2013届高考数学考点回归总复习《第五讲 函数的定义域与值域》课件
- 格式:ppt
- 大小:405.00 KB
- 文档页数:59
第五讲函数的定义域与值域班级________某某________考号________日期________得分________一、选择题:(本大题共6小题,每小题6分共36分,将正确答案的代号填在题后的括号内.)1.(某某模拟)函数0()A.{x|x<0}B.{x|x>0}C.{x|x<0且x≠-1}D.{x|x≠0且x≠-1,x∈R}解析:依题意有\left\{\begin{array}{l}x+1≠0|x|-x>0\end{array}\right.,解得x<0且x≠-1,故定义域是{x|x<0且x≠-1}.答案:C2.(某某某某模拟)下列表示y是x的函数,则函数的值域是()x 0<x<5 5≤x<1010≤x<1515≤x≤20y 2 3 4 5A.[2,5]B.NC.(0,20]D.{2,3,4,5}解析:函数值只有四个数2、3、4、5,故值域为{2,3,4,5}.答案:D3.(2010·某某)设函数g(x)=x2-2(x∈R),f(x)=\left\{\begin{array}{l}g(x)+x+4,x<g(x),g(x)-x,x≥g(x).\end{array}\right.则f(x)的值域是()A.\left[\begin{array}{l}-\frac{9}{4},0\end{array}\right]∪(1,+∞)B.[0,+∞)C.\left[\begin{array}{l}-\frac{9}{4},+∞\end{array}\right)D.\left[\begin{ar ray}{l}-\frac{9}{4},0\end{array}\right]∪(2,+∞)解析:令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),而x2-x-2≤0,解得-1≤x≤2.故函数f(x)=\left\{\begin{array}{l}x2+x+2(x<-1或x>2),x2-x-2(-1≤x≤2).\end{array}\right.当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数f\left(\begin{array}{l}\frac{1}{2}\end{array}\right)≤f(x)≤f(-1),即-\frac{9}{4}≤f(x)≤0.故函数f(x)的值域是\left[\begin{array}{l}-\frac{9}{4},0\end{array}\right]∪(2,+∞).答案:D4.设f(x)=\left\{\begin{array}{l}x2,|x|≥1,x,|x|<1.\end{array}\right.g(x)是二次函数,若f[g(x)]的值域为[0,+∞),则g(x)的值域是()A.(-∞,-1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)C.[0,+∞)D.[1,+∞)解析:设t=g(x),则f[g(x)]=f(t),∴t=g(x)的值域即为f(t)的定义域.画出函数y=f(x)的图象(如图).[TPTL19.TIF,BP]∵函数f[g(x)]值域为[0,+∞),∴函数f(t)的值域为[0,+∞).∵g(x)是二次函数,且g(x)的值域即为f(t)的定义域,∴由图象可知f(t)的定义域为[0,+∞),即g(x)的值域为[0,+∞).答案:C5.已知函数f(x)的定义域为[1,9],且当1≤x≤9时,f(x)=x+2,则函数y=[f(x)]2+f(x2)的值域为()A.[1,3]B.[1,9]C.[12,36]D.[12,204]解析:∵函数f(x)的定义域为[1,9],∴要使函数y=[f(x)]2+f(x2)有意义,必须\left\{\begin{array}{l}1≤x≤9,1≤x2≤9,\end{array}\right.解得1≤x≤3.∴函数y=[f(x)]2+f(x2)的定义域为[1,3].∵当1≤x≤9时,f(x)=x+2,∴当1≤x≤3时,y=[f(x)]2+f(x2)=(x+2)2+(x2+2)=2(x+1)2+4,∴当x=1时,y min=12,当x=3时,y max=36,∴所求函数的值域为[12,36],故答案选C.答案:C评析:本题容易忽视复合函数y=[f(x)]2+f(x2)的定义域,而错误地把f(x)的定义域[1,9]当作函数y=[f(x)]2+f(x2)的定义域,从而得出错误的结果D.6.若函数y=x2-6x-16的定义域为[0,m],值域为[-25,-16],则m的取值X围()A.(0,8]B.[3,8]C.[3,6]D.[3,+∞)解析:函数y=(x-3)2-25,因为函数的定义域为[0,m],值域为[-25,-16],而当x=0时,y=-16,当x=3时,y=-25,由二次函数的对称性可得m的取值X围为[3,6],故选C.答案:C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.若函数f(x+1)的定义域是[1,2],则函数f(\sqrt{x})的定义域为________.解析:∵f(x+1)的定义域是[1,2],∴f(x)的定义域为[2,3],对于函数f(\sqrt{x})满足2≤\sqrt{x}≤3,∴4≤x≤9.∴f(\sqrt{x})的定义域为[4,9].答案:[4,9]8.函数y=\frac{2x-5}{x-3}的值域是{y|y≤0或y≥4},则此函数的定义域为________.解析:∵y≤0或y≥4,∴\frac{2x-5}{x-3}≤0或\frac{2x-5}{x-3}≥4.∴\frac{5}{2}≤x<3或3<x≤\frac{7}{2}.答案:\left[\begin{array}{l}\frac{5}{2},3\end{array}\right)∪\left(\begin{array}{l }3,\frac{7}{2}\end{array}\right][TPTL21.TIF,Y#]9.函数f(x)=|log3x|在区间[a,b]上的值域为[0,1],则b-a的最小值为________.解析:由图象可知,[a,b]应为\left[\begin{array}{l}\frac{1}{3},3\end{array}\right]的一个子区间.当a=\frac{1}{3},b=1时b-a取最小值为\frac{2}{3}.答案:\frac{2}{3}10.(2010·某某模拟)函数f(x)=log\frac{1}{2}(x-1)+\sqrt{2-x}的值域为________.解析:由\left\{\begin{array}{l}x-1>02-x≥0\end{array}\right.,解得1<x≤2,∴函数f(x)的定义域为(1,2].又∵函数y1=log\frac{1}{2}(x-1)和y2=\sqrt{2-x}在(1,2]上都是减函数,∴当x=2时,f(x)有最小值,f(2)=log\frac{1}{2}(2-1)+\sqrt{2-2}=0,f(x)无最大值,∴函数f(x)的值域为[0,+∞).答案:[0,+∞)三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数f(x)的解析式.(2)求函数y=f(x2-2)的值域.解:(1)设f(x)=ax2+bx+c(a≠0),由题意可知\left\{\begin{array}{l}c=0a(x+1)2+b(x+1)+c=ax2+bx+c+x+1,x∈R\end{array}\right.整理得\left\{\begin{array}{l}2a+b=b+1a≠0a+b=1c=0\end{array}\right.,解得\left\{\begin{array}{l}a=\frac{1}{2}b=\frac{1}{2}c=0\end{array}\right.,∴f(x)=\frac{1}{2}x2+\frac{1}{2}x;(2)由(1)知y=f(x2-2)=\frac{1}{2}(x2-2)2+\frac{1}{2}(x2-2)=\frac{1}{2}(x4-3x2+2)=\frac{1}{2}\left(\begin{array}{l}x2-\frac{3}{2}\end{a rray}\right)2-\frac{1}{8},当x2=\frac{3}{2}时,y取最小值-\frac{1}{8},故函数值域为\left[\begin{array}{l}-\frac{1}{8},+∞\end{array}\right).12.已知函数y=\sqrt{mx^2-6mx+m+8}的定义域为R.(1)某某数m的取值X围;(2)当m变化时,若y的最小值为f(m),求函数f(m)的值域.解:(1)依题意,当x∈R时,mx2-6mx+m+8≥0恒成立.当m=0时,x∈R;当m≠0时,\left\{\begin{array}{l}m>0,Δ≤0,\end{array}\right.即\left\{\begin{array}{l}m>0,(-6m)2-4m(m+8)≤0.\end{array}\right.解之得0<m≤1,故实数m的取值X围是0≤m≤1.(2)当m=0时,y=2\sqrt{2};当0<m≤1时,y=\sqrt{m(x-3)^2+8-8m},∴y min=\sqrt{8-8m},因此,f(m)=\sqrt{8-8m}(0≤m≤1),∴f(m)的值域为[0,2\sqrt{2}].13.(2011·某某某某模拟)已知函数f(x)=\left\{\begin{array}{l}1-\frac{1}{x},x≥1,\frac{1}{x}-1,0<x<1.\end{array}\right.(1)当0<a<b,且f(a)=f(b)时,求\frac{1}{a}+\frac{1}{b}的值;(2)是否存在实数a、b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a、b的值;若不存在,请说明理由.解:(1)∵f(x)=\left\{\begin{array}{l}1-\frac{1}{x},x≥1,\frac{1}{x}-1,0<x<1,\end{array}\right.∴f(x)在(0,1)上为减函数,在[1,+∞)上为增函数.由0<a<b,且f(a)=f(b),可得0<a<1≤b且\frac{1}{a}-1=1-\frac{1}{b},∴\frac{1}{a}+\frac{1}{b}=2.(2)不存在满足条件的实数a、b.若存在满足条件的实数a、b,则0<a<b.①当a,b∈(0,1)时,f(x)=\frac{1}{x}-1在(0,1)上为减函数.故\left\{\begin{array}{l}f(a)=b,f(b)=a,\end{array}\right.即\left\{\begin{array}{l}\frac{1}{a}-1=b,\frac{1}{b}-1=a.\end{array}\right.解得a=b.故此时不存在符合条件的实数a、b.②当a,b∈[1,+∞)时,f(x)=1-\frac{1}{x}在[1,+∞)上是增函数.故\left\{\begin{array}{l}f(a)=a,f(b)=b,\end{array}\right.即\left\{\begin{array}{l}1-\frac{1}{a}=a1-\frac{1}{b}=b.\end{array}\right.此时a,b是方程x2-x+1=0的根,此方程无实根.故此时不存在符合条件的实数a、b. ③当a∈(0,1),b∈[1,+∞)时,由于1∈[a,b],而f(1)=0∉[a,b],故此时不存在适合条件的实数a、b.综上可知,不存在适合条件的实数a、b.。