◦C [63].Fig.7.Nano-anatase TiO 2voltage profiles of the as-prepared (150◦C),annealed nanotubes (300◦C),and nano-rods (400◦C)between 2.5and 1V at a rate of 0.1C (=25mA g −1)after 1st,2nd,10th,20th,and 30th cycles using coin-type half-cells (electrode density was 2g cm −3)[76].594Z.Yang et al./Journal of Power Sources192(2009)588–598Fig.8.(a)Charge–discharge curves for Li x TiO2-B nanowires(rate of10mA g−1);(b) comparison of cycling behavior for TiO2-B nanowires,TiO2-B nano-particles and nano-particulate anatase,all at200mA g−1[79,80].ing the particle size into the nano-regime(<100nm)alternates the electrochemical reactions and reactivity to Li.The Li-interaction with the nanostructures appeared deviating from the two phase equilibrium phenomenon in the bulk materials,instead of behav-ing more like solid solution[71].The size reduction,along with unique morphologies,also led to increased capacity over0.5Li per unit formula due to the surface-confined charge storage and differ-ent Li-reaction mechanisms from that in the bulk materials[72,73]. Gao et al.[74]reportedfirst discharge and charge capacities of 340and200mAh g−1,respectively,for the anatase nanotubes that were synthesized with10–15nm outer diameters and200–400nm lengths by annealing the hydrothermally prepared protonated nan-otubes at500◦C in an argon atmosphere.Li et al.[63]prepared the anatase TiO2nanotubes with outer diameters of9nm and several hundred nanometer lengths by annealing at350◦C using hydrothermal-treated protonated titanate nanotubes.The anatase nanotubes exhibitedfirst discharge and charge capacities314and 248mAh g−1,respectively,but with active material loading only of 3–4mg cm−2.Zhang and co-workers[75]prepared the anatase nan-otubes with diameters of about10nm and lengths of200–400nm via a hydrothermal approach.The one-dimensional TiO2poly-morph exhibited a potential plateau at1.73and1.88V in the process of Li-insertion and extraction,and the initial Li-insertion/extraction capacity is290and238mAh g−1at36mA g−1,respectively.Kim and Cho[76]reported both anatase TiO2nanotubes and nano-rods that were prepared by annealing mixed H2Ti2O5·H2O and anatase TiO2nanotubes at300and400◦C,respectively.These two nanostructures exhibited afirst discharge capacities of 296mAh g−1(Li0.88TiO2)and215mAh g−1(Li0.64TiO2),respectively, as shown in Fig.7,in a galvanostatic mode with25mA g−1(or about 1/10C)between2.5and1V in1M LiPF6EC/DMC PC electrolyte. Irreversible capacity ratios were reported as14and15%for anatase nanotubes and nano-rods,respectively.Capacity retention of the nanotubes was81%,compared with only40%for the nano-rods after30cycles.It was found that the high rate performance of nano-rods strongly depended on the electrode density.Nano-rods with 0.5g cm−3(=12mg cm−2)showed200and160mAh g−1at0.5and 10C rates,respectively.In contrast,nanotubes showed no capacity decrease at0.5C or10C under an electrode density of either1.0or 0.5g cm−3.Under2g cm−3(=31mg cm−2),nanotubes showed245 and185mAh g−1at0.5and2C rates,respectively.Recently,Bao et al.[77]reported nano-porous anatase nano-rods that were synthe-sized by using a binary eutectic mixture system.This novel material exhibited a high-specific surface area with5nm pore-size distribu-tion,uniform and regular rod-shaped structures.The nano-porous structure demonstrated a good cyclability and a high rate capability.3.3.Bronze or TiO2-BTiO2-B wasfirst synthesized by Marchand et al.[37]in1980 by ion-exchange of K+for H+in K2Ti4O9to form a hydratedhydro-Fig.9.(a)Voltage-capacity profiles of brookite TiO2for thefirst10cycles carried out in the voltage range1.0–3.0V at C/10rate;(b)the corresponding differential capacity plot for thefirst5cycles[86].Z.Yang et al./Journal of Power Sources192(2009)588–598595Fig.10.Elemental mapping of mesoporous TiO2:RuO2nano-composite.(a)Annular dark-field TEM image of mesoporous TiO2:RuO2nano-composite and corresponding Ti and Ru EDX maps;(b)HRTEM image taken from the outer edges of a TiO2:RuO2sphere;(c)corresponding schematic illustration of the self-wired path of deposited RuO2 nano-particles[87].gen titanate,which transformed to TiO2-B during heating at500◦C. Like rutile and anatase,TiO2-B is composed of corrugated sheets of edge-and corner-sharing TiO6octahedra[78].But in the case of TiO2-B,the octahedra are arranged to form perovskite-like path-ways along which inserted Li+may undergo facile transport.The structure of TiO2is more open than other polymorphs,with a den-sity of3.73g cm−3compared with4.25and3.89g cm−3for rutile and anatase,respectively.The open structure may also ease Li+ transport.Armstrong,et al.[79–81]prepared TiO2-B nanowires via hydrothermal reaction between sodium hydroxide,NaOH,and TiO2 anatase.Subsequent electrochemical evaluation gave a capacity of 305mAh g−1,or Li0.91TiO2-B,compared with240mAh g−1of bulk TiO2-B.Incremental capacity plots(d Q/d E vs.E)indicated no signifi-cant structural change occurring during the Li-insertion/extraction. While the capacity of the TiO2-B nanowires was comparable to that of nano-particulate TiO2-B,the nanowires demonstrated supe-rior capacity retention.After50cycles,the capacity of the TiO2-BFig.11.(a)TEM image of functionalized graphene sheets(FGSs).(b),(c),and(d)Low-and high-magnification TEM and SEM images of the self-assembled rutile TiO2-FGS hybrids,respectively;(e)A cross-section TEM image of rutile TiO2-FGS hybrid showing nanostructured rutile TiO2lying on the FGS.596Z.Yang et al./Journal of Power Sources192(2009)588–598nanowires was about twice that of nano-particulate TiO2-B.It was also reported that the TiO2-B nanowires performed much better than nano-particle anatase with an average particle size compa-rable to the diameter of the TiO2-B nanowires(see Fig.8).But like the other polymorphs,nanostructured or bulk,there was still an irreversible capacity loss on thefirst cycle,which was ten-tatively attributed to the poor conductivity of tely there have been further insights into Li-reaction with nanostructured TiO2(B).Graetzel and co-workers[73]reported and discussed the pseudocapacitive lithium storage in TiO2(B).The Li-insertion elec-trochemistry of TiO2(B)appears different from that of anatase. Whereas the kinetics of lithium storage is controlled by solid–solid state diffusion of Li+,the TiO2(B)host accommodates lithium by a pseudocapacitive faradic process,which is not controlled by diffu-sion at comparable conditions.To further evaluate the electrochemical performance of TiO2-B nanowires,Armstrong et al.[82]constructed rechargeable lithium-ion batteries with the nanowires as an anode,a gel electrolyte,and either a LiFePO4or LiNi0.5Mn1.5O4cathode.Average cell voltages of approximately2and3V were obtained,respectively.Cycling stability was very good as was rate capability,with80%of the low-rate capacity being retained at5C.The cells with the TiO2-B anode demonstrated superior capacity compared to similar batteries con-structed using Li4Ti5O12(225mAh g−1compared to150mAh g−1at C/5)[83].3.4.BrookiteIn addition to rutile,anatase,and bronze structures,brookite was recently investigated for its Li-electrochemical reactivity.Anji Reddy et al.[84,85]reported synthesis of brookite by thermoly-sis of TiCl4at100◦C.The obtained rutile and brookite mixture was separated by peptization in3M nitric acid followed by cen-trifugation.The nano-sized(10nm)brookite was tested as a Li-ion anode,which delivered reversible capacity of170mAh g−1for more than40cycles.The specific capacity of brookite varied with the size of the particles,where20and33nm sized brookite deliv-ered60and35mAh g−1after50cycles,respectively.Also,Lee et al.[86]synthesized brookite by urea precipitation and investigated 10–20nm sized brookite with multi-walled carbon nanotubes, which delivered160mAh g−1over50cycles.Li-insertion/extraction was observed at1.7and2.02V,respectively,compared to1.64and 2.1V for anatase(Fig.9).4.Hierarchical,composite nanostructures of TiO2polymorphsAs reviewed and discussed previously,nanostructuring TiO2 polymorphs leads to improved Li-intercalation properties due in part to shortened Li+-diffusion distances.However,this kind of structural refinement may not concomitantly lead to shortened electron-transport distances if the electron-conductive additive used for the current collector is not sufficiently mixed or simi-larly structured at nano-scale.Indeed nanostructuring may make it more difficult to mix uniformly a conductive second phase,such as the carbon black at the nano-scale.As a result,the electron transport part may remain sluggish due to the poor conductivity of TiO2and thus limit the overall Li-electrochemical activity of the material.For instance,for the nano-particulates,wires and tubes of TiO2polymorphs,there is still a substantial irreversible capac-ity loss during thefirst cycles likely due to the poor electronic conductivity.Developing nanostructured composite structures that integrate the electron-conductive additive phase appears to be a promising approach due to both shortened Li-transport distances and facile electron transport.Guo et al.[87]reported superior electrochemical performance of nanostructured mesoporous TiO2(anatase)through efficient hierarchical mixed conducting networks.The hierarchically con-structed nano-anatase electrode,as shown in Fig.10,was fabricated with RuO2,a material with good electrical conductivity,provid-ing highly conducting paths for electrons in a three-dimensional network.This nano-sized network resulted in negligible diffusion times,enhanced local conductivities,possibly faster phase trans-formation reactions,and hence appeared to be the key to good power performance for the material.While the use of expensive precious metal or its oxide is questionable for commercial applica-tions,integration of conducting additive materials at the nano-scale appears feasible for significant performance improvement.A spe-cific charge capacity of around214mAh g−1was obtained at a rate of C/5after20cycles,which was lowered to190,147,and125mAh g−1 at1,5,and10C,respectively.At the very high rate of30C(dis-charge/charge of all the TiO2within2min),the specific charge capacity is still91mAh g−1,which is about two times larger than that of5nm anatase(48mAh g−1)and nine times larger than that of mesoporous anatase spheres without interior electronic wiring (10mAh g−1).The reversibility is demonstrated by the fact that the capacity of210mAh g−1is regained if the rate is lowered to C/5.Recently,Liu and co-workers[88]developed self-assembled rutile TiO2/graphene hybrid nanostructures via anionic surfactant mediated growth.As shown in Fig.11,the highly electron-conductive graphene,a two-dimensional graphite,is integrated into the nanostructured rutile and acts as the current collector to minimize electrical resistance and power loss of the electrode.AsaFig.12.(a)Specific capacity of nanostructured TiO2and nanostructured TiO2-FGS (functionalized graphene sheet)hybrids(1wt.%FGS)at different charge/discharge rates,and(b)cycling performance of TiO2-FGS(1wt.%FGS)up to100cycles at1C charge/discharge rates after testing at various rates[88].。