特殊角三角函数值计算练习
- 格式:doc
- 大小:30.50 KB
- 文档页数:1
三角函数的求值练习题1. 求解以下三角函数的值:a) sin 30° = ?b) cos 45° = ?c) tan 60° = ?d) cot 45° = ?e) sec 30° = ?f) csc 60° = ?解答:a) sin 30° = 0.5b) cos 45° = 0.7071c) tan 60° = √3d) cot 45° = 1e) sec 30° = 2f) csc 60° = 22. 求解以下三角函数的值:a) sin 150° = ?b) cos 210° = ?c) tan 300° = ?d) cot 240° = ?e) sec 120° = ?f) csc 225° = ?解答:a) sin 150° = 0.5b) cos 210° = -0.866c) tan 300° = -√3d) cot 240° = -√3e) sec 120° = -2f) csc 225° = -√23. 求解以下三角函数的值:a) sin π = ?b) cos 0 = ?c) tan π/2 = ?d) cot 3π/4 = ?e) sec 3π/2 = ?f) csc π/4 = ?解答:a) sin π = 0b) cos 0 = 1c) tan π/2 = undefinedd) cot 3π/4 = -1e) sec 3π/2 = undefinedf) csc π/4 = √24. 求解以下三角函数的值:a) sin (π/6)rad = ?b) cos (7π/4)rad = ?c) tan (11π/6)rad = ?d) cot (5π/4)rad = ?e) sec (5π/6)rad = ?f) csc (4π/3)rad = ?解答:a) sin (π/6)rad = 0.5b) cos (7π/4)rad = -0.7071c) tan (11π/6)rad = -√3d) cot (5π/4)rad = -1e) sec (5π/6)rad = -2f) csc (4π/3)rad = -2/√35. 求解以下三角函数的值:a) sin (-45°) = ?b) cos (-π/3) = ?c) tan (-60°) = ?d) cot (-π/4) = ?e) sec (-30°) = ?f) csc (-π/6) = ?解答:a) sin (-45°) = -0.7071b) cos (-π/3) = 0.5c) tan (-60°) = -√3d) cot (-π/4) = -1e) sec (-30°) = 2f) csc (-π/6) = -26. 求解以下三角函数的值:a) sin 75° + cos 75° = ?b) sin 30° * csc 60° = ?c) tan 45° - cos 45° = ?d) cot 180° + sec 0° = ?解答:a) sin 75° + cos 75° = 1 + 0.7071 = 1.7071b) sin 30° * csc 60° = 0.5 * 2 = 1c) tan 45° - cos 45° = 1 - 0.7071 = 0.2929d) cot 180° + sec 0° = -1 + 1 = 0通过以上练习题,我们可以更好地理解三角函数的求值。
28.1锐角三角函数第3课时 特殊角的三角函数1. 3tan30°的值等于( ) A. 3 B .3 3 C.33 D.322. 计算6tan45°-2cos60°的结果是( )A .4 3B .4C .5 3D .53.如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为( ) A.12 B.22 C.32D .1第3题图 第5题图 4.如果在△ABC 中,sin A =cos B =22,则下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形5.如图,当太阳光线与水平地面成30°角时,一棵树的影长为24 m ,则该树高为( ) A .8 3 m B .12 3 m C .12 2 m D. 12 m6.(1)3cos30°的值是____.(2)计算:sin30°·cos30°-tan30°=____(结果保留根号).(3)cos 245°+tan30°·sin60°=____. 7.根据下列条件,求出锐角A 的度数. (1)sin A =32,则∠A =____;(2)cos A =12,则∠A =____; (3)cos A =22,则∠A =____;(4)cos A =32,则∠A =____. 8.如图是引拉线固定电线杆的示意图,已知CD ⊥AB ,CD =3 m ,∠CAD =∠CBD =60°,求拉线AC 的长.9.计算:(1)cos45°sin45°+2sin60°tan60°-1tan30°+tan45°; (2)sin45°+cos30°3-2cos60°-sin60°(1-sin30°).10.已知α是锐角,且sin(α+15°)=32,计算8-4cos α-(π-3.14)0+tan α+⎝ ⎛⎭⎪⎫13-1的值.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..◆类型二简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
特殊三角函数值的计算一.选择题(共10小题)1.2cos60°=()A.1 B .C .D .2.在△ABC中,∠A,∠B都是锐角,tanA=1,sinB=,你认为△ABC最确切的判断是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形3.tan45°sin45°﹣2sin30°cos45°+tan30°=()A .B .C .D .4.=()A .B .C .D.15.cos60°+tan45°的值等于()A .B .C .D.16.在Rt△ABC中,∠C=90°,cosA=,则sinB的值为()A .B .C .D .7.在△ABC中,∠C=90°,cosA=,那么∠B的度数为()A.60°B.45°C.30°D.30°或60°8.在△ABC中,若|sinA ﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°9.如果α是锐角,且sinα=,那么cos(90°﹣α)的值为()A .B .C .D .10.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A .B .C .D.3二.填空题(共10小题)11.在△ABC中,∠C=90°,若tanA=,则sinB=.12.在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C的度数是.13.在Rt△ABC中,∠C=90°,sinA=,则tanA=.14.计算:2sin245°﹣tan45°=.15.计算:3tan30°+sin45°=.16.已知α为锐角,且sin(α﹣10°)=,则α等于度.17.已知α为锐角,且满足tan(α+10°)=1,则α为度.18.△ABC中,∠C=90°,tanA=,则sinA+cosA=.19.已知:tanx=2,则=.20.若α为锐角,且sinα+cosα=,则sinα•cosα=.三.解答题(共15小题)21.计算.2cos60°+4sin60°•tan30°﹣cos245°22.计算:2cos45°﹣tan60°+sin30°﹣|﹣|.23.计算:sin30°﹣cos45°+tan260°.24.计算:﹣2tan45°﹣cos30°+4sin30°.25.求值:cos245°﹣sin30°tan60°+sin60°26.计算:3tan30°﹣cos245°+﹣2sin60°.27.计算:sin30°﹣2cos230°+(﹣tan45°)2018.28.计算:sin45°.29.计算:tan45°﹣(sin60°)2﹣+2cos30°.30.计算:(1)tan60°﹣;(2)6tan230°﹣sin 60°﹣2sin 45°31.若规定:sin(α+β)=sinα•cosβ+cosα•sinβ,试确定sin75°+sin90°的值.35.已知α是锐角,cos(a﹣15°)=,求﹣|cosa﹣tan|的值.32.如图,已知△ABC中,∠C=90°,且sinA=,BC=1.5,求AC.33.已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.34.设θ为直角三角形的一个锐角,给出θ角三角函数的两条基本性质:①tanθ=;②cos2θ+sin2θ=1,利用这些性质解答本题.已知cosθ+sinθ=,求值:(1)tanθ+;(2)||.特殊三角函数值的计算参考答案一.选择题(共10小题)1.A;2.B;3.D;4.D;5.A;6.D;7.C;8.C;9.B;10.A;二.填空题(共10小题)11.;12.90°;13.;14.0;15.+;16.70;17.20;18.;19.;20.;三.解答题(共15小题)21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;31.;32.;33.;34.;35.;。
2016年12月14日特殊角的三角函数一.填空题(共30小题)1.计算cos60°=.2.tan60°=.3.求值:sin60°﹣tan30°=.4.2cos30°=.5.如图,在直角三角形ABC中,∠C=90°,AC=5,AB=10,则∠A=度.6.计算:sin60°﹣cot30°=7.若tan(x+10°)=1,则锐角x的度数为.8.在等腰Rt△ABC中,AB=AC,则tanB=.9.计算:sin45°+cos45°﹣tan30°sin60°=.10.计算:sin245°+cot30°•tan60°=.11.计算cos245°+tan60°cos30°的值为.12.计算:|sin60°•tan30°﹣1|=.13.计算:1﹣2sin30°=.14.计算sin30°+cos245°=.15.∠A是锐角,若cosA=,则∠A的余角度数为.16.若2cosα=1,则锐角α=度.17.计算:sin230°+cos60°•sin30°=.18.计算sin230°﹣cos45°tan60°+﹣tan45°.19.已知锐角A满足关系式4sin2A﹣1=0,则sinA的值为.20.若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ=.21.计算:sin245°+cot60°•cos30°=.22.计算:cot30°+cot45°=.23.计算:2sin60°+tan45°=.24.已知α是锐角,且tan(90°﹣α)=,则α=.25.已知a为锐角,tan(90°﹣a)=,则a的度数为.26.°=.27.如果锐角α满足2cosα=,那么α=.28.sin60°的值为.29.计算:cos30°﹣sin60°=.30.∠A的余角为60°,则∠A的补角为°,tanA=.2016年12月14日特殊角的三角函数参考答案与试题解析一.填空题(共30小题)1.(2016•湘潭)计算cos60°=.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.【点评】此题考查了特殊角的三角函数值,属于基础题,注意掌握特殊角的三角函数值,这是需要我们熟练记忆的内容.2.(2016•黔东南州)tan60°=.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.3.(2016•闸北区一模)求值:sin60°﹣tan30°=.【分析】根据sin60°=,tan30°=得到原式=﹣,然后通分合并即可.【解答】解:原式=﹣=﹣=.故答案为.【点评】本题考查了特殊角的三角函数值:sin60°=,tan30°=.也考查了二次根式的运算.4.(2016•淮阴区校级二模)2cos30°=.【分析】根据cos30°=,继而代入可得出答案.【解答】解:原式=.故答案为:.【点评】此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是掌握一些特殊角的三角函数值,需要我们熟练记忆,难度一般.5.(2016•厦门校级一模)如图,在直角三角形ABC中,∠C=90°,AC=5,AB=10,则∠A=30度.【分析】根据条件求出,即可得到cos∠A的值,再根据特殊角的三角函数值求出∠A的度数.【解答】解:∵∠C=90°,AC=5,AB=10,∴cosA===,∴∠A=30°,故答案为:30°.【点评】此题主要考查了锐角三角函数定义,以及特殊角的三角函数值,解决此题的关键是求出cosA.6.(2016•杨浦区一模)计算:sin60°﹣cot30°=【分析】根据特殊角的三角函数值计算.【解答】解:原式=﹣=﹣.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.7.(2016•富顺县校级一模)若tan(x+10°)=1,则锐角x的度数为20°.【分析】利用特殊角的三角函数值得出x+10°的值进而求出即可.【解答】解:∵tan(x+10°)=1,∴tan(x+10°)==,∴x+10°=30°,∴x=20°.故答案为:20°.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关角对应的函数值是解题关键.8.(2016•洪泽县一模)在等腰Rt△ABC中,AB=AC,则tanB=1.【分析】根据等腰直角三角形的性质,可得∠B,根据特殊角三角函数值,可得答案.【解答】解:由等腰Rt△ABC中,AB=AC,得∠B=45°.tanB=tan45°=1,故答案为:1.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.9.(2016•抚顺县一模)计算:sin45°+cos45°﹣tan30°sin60°=﹣.【分析】把特殊角是三角函数值代入计算即可.【解答】解:原式=+﹣×=﹣.故答案为:﹣.【点评】本题考查的是特殊角是三角函数值的计算,熟记30°、45°、60°角的各种三角函数值是解题的关键.10.(2016•普陀区一模)计算:sin245°+cot30°•tan60°=.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=sin245°+cot30°•tan60°=()2+×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.11.(2016•河西区模拟)计算cos245°+tan60°cos30°的值为2.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:cos245°+tan60°cos30°=()2+×=+=2.故答案为:2.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12.(2016•江西模拟)计算:|sin60°•tan30°﹣1|=0.5.【分析】结合特殊角的三角函数值求解即可.【解答】解:原式=|•﹣1|=|﹣1|=|﹣0.5|=0.5.故答案为:0.5.【点评】本题考查了特殊角的三角函数值,解答本题的关键在于熟练掌握各特殊角的三角函数值.13.(2016•封开县二模)计算:1﹣2sin30°=0.【分析】根据特殊角的三角函数值进行计算即可.【解答】解:原式=1﹣2×=1﹣1=0,故答案为0.【点评】本题考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.14.(2016春•沂源县期中)计算sin30°+cos245°=1.【分析】把特殊角的三角函数值代入计算即可.【解答】解:原式=+()2=+=1,故答案为:1.【点评】本题考查的是特殊角是三角函数值的计算,熟记30°、45°、60°角的各种三角函数值是解题的关键.15.(2016春•淮安校级期中)∠A是锐角,若cosA=,则∠A的余角度数为60°.【分析】结合特殊角的三角函数值进行求解即可.【解答】解:∵∠A是锐角,且cosA=,∴∠A=30°,∴∠A的余角的度数为:90°﹣30°=60°.故答案为:60°.【点评】本题考查了特殊角的三角函数值,解答本题的关键在于熟练掌握各特殊角的三角函数值.16.(2016春•会宁县校级月考)若2cosα=1,则锐角α=60度.【分析】根据特殊角的三角函数值求解.【解答】解:∵2cosα=1,∴cosα=,∴α=60°.故答案为:60.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.17.(2016秋•道外区校级月考)计算:sin230°+cos60°•sin30°=.【分析】直接利用特殊角的三角函数值进而代入数据得出答案.【解答】解:sin230°+cos60°•sin30°=+×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.(2016秋•安丘市校级月考)计算sin230°﹣cos45°tan60°+﹣tan45°.【分析】首先代入特殊角的三角函数值,然后进行二次根式的运算即可.【解答】解:原式=()2﹣×+﹣1=﹣+﹣1=【点评】本题考查了特殊角的三角函数值,正确进行二次根式的运算是关键.19.(2016秋•江阴市校级月考)已知锐角A满足关系式4sin2A﹣1=0,则sinA的值为.【分析】利用直接开平方法求得sinA=±,结合A是锐角可以推知sinA=.【解答】解:4sin2A﹣1=0,sin2A=,∴sinA=±,∴A是锐角,∴sinA>0,∴sinA=.故答案是:.【点评】本题考查了特殊角的三角函数值,解题时,注意∠A的取值范围,以防误解为sinA=±.20.(2016春•丰台区校级月考)若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ=.【分析】根据特殊角三角函数值,可得答案.【解答】解:由θ为三角形的一个锐角,且2sinθ﹣=0,得θ=60°.tanθ=tan60°=,故答案为:.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.21.(2016春•丰台区校级月考)计算:sin245°+cot60°•cos30°=1.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin245°+cot60°•cos30°=()2+×=+=1.故答案为:1.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.22.(2016春•上海校级月考)计算:cot30°+cot45°=+1.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=+1,故答案为:+1.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.23.(2015•闸北区一模)计算:2sin60°+tan45°=+1.【分析】根据特殊三角函数值,可得答案.【解答】解:原式=2×+1=+1,故答案为:+1.【点评】本题考查了特殊角的三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.24.(2015•锦江区一模)已知α是锐角,且tan(90°﹣α)=,则α=30°.【分析】先求出90°﹣α的度数,然后求出α的度数.【解答】解:∵tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.25.(2015•青岛模拟)已知a为锐角,tan(90°﹣a)=,则a的度数为30°.【分析】先根据α为锐角及tan60°=解答即可.【解答】解:∵α为锐角,tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°.故答案为:30°.【点评】本题主要考查特殊角的三角函数值,比较简单,只要熟记特殊角的三角函数值即可解答.26.(2015•冷水江市校级模拟)°=.【分析】分别根据绝对值、0指数幂、负整数指数幂及特殊角的三角函数值进行计算即可.【解答】解:原式=2﹣+1﹣+2×=2﹣+1﹣+=.故答案为:.【点评】本题考查的是绝对值、0指数幂、负整数指数幂及特殊角的三角函数值,熟知以上运算法则是解答此题的关键.27.(2015•石河子校级模拟)如果锐角α满足2cosα=,那么α=45°.【分析】先求出cosα的值,然后根据特殊角的三角函数值求出α的度数.【解答】解:∵2cosα=,∴cosα=,则α=45°.故答案为:45°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.28.(2015•武侯区模拟)sin60°的值为.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.29.(2015•徐汇区一模)计算:cos30°﹣sin60°=0.【分析】根据特殊三角函数值,可得实数,根据实数的运算,可得答案.【解答】解:原式=﹣=0,故答案为:0.【点评】本题考查了特殊三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.30.(2015•武进区一模)∠A的余角为60°,则∠A的补角为150°,tanA=.【分析】根据余角的定义,可得∠A,根据补缴的定义,可得∠A的补角,根据正切函数的定义,可得正切函数值.【解答】解:由∠A的余角为60°,得∠A=30°.∠A的补角为150°,tanA=,故答案为:150,.【点评】本题考查了余角、补角,利用了余角的定义、补角的定义,熟记特殊角三角函数值是解题关键.。
特殊角的三角函数值(北京习题集)(教师版)一.选择题(共5小题)1.(2019秋•昌平区期末)已知A ∠是锐角,tan 1A =,那么A ∠的度数是( )A .15︒B .30︒C .45︒D .60︒2.(2019秋•顺义区期末)在Rt ABC ∆中,90C ∠=︒,60A ∠=︒,则sin cos A B +的值为( )A .14BCD 3.(2018秋•怀柔区期末)已知A ∠为锐角,且1sin 2A =,那么A ∠等于( ) A .15︒ B .30︒ C .45︒ D .60︒4.(2019秋•密云区期末)在Rt ABC ∆中,90C ∠=︒,若1sin 2A =,则B ∠的度数是( ) A .30︒ B .45︒ C .60︒ D .75︒5.(2018秋•丰台区期末)如果A ∠是锐角,且1sin 2A =,那么A ∠的度数是( ) A .90︒ B .60︒ C .45︒ D .30︒二.填空题(共6小题)6.(2019秋•房山区期末)已知:tan 3α=,则锐角α= .7.(2019秋•海淀区校级月考)若cos 2A =,则锐角A 的度数为 .8.(2019秋•丰台区期末)如果tan α=,那么锐角α= ︒. 9.(2019秋•门头沟区期末)如果A ∠是锐角,且1sin 2A =,那么A ∠= ︒.10.(2019春•海淀区校级月考)ABC ∆中,A ∠、B ∠均为锐角,且2|tan (2sin 0B A +=,则ABC ∆的形状是 .11.(2019春•海淀区校级期末)在ABC ∆|3tan 3|0B -=,则ABC ∆是 三角形.三.解答题(共4小题)12.(2019秋•西城区期末)计算3tan304cos452sin60︒+︒-︒.13.(2019秋•昌平区期末)计算:2sin302cos60tan60sin 45︒+︒⨯︒-︒.14.(2019秋•朝阳区期末)计算:sin60cos30tan45︒-︒+︒.15.(2019秋•北京期末)计算:cos30tan604sin30︒︒+︒特殊角的三角函数值(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2019秋•昌平区期末)已知A ∠是锐角,tan 1A =,那么A ∠的度数是( )A .15︒B .30︒C .45︒D .60︒【分析】直接利用特殊角的三角函数值得出答案.【解答】解:A ∠是锐角,tan 1A =,A ∴∠的度数是:45︒.故选:C .【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.2.(2019秋•顺义区期末)在Rt ABC ∆中,90C ∠=︒,60A ∠=︒,则sin cos A B +的值为( )A .14BCD 【分析】直接利用特殊角的三角函数值进而得出答案.【解答】解:90C ∠=︒,60A ∠=︒,30B ∴∠=︒,则sin cos A B +=故选:B . 【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.3.(2018秋•怀柔区期末)已知A ∠为锐角,且1sin 2A =,那么A ∠等于( ) A .15︒ B .30︒ C .45︒ D .60︒【分析】根据特殊角的三角函数值求解.【解答】解:1sin 2A =,A ∠为锐角, 30A ∴∠=︒. 故选:B .【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.4.(2019秋•密云区期末)在Rt ABC ∆中,90C ∠=︒,若1sin 2A =,则B ∠的度数是( ) A .30︒ B .45︒ C .60︒ D .75︒【分析】直接利用特殊角的三角函数值进而得出答案.30A ∴∠=︒, 在Rt ABC ∆中,90C ∠=︒,60B ∴∠=︒.故选:C .【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.5.(2018秋•丰台区期末)如果A ∠是锐角,且1sin 2A =,那么A ∠的度数是( ) A .90︒ B .60︒ C .45︒ D .30︒【分析】利用特殊角的三角函数值解答即可.【解答】解:A ∠是锐角,且1sin 2A =, A ∴∠的度数是30︒,故选:D .【点评】此题考查特殊角的三角函数值,关键是利用特殊角的三角函数值解答.二.填空题(共6小题)6.(2019秋•房山区期末)已知:tan α=,则锐角α= 30︒ . 【分析】比较30︒,45︒,60︒的正切值,求α的值.【解答】解:tan 303︒=, 30α∴=︒.故答案为:30︒.【点评】本题考查了特殊角的三角函数值.关键是熟练掌握特殊角与其三角函数值的关系.7.(2019秋•海淀区校级月考)若cos 2A =,则锐角A 的度数为 45︒ . 【分析】根据特殊角的三角函数值可得答案.【解答】解:cos 2A =, 45A ∴∠=︒, 故答案为:45︒.【点评】此题主要考查了特殊角的三角函数值,关键是掌握30︒,45︒,60︒角的三角函数值.8.(2019秋•丰台区期末)如果tan α=,那么锐角α= 30 ︒. 【分析】直接利用特殊角的三角函数值得出答案.∴锐角30α=︒. 故答案为:30.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.9.(2019秋•门头沟区期末)如果A ∠是锐角,且1sin 2A =,那么A ∠= 30 ︒. 【分析】直接利用特殊角的三角函数值得出答案.【解答】解:A ∠是锐角,且1sin 2A =, 30A ∴∠=︒. 故答案为:30.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.10.(2019春•海淀区校级月考)ABC ∆中,A ∠、B ∠均为锐角,且2|tan (2sin 0B A +=,则ABC ∆的形状是 等边三角形 .【分析】先根据非负数的性质及特殊教的三角函数值求出A ∠,B ∠的度数,再根据三角形的内角和定理求出C ∠的度数,最后根据三个内角关系判断出其形状.【解答】解:2|tan (2sin 0B A +=,tan 0B ∴,2sin 0A .tan B ∴60B ∠=︒;sin A =,60A ∠=︒. 60C ∴∠=︒ABC ∴∆的形状是等边三角形.【点评】本题考查了:(1)特殊角的三角函数值;(2)非负数的性质;(3)三角形的内角和定理.11.(2019春•海淀区校级期末)在ABC ∆|3tan 3|0B -=,则ABC ∆是 钝角 三角形.【分析】直接利用非负数的性质得出sin 0.5A =,tan 1B =,再利用特殊角的三角函数值得出答案.【解答】解:|3tan 3|0B -=,sin 0.5A ∴=,3tan 3B =,解得:tan 1B =,故30A ∠=︒,45B ∠=︒,105C ∴∠=︒,则ABC ∆是钝角三角形.故答案为:钝角.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三.解答题(共4小题)12.(2019秋•西城区期末)计算3tan304cos452sin60︒+︒-︒.【分析】代入特殊角的三角函数值计算.【解答】解:3tan 304︒+ cos452︒- sin 60︒342=+=.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.13.(2019秋•昌平区期末)计算:2sin302cos60tan60sin 45︒+︒⨯︒-︒.【分析】将特殊角的三角函数值代入求解.【解答】解:2sin302cos60tan60sin 45︒+︒⨯︒-︒211222=+⨯,=.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.14.(2019秋•朝阳区期末)计算:sin60cos30tan45︒-︒+︒.【分析】直接利用特殊角的三角函数值分别代入得出答案.【解答】解:原式1=+ 1=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.15.(2019秋•北京期末)计算:cos30tan604sin30︒︒+︒【分析】将特殊角的三角函数值代入求解.【解答】解:原式142=⨯, 322=+, 72=. 【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.。
特殊角的三角函数值(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.57一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•薛城区期末)已知α为锐角,且sin(α﹣10°)=,则α等于()A.70°B.60°C.50°D.30°解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选:A.2.(2分)(2022秋•云州区期末)已知∠α为锐角,且sinα=,则∠α=()A.30°B.45°C.60°D.90°解:∵∠α为锐角,且sinα=,∴∠α=60°,故选:C.3.(2分)(2022秋•裕华区校级期末)已知α为锐角,且,则α等于()A.70°B.60°C.40°D.30°解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选:A.4.(2分)(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是()A.15°B.45°C.30°D.60°解:在Rt△ABC中,∠C=90°,∵tanB===,∴∠B=60°,故选:D.5.(2分)(2023•南开区二模)下列三角函数中,结果为的是()A.cos30°B.tan30°C.sin60°D.cos60°解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.6.(2分)(2022秋•香坊区校级月考)已知α为锐角,,则α的度数为()A.30°B.45°C.60°D.75°解:∵α为锐角,tan(90°﹣α)=,∴90°﹣α=30°,∴α=60°.故选:C.7.(2分)(2015•杭州模拟)在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为()A.B.C.1 D.解:过A点作AD⊥BC于D,在Rt△BDA中,由于∠B=60°,∴DB=,AD=c,在Rt△ADC中,DC2=AC2﹣AD2,∴(a﹣)2=b2﹣c2,即a2+c2=b2+ac,∴.故选:C.8.(2分)(2022秋•沛县月考)在△ABC中,∠A、∠B都是锐角,sin A=,cos B=,此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解:∵sinA=,cosB=,∴∠A=30°,∠B=30°,∴∠C=180°﹣∠A﹣∠B=120°,∴△ABC是钝角三角形,故选:C.9.(2分)(2021秋•潍坊期末)sin45°的倒数是()A.B.C.D.1解:∵sin45°=,而的倒数为,∴sin45°的倒数是.故选:B.10.(2分)(2022•和平区三模)已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°解:∵sinA=,∴∠A=60°.故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•船营区校级期末)已知α是锐角,,则α=°.解:∵,∴tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°,故答案为:30.12.(2分)(2022秋•郑州期末)若sin(x+15°)=,则锐角x=°.解:∵sin(x+15°)=,∴x+15°=60°,解得:x=45°,故答案为:45.13.(2分)(2022秋•镇海区期末)已知α为锐角,且tan(α﹣10°)=,则锐角α的度数是.解:∵α为锐角,且tan(α﹣10°)=,∴α﹣10°=30°,则α=40°.故答案为:40°.14.(2分)(2022秋•永定区期末)△ABC中,∠A,∠B都是锐角,若cos A=,tan B=1,则∠C=.解:∵cosA=,tanB=1,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°,故答案为:105°.15.(2分)(2022秋•泰山区期末)若cos(α﹣10°)=,则∠α的角度数为.解:∵cos(α﹣10°)=,∴α﹣10°=60°,则α=70°.故答案为:70°.16.(2分)(2023•东阿县校级开学)△ABC中,∠A、∠B都是锐角,且sin A=sin B=,则△ABC是三角形.解:由△ABC中,∠A、∠B都是锐角,且sinA=sinB=,得∠A=∠B=30°,故答案为:钝角.17.(2分)(2022秋•浦东新区校级月考)已知α为锐角,tanα=2cos60°,那么α=度.解:∵,∴,∵α为锐角,∴α=45°,故答案为:45.18.(2分)(2021秋•道外区校级月考)在Rt△ABC中,∠C=90°,若c=2,tan A=,则a=.解:∵∠C=90°,tanA==,设BC=a=x,则AC=b=2x,∴AB===2,∴x=,∴a=.故答案为:.19.(2分)(2018•新乡二模)计算:(﹣)2﹣2cos60°=;解:(﹣)2﹣2cos60°=﹣2×=﹣1=﹣.故答案为:﹣.20.(2017•奉化市自主招生)已知△ABC的内角满足|tan A﹣3|+=0,则∠C=度.(2分)解:由题意,得,解得∠A=60°,∠B=45°,∠C=180°﹣∠A﹣∠B=75°,故答案为与:75.三.解答题(共8小题,满分60分)21.(6分)(2023春•未央区校级月考)cos60°﹣2sin245°+3tan230°﹣sin30°.解:cos60°﹣2sin245°+3tan230°﹣sin30°====0.22.(6分)(2023•涡阳县模拟)(1)计算:2cos245°﹣1+tan30°tan60°;(2).解:(1)2cos245°﹣1+tan30°tan60°==1﹣1+1=1.(2),去分母,得x+1>6(x﹣1)﹣8.去括号,得x+1>6x﹣6﹣8.移项,得x﹣6x>﹣6﹣8﹣1.合并同类项,得﹣5x>﹣15.x的系数化为1,得x<3.∴这个不等式的解为x<3.23.(8分)(2022秋•镇海区期末)(1)计算:.(2)已知,求的值.解:(1)原式=×﹣×+1=1.5﹣1+1=1.5;(2)∵,∴5(x﹣2y)=2(x+y),5x﹣10y=2x+2y,3x=12y,∴==4.24.(8分)(2022秋•广陵区校级期末)计算:(1)tan60°cos30°﹣3sin245°;(2).解:(1)tan60°cos30°﹣3sin245°=×﹣3×()2=﹣3×=﹣=0;(2)2cos45°﹣tan30°cos30°+sin260°===.25.(8分)(2022秋•鄞州区期末)(1)计算:sin60°•tan60°﹣2tan245°;(2)实数x,y满足(x+1):3=(y+2):6,求的值.解:(1)原式=×﹣2×12=﹣2=﹣;(2)∵(x+1):3=(y+2):6,∴3(y+2)=6(x+1),即y=2x,∴=2.26.(8分)(2022•绍兴)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.解:(1)原式=6×+1﹣2==1;(2),①+②得:3x=6,解得x=2,把x=2代入②,得:y=0,∴原方程组的解是.27.(8分)(2021•顺城区一模)求下列各式的值.(1)sin45°•cos45°+tan60°•sin60°(2).解:(1)原式=×+×=+=2;(2)原式=﹣12+×()2﹣=﹣1+﹣=﹣.28.(8分)(2022秋•长安区月考)计算:.解:===。
知识点1 特殊角的三角函数值1.计算:(1)sin30°+cos45°; (2)cos30°·tan30°-tan45°;(3)sin 260°+cos 260° (4)22sin45°+sin60°·cos45°. 知识点2 由三角函数值求特殊角 2.已知α为锐角,且cos(90°-α)=12,则α= . 3.在△ABC 中,∠C =90°,AC =2,BC =23,则∠A = .4.(邵阳中考)在△ABC 中,若⎪⎪⎪⎪⎪⎪sinA -12+(cosB -12)2=0,则∠C 的度数是( ) A .30° B .45° C .60° D .90°5.如果在△ABC 中,sinA =cosB =22,那么下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形C .△ABC 是等腰直角三角形D .△ABC 是锐角三角形6.在△ABC 中,∠A =75°,sinB =32,则tanC =( ) A.33 B. 3 C .1 D.327.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( )A .40°B .30°C .20°D .10°8.(孝感中考)式子2cos30°-tan45°-(1-tan60°)2的值是( )A .23-2B .0C .2 3D .29.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OC =2,则点B 的坐标为( )A .(2,1)B .(1,2)C .(2+1,1)D .(1,2+1)10.(重庆中考)如图,C 为⊙O 外一点,CA 与⊙O 相切,切点为A ,AB 为⊙O 的直径,连接CB.若⊙O 的半径为2,∠ABC =60°,则BC = .11.若a =3-tan60°,求(1-2a -1)÷a 2-6a +9a -1的值。
30°,45°,60°角的三角函数值练习题一、填空题:1.在Rt △ABC 中,∠C=90°,∠A=30°,则sinB=______,tanA=_______.2.计算:00145cos602-=____________.3.已知tan α=则锐角α的度数为_____;若cos 0α=,则锐角α的度数为_____.4.已知∠B 是锐角,若1sin22B =,则tanB 的值为_______. 5.式子1-2sin30°·cos30°的值为_________. 二、选择题:6.在△ABC 中,∠C=90°,sinA=2,则cosB 的值为( )A.1 D.127.若,且α为锐角,则cos α等于( )A.128.在△ABC 中,∠C=90°,如果AB=2,BC=1,那么∠A 的度数为( ) A.30° B.45° C.60° D.90°9.在Rt △ABC 中,∠C=90°,且tanA=3,则sinB 的值为( )C.1210.在△ABC 中,若21sin tan 02A B ⎫-+-=⎪⎪⎝⎭,则∠C 的度数为( ) A.30° B.60° C.90° D.120°11.计算5sin30°+2cos 245°-tan 260°的值是( )B.12 C.-12D.1 三、解答题:12.计算:(1)tan60°·cos30°-3tan30°·tan45°;(2)sin30°+cos60°-tan45°-tan30°·tan60°;(3)000tan30sin 601cos60+-;(4)cos60°-3tan30°+tan60°+2sin 245°.13.如图,从B 点测得塔顶A 的仰角为60°,测得塔基D 的仰角为45°, 已知塔基高出测量仪器20米(即DC=20米),求塔身AD 的高(精确到1米).14.如图,有一个同学用一个含有30°角的直角三角板估测他们学校的旗杆AB 的高度,他将30°的直角边水平放在1.3米高的支架CD 上, 三角板的斜边与旗杆的顶点在同一直线上,他又量得D,B 的距离为15米,求旗杆AB 的高度(精确到0.1米).BDA CA。
专题1.5 锐角三角函数的计算——特殊角的三角函数值(专项练习)一、单选题 1.tan45°=( ) A .1B .22C 3D 323). A .cos30︒B .tan30︒C .cos45︒D .sin30︒3.点()sin60,cos30︒︒关于y 轴对称的点的坐标是( ). A .132⎛- ⎝⎭B .13,2⎛ ⎝⎭C .33⎛ ⎝⎭D .33⎝⎭4.已知()3tan 903α︒-=α的度数是( )A .60°B .45°C .30°D .75°5.在△ABC 中,∠C =90°,AB 2BC =1,则∠A 的度数为( ) A .30B .45︒C .60︒D .75︒6.关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ-=-,由该公式可求得sin15︒的值是( )A 62+B 62-C 32-D 31-7.若)23A 32cos B 30-+=,则ABC 的形状是( )A .含有60°直角三角形B .等边三角形C .含有60°的任意三角形D .等腰直角三角形82x 0(x ≠0),cos30°38 ) A .1个B .2个C .3个D .4个9.如图,30BAC ∠=︒,AD 平分BAC ∠,DF AB ⊥交AB 于F ,DE DF ⊥交AC 于E .若8AE =,则DF 等于( )A .5B .4C .3D .210.如果∠A 为锐角,cos A 3∠A 取值范围是( ) A .0°<∠A ≤30° B .30°<∠A ≤45° C .45°<∠A<60° D .60°<∠A <90°二、填空题11.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos∠AOB 的值等于______12.如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则AOB ∠的正切值是______.13.两块全等的等腰直角三角形如图放置,90,A DE ∠=︒交AB 于点P ,E 在斜边BC 上移动,斜边EF 交AC 于点Q ,32,10BP BC ==,当BPE 是等腰三角形时,则AQ 的长为___________.14.如图,平行四边形ABCD 的边AB 在x 轴正半轴上,5BC =,4sin 5CBA ∠=,一次函数4y x =-的图象经过点A 、C ,反比例函数ky x=的图象经过点D ,则k =________.15.如图,在菱形ABCD 中,AB =8,∠B =120°,点O 是对角线AC 的中点,OE ∠CD 于点E ,则OE 的长为 __.16.如图,在∠ABC 中,AB =4,BC =7,∠B =60°,点D 在边BC 上,CD =3,联结AD .如果将∠ACD 沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为____.17.如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM MN +的最小值为___________________.18.如图,已知线段4AB =,O 是AB 的中点,直线l 经过点O ,160∠=,P 点是直线l 上一点,当APB ∆为直角三角形时,则BP =_____.三、解答题19.计算:(1) 3tan30tan 452sin30︒+︒+︒; (2) 2cos 30tan 30sin 60245︒︒︒︒+⨯. 20.计算 (1) 013131(2007)()3tan 3084π-+---︒(2) 2cos 6045tan 30cos30︒+︒+︒⋅︒.21.计算与化简题(1) 计算:11351220224sin 603-⎛⎫-⨯++︒ ⎪⎝⎭(2) 先化简,再求代数式21691224a a a a -+⎛⎫-÷⎪--⎝⎭的值,其中4cos303tan 45a =︒+︒.22.如图,已知等边三角形ABC 的边长为6cm ,点P 从点A 出发,沿A →C →B 的方向以2cm/s的速度向终点B运动,同时点Q从点B出发,沿B→A的方向以1cm/s的速度向终点A运动.当点P运动到点B时,两点均停止运动.运动时间记为t,请解决下列问题:(1)若点P在边AC上,当t为何值时,APQ为直角三角形?(2)是否存在这样的t值,使APQ的面积为3 2 ?若存在,请求出t的值,若不存在,请说明理由.23.四边形ABCD是菱形,∠ABC=60°,E是对角线BD上的一个动点,连接AE,将线段AE绕点A逆时针旋转120°得到线段AF,连接EF,DF.(1)如图1,求∠BDF的度数;(2)如图2,当DB=3DF时,连接EC,求证:四边形FECD是矩形;(3)若G为DF中点,连接EG,当线段BD与DF满足怎样的数量关系时,四边形AEGF 是菱形,并说明理由.24.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将∠BCD沿直线BD翻折得到∠BC′D,若点C′恰好落在抛物线的对称轴上,求点C′和点D的坐标;参考答案1.A【分析】根据直角三角形中45°角的正切值计算并判断即可.解:tan45°=1,故选:A .【点拨】本题考查直角三角形中45°角的正切值,能够牢记直角三角形中特殊度数的角的正切值,正弦值,余弦值是解决此类题型的关键.2.A【分析】根据特殊角的三角函数值解答. 解:A 、cos30︒3B 、tan30︒3C 、cos45︒=22,不符合题意; D 、sin30︒=12,不符合题意;故选A .【点拨】本题考查特殊角的三角函数值,准确掌握常见的特殊角的三角函数值是解题的关键.3.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可. 解:∠sin60°3cos30°3∠33y 轴对称的点的坐标是(33.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.4.A【分析】根据3tan 30︒=9030α︒-=︒即可求解. 解:∠()3tan 903α︒-=,α为锐角,∠9030α︒-=︒, ∠60α=︒, 故选:A .【点拨】本题考查根据特殊角三角函数值求角的度数,熟记特殊角的三角函数值是解答的关键.5.B【分析】直接利用已知画出直角三角形,再利用锐角三角函数关系得出答案. 解:∠∠C =90°,AB 2BC =1,∠sin A =22BC AB = ∠∠A =45°. 故选:B .【点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 6.B【分析】根据()sin15sin 4530sin45cos30cos45sin30︒=︒-︒=︒︒-︒︒,代入特殊三角函数值计算即可.解:()sin15sin 4530︒=︒-︒sin45cos30cos45sin30=︒︒-︒︒23212=62-=故选:B .【点拨】本题考查了实数的运算,特殊角的三角函数值,灵活运用公式把一般角转化为特殊角的和或者差是解题的关键.7.A333,cos A B ==,从而得到60,30A B ∠=︒∠=︒,即可求解.解:解∠∠)23A 32cos B 30-+=,330,2cos 30A B -==,333,cos A B =, ∠60,30A B ∠=︒∠=︒, ∠∠C =90°,∠ABC 是含有60°直角三角形. 故选:A【点拨】本题主要考查了特殊角锐角三角函数值,绝对值和平方的非负性,熟练掌握特殊角锐角三角函数值是解题的关键.8.B【分析】根据零指数幂,特殊角的三角函数值,实数的意义,即可解答. 2x 0(x ≠0)=1,3cos30°382382,x 0=1, 所以,有理数的个数是2, 故选:B .【点拨】本题考查了零指数幂,特殊角的三角函数值,实数,熟练掌握这些数学概念是解题的关键.9.B【分析】过D 点作DG ∠AC 于G 点,通过DF ∠AB ,DE ∠DF ,可得AB ED ∥,进而有∠BAD =∠ADE ,∠DAE =∠ADE =15°,即可得AE =DE =8,易证得AFD AGD ≅△△,即可求解DF =DG =4.解:过D 点作DG ∠AC 于G 点,如图,∠AD 平分∠BAC ,∠BAC =30°, ∠∠BAD =∠CAD =15°, 又∠DF ∠AB ,DE ∠DF ,∠AB ED ∥,∠AFD =∠AGD =90°, ∠∠BAD =∠ADE , ∠∠DAE =∠ADE =15°, ∠∠AED 是等腰三角形,∠AE=DE=8,∠DEC=∠EDA+∠EAD=30°,在Rt∠DEG中,有1sin sin302 DGDEGDE=∠==,∠DG=4,∠∠AFD=∠AGD,∠BAD=∠CAD,AD=AD,∠AFD AGD≅△△,∠DF=DG=4,故选:B.【点拨】本题考查了角平分线的性质、平行的相关的性质、等腰三角形的判定和性质以及特殊角的三角函数等知识,利用角平分线的性质是解答本题的关键.10.C【分析】分别求出60°和45°角的余弦值,由此得到答案.解:∠cos60°=12,cos45°2,且1322∠45°<∠A<60°.故选C.【点拨】此题考查了角度的余弦公式,余弦值随着角度的增大而减小的性质,熟记公式是解题的关键.11.1 2解:∠OA=OB=AB,∠∠ABC是等边三角形,∠∠AOB=60°,∠cos∠AOB=cos60°=12.故答案是:12.12.1【分析】连接AB,由勾股定理求得AB、AO、BO的长,判断△ABO是等腰直角三角形,即可求得答案.解:连接AB,由勾股定理得:AB 221310+AO 221310+OB 222425+= ∠AB =AO ,(22222101020OA AB OB +=+==,∠△ABO 是以OB 为斜边的等腰直角三角形,∠tan tan 451AOB ∠︒==,故答案为:1.【点拨】此题考查了勾股定理在网格中的应用、勾股定理的逆定理、等腰直角三角形的性质、特殊角的三角函数值等知识,熟练掌握勾股定理及其逆定理是解题的关键.13.8210322【分析】解答时,分BE =PE ,PB =PE 和BP =BE 三种情况求解即可.解:当BE =PE 时,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠BPE =45°,∠BEP =90°,∠QEC =45°,∠EQC =90°,∠PE =BE =BPsin 45°=232,EQ =CQ =ECsin 45°=272(103)- ∠ BC =10,∠AC =BCsin 45°=210=52 ∠AQ =AC -QC =723252= 当PB =PE 时, 根据前面计算,得到BH =PH =3,∠BH =HE =3,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠EQC =45°,∠CEQ =90°,EC =EQ =BC -BE =10-6=4,∠CQ =4=42sin 452CQ =, ∠ BC =10,∠AC =BCsin 45°=210=52 ∠AQ =AC -QC =52422当BP =BE 时,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠BPE =∠BEP =∠QEC =∠EQC ,∠PE =BE =32EQ =CQ =BC -BE =(1032)-,∠ BC =10,∠AC =BCsin 45°=210=522⨯ ∠AQ =AC -QC =52(1032)8210-=,综上所述AQ 的长为8210232, 故答案为:8210232【点拨】本题考查了等腰直角三角形的性质,勾股定理,等腰三角形的判定和性质,特殊角的三角函数值,熟练掌握等腰直角三角形的性质和准确进行等腰三角形的等腰分类,灵活运用特殊角的三角函数值是解题的关键.14.4【分析】根据平行四边形的性质、三角函数值,结合一次函数求出D 的坐标即可求解; 解:如图,过点D 作DE ∠AB将y =0代入y =x -4中记得x =4∠A (4,0)在平行四边形ABCD 中,∠∠OAD =∠CBA∠4sin 5DE OAD AD ∠== ∠AD =BC =5∠DE =4,AE =3∠OE =OA -AE =4-3=1∠D (1,4)∠144k x y =⋅=⨯=故答案为:4【点拨】本题主要考查反比例函数、平行四边形、三角函数值、一次函数,掌握相关知识并灵活应用是解题的关键.15.23【分析】连接OB ,由菱形的性质得BC =AB =8,BO ∠AC ,再由等腰三角形的性质得∠ACB =∠ACD =30°,然后由锐角三角函数定义求出OC =3最后由含30°角的直角三角形的性质求解即可.解:连接OB,如图所示:∠四边形ABCD为菱形,点O是对角线AC的中点,∠BC=AB=8,BO∠AC,∠∠ACB=∠ACD12=(180°﹣120°)=30°,在Rt∠BOC中,OC=cos30°•BC3=8=3∠OE∠CD,∠∠CEO=90°,在Rt∠COE中,OE12=OC12=⨯33故答案为:3【点拨】本题考查了菱形的性质、等腰三角形的性质、锐角三角函数定义以及含30°角的直角三角形的性质,解题的关键是熟练掌握菱形的性质.1633【分析】过E点作EH∠BC于H,证明∠ABD是等边三角形,进而求得∠ADC=120°,再由折叠得到∠ADE=∠ADC=120°,进而求出∠HDE=60°,最后在Rt∠HED中使用三角函数即可求出HE的长.解:如图,过点E作EH∠BC于H,∠BC=7,CD=3,∠BD=BC-CD=4,∠AB=4=BD,∠B=60°,∠∠ABD是等边三角形,∠∠ADB =60°,∠∠ADC =∠ADE =120°,∠∠EDH =60°,∠EH ∠BC ,∠∠EHD =90°.∠DE =DC =3,∠EH =DE 333 ∠E 到直线BD 33 33 【点拨】本题考查了折叠问题,解直角三角形,点到直线的距离,本题的关键点是能求出∠ADE=∠ADC=120°,另外需要重点掌握折叠问题的特点:折叠前后对应的边相等,对应的角相等.17.15【分析】如图,过A 作AG BD ⊥于G ,延长AG ,使AG EG =,过E 作EN AB ⊥于N ,交BD 于M ,则AM MN EN +=最短,再利用矩形的性质与锐角三角函数求解EN 即可得到答案.解:如图,过A 作AG BD ⊥于G ,延长AG ,使AG EG =,过E 作EN AB ⊥于N ,交BD 于M ,则AM MN EN +=最短,四边形ABCD 为矩形,10BC =,30ABD ∠=︒,10,20,cos303,AD BD AB BD ∴===•︒= ,AG BD AD AB •=•2010103,AG ∴=⨯53,2103,AG AE AG ∴===,,,AE BD EN AB EMG BMN ⊥⊥∠=∠30,E ABD ∴∠=∠=︒3cos3010315,EN AE ∴=•︒== 15,AM MN ∴+=即AM MN +的最小值为15.故答案为:15.【点拨】本题考查的是矩形的性质,锐角三角函数的应用,同时考查利用轴对称与垂线段最短求线段和的最小值问题,解题的关键是掌握以上知识. 18.2或2327【分析】分90APB ∠=、90PAB ∠=、90PBA ∠=三种情况,根据直角三角形的性质、勾股定理计算即可.解:如图:∠2AO OB ==,160∠=∠当2BP =时,90APB ∠=,当90PAB ∠=时,∠60AOP ∠=,∠tan 23AP OA AOP =⋅∠=, ∠2227BP AB AP +=当90PBA ∠=时,∠60AOP ∠=,∠tan 123BP OB =⋅∠=故答案为2或2327【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .19.3 2 (2)14【分析】(1)根据特殊角的三角函数值解决此题.(2)根据特殊角的三角函数值及二次根式的乘法进行计算即可解决此题.(1)解:原式=331+212⨯ 3=1+13=2; (2)解:原式=23⎝⎭33223142=+-1 14=. 【点睛】本题主要考查特殊角的三角函数值及二次根式的运算,熟练掌握特殊角的三角函数值是解决本题的关键.20.(1)2-;(2)32【分析】(1)先化简绝对值、计算零指数幂与负整数指数幂、特殊角的正切值、立方根,再计算二次根式的乘法与加减法即可得;(2)先计算特殊角的三角函数值,再计算二次根式的乘法与加减法即可得.(1) 解:原式3311432=+-- 323=2=-.(2) 解:原式122332=111222=++ 32=. 【点睛】本题考查了含特殊角的三角函数的混合运算、二次根式的乘法与加减法、零指数幂与负整数指数幂等知识点,熟记特殊角的三角函数值是解题关键.21.(1)3-(2)23a -3【分析】(1)根据负整数指数幂,胡加绝对值,零次幂,特殊角的三角函数值,进行计算求解即可;(2)先去括号,把除法变为乘法把分式化简,再把数代入求值.(1) 解:原式=3335314-⨯+-+951=-++ 3=-;(2)21691224a a a a -+⎛⎫-÷ ⎪--⎝⎭()()2222123a a a a ---=⨯-- ()()222323a a a a --=⨯-- 23a =-; 4cos303tan 45a =︒+︒3431=⨯ 33=; 原式323333==+-. 【点睛】本题考查了实数的混合运算,分式的化简求值,正确的计算是解题的关键.22.(1)1.2s 或3s ; (2)存在,(35)s 或4s【分析】(1)当APQ 为直角三角形时,∠A =60度,所以可能只有∠APQ =90°或∠AQP =90°,当∠APQ =90°时,∠AQP =30°,AP =12AQ ,求出t =1.2秒;当∠AQP =90°时,∠APQ =30°,AQ =12AP ,求得t =3秒;(2)当点P 在AC 上时,边AQ =6-t ,算出AQ 上的高PD 3t ,即可写出12(6-t )3t =23t =35P 在BC 上时,算出AQ 边上的高PF )36t -,即可写出12(6-t ))36t -=23t =4. (1)解:∠∠ABC 是等边三角形,∠AB =BC =CA =6,∠A =∠B =∠C =60°,当点P 在边AC 上时,由题意知,AP =2t ,AQ =6-t ,当∠APQ =90°时,AP =12AQ ,即2t =12(6-t ),解得t =1.2,当∠AQP =90°时,AQ =12AP ,即6-t =12×2t ,解得t =3,所以,点P 在边AC 上,当t 为1.2s 或3s 时,∠APQ 为直角三角形;(2)存在∠当点P 在边AC 上时,此时0≤t ≤3,过点P 作PD ∠AB 于点D ,在Rt∠APD 中,∠A =60°,AP =2t , ∠sin A =PD AP ,即sin60°=2PD t 3 ∠PD 3t ,S △APQ =12AQ ●PD =12(6-t )3t ,由12(6-t )3t =23135t =,235t =∠当点P 在边BC 上时,此时3≤t ≤6,如图,过点P 作PF ∠AB 于点F ,在Rt∠BPF 中,∠B =60°,BP =12-2t , ∠sin B =PF BP,即sin60°=122PF t -3 ∠PF )36t -,S △APQ =12AQ ●PF =12(6-t ))36t -, 由12(6-t ))36t -=3()1248t t ==,不合题意,舍去因此,当t 为(35s 或4s 时,∠APQ 的面积为3【点睛】本题主要考查了直角三角形的存在性和三角形的面积的存在性,解决问题的关键是熟练掌握直角三角形的直角三个角都有可能,要分类讨论;面积是同一个值的三角形不可能只有一个,全面考虑,分类讨论.23.(1)60︒;(2)证明见解析;(3)32BD DF =,理由见解析 【分析】(1)先证明,BAE DAF ≌可得,ABE ADF ∠=∠再证明30,30,ABE ADB 从而可得答案;(2) 先证明2,DEDF 再证明90,EFD FDC ∠=∠=︒90,FEC ∠=︒ 从而可得结论; (3)先证明2,DF DE 结合,BE DF = 可得3,BD DE 从而可得答案.【详解】解(1) 四边形ABCD 是菱形,∠ABC =60°,120BAD ∴∠=︒,由旋转可得:120,,EAF AE AF120,BAD EAF ,,BADBAE EAD EAF EAD DAF ,BAE DAF又∠四边形ABCD 是菱形,,AB AD ∴=,BAE DAF ≌,ABE ADF ∴∠=∠又∠四边形ABCD 是菱形,60,ABC ∠=︒30,30,ABE ADBBDC30,ADF ∴∠=︒ 60.BDF ADB ADF (2)由(1)可得:60,BDF30,CDB90,CDF ∴∠=︒由(1)可得:,BAE DAF ≌,BE DF ∴= 33,DB DF BE DE BE2,DE DF60,30,BDF BDC 90,FDC ∴∠=︒1cos cos60,2EDF ∠=︒= 1cos ,2DF EDF DE ∴∠== EDF ∴是直角三角形,90,EFD180906030,FED ∴∠=︒-︒-︒=︒120,,EAF AE AF ∠=︒=30,AEF AFE ∴∠=∠=︒60,AED ∴∠=︒由菱形的对称性可得:60,DEC DEA ∠=∠=︒306090,FEC ∴∠=︒+︒=︒ 而90,EFD FDC ∠=∠=︒∴ 四边形ABCD 为矩形.(3)3,2BD DF 理由如下:如图,四边形AEGF 是菱形,120,EAF ∠=︒1120,302EGF EAF FEG GFE AEG 60,BDF 90,FED2,DF DE,BE DF =2,BE DE3,BD DE 3,2BD DF3.2BD DF 【点睛】本题考查的是旋转的性质,全等三角形的判定与性质,菱形的性质,锐角三角函数的应用,灵活的应用以上知识解题是解题的关键.24.(1)y =x 2﹣2x ﹣3;(2)点C ′的坐标为(1,3,点D 的坐标为(123) 【分析】(1)根据抛物线2y ax bx c =++经过点(2,5)A -,与x 轴相交于(1,0)B -,(3,0)C 两点,利用待定系数法求得该抛物线的解析式即可;(2)先确定二次函数对称轴,BC 长度,根据题意和翻折的性质,得到B C′长度,利用三角函数求出∠C′BC ,再根据角平分线求出∠DBC ,解直角三角形可以求得点C '和点D 的坐标,本题得以解决.【详解】解:(1)∠抛物线y =ax 2+bx +c 经过点A (﹣2,5),与x 轴相交于B (﹣1,0),C (3,0)两点,∠4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,得123a b c =⎧⎪=-⎨⎪=-⎩,即抛物线的函数表达式是y =x 2﹣2x ﹣3;(2)∠与x 轴相交于B (﹣1,0),C (3,0)两点,∠BC =3﹣(﹣1)=3+1=4,该抛物线的对称轴是直线x =132-+=1, 设抛物线的对称轴与x 轴的交点为H ,则点H 的坐标为(1,0),∠BH =2,∠将∠BCD 沿直线BD 翻折得到∠BC ′D ,点C ′恰好落在抛物线的对称轴上,∠BC =BC ′=4,∠C ′HB =90°,∠C ′BD =∠DBC ,∠OC 2242-3cos∠C ′BH ='BH BC =24=12, ∠C ′的坐标为(1,3,∠C ′BH =60°,∠∠DBC =30°,∠BH =2,∠DBH =30°,∠OD =BH 323 ∠点D 的坐标为(123), 由上可得,点C ′的坐标为(1,3,点D 的坐标为(123).【点睛】本题考查待定系数法求抛物线解析式,图形翻折变化、二次函数的性质、特殊角的三角函数值,解答本题的关键是明确题意,利用数形结合的思想解答.。