2019-2020年八年级数学上学期期中试题 苏科版 (V)
- 格式:doc
- 大小:189.50 KB
- 文档页数:7
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣15.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣38.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.89.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.2410.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二.填空题(共6小题)11.2x2y3•(﹣7x3y)=.12.点P(﹣3,4)关于原点对称的点的坐标是.13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为(用含x的式子表示)16.计算:40372﹣8072×2019=.三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是,余式是;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为.(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意.故选:C.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.x3•x2=x5,故本选项不合题意;B.x2与x4不是同类项,所以不能合并,故本选项不合题意;C.(x4)3=x8,故本选项不合题意;D.x7÷x=x6,故本选项符合题意.故选:D.3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C 【分析】证明△ADB≌△ADC即可解决问题.【解答】解:∵AB=AC,BD=DC,AD=AD,∴△ADB≌△ADC(SSS),∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC,故B,C,D正确,故选:A.4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣1【分析】各项化简得到结果,即可作出判断.【解答】解:A、原式=x2+2xy+y2,不符合题意;B、原式=8m6,不符合题意;C、原式=x2﹣4x+4,不符合题意;D、原式=x2﹣1,符合题意,故选:D.5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°【分析】由“SAS”可证△ABD≌△ACE,可得∠ABD=∠2=30°,由三角形外角性质可求解.【解答】解:∵∠BAC=∠DAE,∴∠1=∠CAE,且AD=AE,AB=AC,∴△ABD≌△ACE(SAS)∴∠ABD=∠2=30°,∴∠3=∠2+∠ABD=52°,故选:B.7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣3【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p,r【解答】解:∵(x+p)(x+5)=x2+(p+5)x+5p=x2+rx﹣10,∴p+5=r,5p=﹣10,解得:p=﹣2,r=3.故选:C.8.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.8【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,故选:A.9.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.24【分析】根据正方形和三角形的面积的和差即可求解.【解答】解:根据题意,得∵a+b=9,ab=12,∴(a+b)2=92∴a2+2ab+b2=81,∴a2+b2=81﹣24=57,∴阴影部分的面积为:a2﹣b(a﹣b)=(a2﹣ab+b2)=(57﹣12)=22.5.故选:B.10.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题;【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠ABM+∠CBN=30°,∴∠NBH=∠CBH+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二.填空题(共6小题)11.2x2y3•(﹣7x3y)=﹣14x5y4.【分析】原式利用单项式乘以单项式法则计算即可求出值.【解答】解:原式=﹣14x5y4,故答案为:﹣14x5y412.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2 .【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为24°.【分析】由等腰三角形的性质可得∠B=∠C,由“SAS”可证△BED≌△CDF,可得∠CDF =∠BED,由三角形外角的性质可得∠EDF=∠B=70°,即可求∠A的度数.【解答】解:∵AB=AC∴∠B=∠C,又∵BE=CD,BD=CF∴△BED≌△CDF(SAS)∴∠CDF=∠BED∵∠EDC=∠B+∠BED=∠CDF+∠EDF∴∠EDF=∠B=78°∴∠C=∠B=78°∴∠A=180°﹣78°﹣78°=24°故答案为:24°.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为5x2﹣4x﹣19 (用含x的式子表示)【分析】分为两种情况:①当三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2时,②当三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,看看是否符合三角形的三边关系定理,符合时求出即可.【解答】解:分为两种情况:①当等腰三角形的腰为(x+2)(2x﹣5)时,三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2,此时符合三角形的三边关系定理,此时三角形的周长是:(x+2)(2x﹣5)+(x+2)(2x﹣5)+(x﹣1)2=2x2﹣x﹣10+2x2﹣x﹣10+x2﹣2x+1=5x2﹣4x﹣19;②当等腰三角形的腰为(x﹣1)2时,三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,∵(x﹣1)2+(x﹣1)2=2x2﹣4x+2,(x+2)(2x﹣5)=2x2﹣x﹣10,x>5,∴(x﹣1)2+(x﹣1)2﹣(x+2)(2x﹣5)=(2x2﹣4x+2)﹣(2x2﹣x﹣10)=﹣3x+12<0,∴(x﹣1)2+(x﹣1)2<(x+2)(2x﹣5),∴此时不符合三角形的三边关系定理,此时不存在三角形.故答案为:5x2﹣4x﹣19.16.计算:40372﹣8072×2019= 1 .【分析】把8072×2019变为4038×4036,再套用平方差公式计算得结果.【解答】解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:1三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y【分析】直接利用乘法公式进而化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=[x2+4y2+4xy﹣(x2﹣4y2)]÷2y=(8y2+4xy)÷2y=4y+2x.18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.【分析】证明△ABE≌△CDF(HL),推出∠AEB=∠CFD可得结论.【解答】证明:∵AB⊥l于点B,CD⊥1于点D,∴∠ABE=∠CDF=90°,∵BF=DE,∴DF=BE,∵AE=CF,∴Rt△ABE≌Rt△CDF(HL),∴∠AEB=∠CFD,∴AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.【分析】用尺规作外角∠BAE的平分线AD,再进行证明即可.【解答】解:如图所示:AD即为所求作的图形.证明:∵AD∥BC,∴∠DAE=∠C,∠DAB=∠B,∵AD平分∠BAE,∴∠DAE=∠DAB,∴∠B=∠C,∴AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BDAD=14,从而得到△ABC的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABD的周长是14,即AB+BD+AD=14,∴AB+BC+AC=AB+BD+CD+AC=14+10=24,即△ABC的周长是24.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.【分析】(1)根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;(2)根据题意列出等式,化简即可求出.【解答】解:(1)ab﹣(a﹣2)(b﹣2)=ab﹣(ab﹣2a﹣2b+4)=ab﹣ab+2a+2b﹣4=2a+2b﹣4,∴新长方形的面积比原长方形的面积减少了(2a+2b﹣4)平方厘米;(2)由题意知2a+2b﹣4=ab,∴ab=6a+6b﹣12,(a﹣6)(b﹣6)=ab﹣6a﹣6b+36=6a+6b﹣12﹣6a﹣6b+36=24.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是x2﹣2x+3 ,余式是 1 ;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.【分析】(1)根据整式除法的竖式计算方法,这个进行进行计算即可;(2)根据整式除法的竖式计算方法,要使x3﹣x2+ax+b能被x2+2x+2整除,即余式为0,可以得到a、b的值.【解答】解:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)=x2﹣2x+3 (1)故答案为:x2﹣2x+3,1.(2)由题意得:∵x3﹣x2+ax+b能被x2+2x+2整除,∴a﹣2=﹣6,b=﹣6,即:a=﹣4,b=﹣6.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.【分析】(1)作点A关于直线l的对称点A′,连接AA′交直线1于点D,此时使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,根据对称性和30度角所对直角边等于斜边的一半即可证明AD=2BD.【解答】解:(1)如图所示:作点A关于直线l的对称点A′,连接AA′,与直线l交于点D,则点D即为所求作的点.(2)根据对称性可知:AC=A′C,AD=A′D,∵△ABC为等边三角形,∴AC=BC=AB,∠ACB=60°=∠BAC,∴A′C=BC,∴∠A′=∠A′BC=30°,∠A′=∠DAA′=30°,∴∠ABD=90°,∴AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为(﹣1,4).(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.【分析】(1)作CH⊥y轴于H,如图1,易得OA=3,OB=1根据等腰直角三角形的性质得BA=BC,∠ABC=90°,再利用等角的余角相等得到∠CBH=∠BAO,则可根据“AAS”证明△ABO≌△BCH,得到OB=CH=1,OA=BH=3,所以C(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,由“ASA”可证△AFC≌△AFH,可得CF=FH=m,由“AAS”可证△ABE≌△CBH,可得AE=CH=2m;(3)如图3,过点A作AN⊥DF于点N,由“AAS”可证△ABH≌△ADN,可得AN=AH,BH =DN,由“HL”可证Rt△ANF≌Rt△AHF,可得NF=FH,即可得结论.【解答】解:(1)作CH⊥y轴于H,如图1,∵点A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴OB=CH=1,OA=BH=3,∴OH=OB+BH=1+3=4,∴C(﹣1,4),故答案为:(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,∴∠CBH=90°,∵CF⊥AO,∴∠BCH+∠H=90°,而∠HAF+∠H=90°,∴∠BCH=∠HAF,且∠ABC=∠CBH=90°,AB=CB,∴△ABE≌△CBH(AAS),∴AE=CH,∵AO平分∠BAC,∴∠CAF=∠HAF,且AF=AF,∠AFH=∠AFC,∴△AFC≌△AFH(ASA)∴CF=FH=m,∴AE=CH=2m;(3)BF=2FH+DF,理由如下:如图3,过点A作AN⊥DF于点N,∵∠CAE=∠BAE,∠AOB=∠AOD,∴∠ADB=∠ABD,∴AD=AB,且∠ADF=∠ABF,∠AHB=∠AND=90°,∴△ABH≌△ADN(AAS)∴AN=AH,BH=DN,∵在Rt△ANF和Rt△AHF中,AN=AH,AF=AF,∴Rt△ANF≌Rt△AHF(HL)∴NF=FH,∵BF=BH+FH=DN+FH∴BF=DF+NF+FH=2FH+DF.。
数学试题 第1页(共6页) 数学试题 第2页(共6页)…○………………………装……○………………………装…… _姓名:_____绝密★启用前2019-2020学年上学期期中原创卷A 卷八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:苏科版八上第1~3章。
第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.全等形是指两个图形 A .大小相等B .完全重合C .形状相同D .以上都不对2.下面四个图形中,属于轴对称图形的是A .B .C .D .3.下列几组数中,不能作为直角三角形三边长度的是 A .1.5、2、2.5B .32、42、52C .3、4、5D .30、40、504.若一个等腰三角形的两边长分别为2,4,则第三边的长为 A .2B .3C .4D .2或45.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于点E ,若DE =15cm ,BE =8cm ,则BC 的长为A .15cmB .17cmC .30cmD .32cm6.如图,某公园的三个出口A 、B 、C 构成△ABC ,想要在公园内修建一个公共厕所,要求到三个出口距离都相等.则公共厕所应该在A .三条边的垂直平分线的交点B .三个角的角平分线的交点C .三角形三条高的交点D .三角形三条中线的交点第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分)7.某公路急转弯处设立了一面圆形大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为__________.8.△ABC 中,∠C =90°,a =8,c =10,则b =__________.9.如图,在△ABC 中,∠ACB =90°,D 是AB 边的中点.若AB =18,则CD 的长为__________.10.如图,△AEB ≌△DFC ,AE ⊥CB ,DF ⊥BC ,AE =DF ,∠C =28°,则∠A =__________.11.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”小明的做法,其理论依据是__________.数学试题第4页(共6页)……○………………内………………○………………装………………○………………订………………○……………线………………○…此卷只订不密封……○………………外………………○………………装………………○………………订………………○……………线………………○…12.如图,在△ABC中,BD平分∠ABC,ED∥BC,AB=6,AD=4,则△AED的周长为__________.13.四边形ABCD中,∠BAC=∠BDC=90°,∠ADB=45°,AB=AC,BD=2,DC=4,则AD=__________.14.如图,在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B=__________.15.如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为__________°.16.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,玛丽在荡绳索过程中离地面的最低点的高度MN=__________.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.18.(本小题满分7分)如图所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=16,AB=8,求DE的长.19.(本小题满分7分)如图1、图2、图3均为4×4的正方形网格,每个小正方形的边长均为1.请分别在这三个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.20.(本小题满分8分)如图,将长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好都落在AD 边的点P处,若PFH△的周长为10cm,2cmAB ,求长方形ABCD的面积.21.(本小题满分8分)如图,A、B两个小镇在河流的同侧,它们到河流的距离AC=10千米,BD=30千米,且CD=30千米,现要在河流边修建一自来水厂向两镇供水,铺设水管的费用为每千米3万元.数学试题第3页(共6页)数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○…………………○……………………………○………………○…………………………○…………………○……………………………○………………○…………校:______________姓名:班级:_________考号:____________(1)请在河流上选择水厂的位置M ,使铺设水管的费用最少.(不写作法,保留作图痕迹) (2)最低费用为多少?22.(本小题满分7分)如图,已知:AB =AD ,BC =CD ,AE ⊥BC ,垂足为E ,AF ⊥CD ,垂足为F .求证:(1)∠B =∠D ;(2)AE =AF .23.(本小题满分8分)如图,已知点D ,E 分别是△ABC 的边BA 和BC 延长线上的点,作∠DAC 的平分线AF ,若AF ∥BC .(1)求证:△ABC 是等腰三角形;(2)作∠ACE 的平分线交AF 于点G ,若∠B =40°,求∠AGC 的度数. 24.(本小题满分8分)如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ;(2)EC ⊥BF .26.(本小题满分9分)如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,∠MDN 的两边分别与AB ,AC 相交于M ,N 两点,且∠MDN +∠BAC =180°.(1)求证AE =AF ;(2)若AD =6,DF ,求四边形AMDN 的面积.27.(本小题满分11分)问题背景:某数学兴趣小组把两个等腰直角三角形的直角顶点重合,发现了一些有趣的结论.结论一:(1)如图1,在△ABC 、△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,连接BD ,CE ,试说明△ADB ≌△AEC ; 结论二:(2)如图2,在(1)的条件下,若点E 在BC 边上,试说明DB ⊥BC ; 应用:(3)如图3,在四边形ABCD 中,∠ABC =∠ADC =90°,AB =CB ,∠BAD +∠BCD =180°,连接BD ,BD =7cm ,求四边形ABCD 的面积.。
2019-2020学年江苏省盐城市建湖县八年级(上)期中数学试卷一、选择题(本大题共有8小题,每小题3分,共24分、在毎小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内)1.(3分)下列倡导节约的图案中,属于轴对称图形的是()A.B.C.D.2.(3分)8的立方根是()A.B.2C.4D.3.(3分)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12 4.(3分)等腰三角形一边长为6,另一边长为2,则此三角形的周长为()A.10或14B.10C.14D.185.(3分)如图,△ABC≌△ADE,点E在BC边上,∠AED=80°,则∠CAE的度数为()A.80°B.60°C.40°D.20°6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=5,CF =3,则BD的长是()A.0.5B.1C.2D.1.57.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC交AC、CF于M、F,若EM=3,则CE2+CF2的值为()A.36B.9C.6D.188.(3分)如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点,且BC =4cm,AC=5cm,则点O到边AB的距离为()A.1cm B.2cm C.3cm D.4cm二、填空题(本大题共有10小题,每小题2分,共20分,不需写出解管过程、请将答案直接写在题中横线上)9.(2分)等边三角形是一个轴对称图形,它有条对称轴.10.(2分)如果一个正数的两个平方根分别为3m+4和2﹣m,则这个数是.11.(2分)如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A =∠D;④BO=CO.能判定△ABC≌△DCB的是.(填正确答案的序号)12.(2分)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的依据是.13.(2分)等腰三角形一腰上的高与另一腰的夹角为20°,则这个等腰三角形底角是.14.(2分)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=度.15.(2分)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=6,则FG的长为.16.(2分)如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.17.(2分)如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D是线段CE的中点,AD⊥BC于点D.若∠B=36°,BC=8,则AB的长为.18.(2分)如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=5,AD =BC=13,点E为射线AD上的一个动点,若△ABE与△A'BE关于直线BE对称,当△A'BC为直角三角形时,AE的长为.三、解答题(本大题共有9小题,共76分,请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤).19.(8分)求下列各等式中x的值.(1)(x+3)2﹣21=0(2)29+(x﹣5)3=220.(6分)如图,AD⊥AB,DE⊥AE,BC⊥AE,垂足分别为A、E、C,且AD=AB,求证:△AED≌△BCA.21.(8分)如图,点E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M.求证:(1)AB∥CD;(2)点M是线段EF的中点.22.(8分)如图,AB=AC,点D、E分别在AB、AC上,且AD=AE,BE、CD交于点O,求证:AO垂直平分BC.23.(8分)如图,在△ABC中,AD平分∠BAC,点E在AC的垂直平分线上.(1)若AB=5,BC=7,求△ABE的周长;(2)若∠B=57°,∠DAE=15°,求∠C的度数.24.(8分)如图,在△ABC中,AB=AC,AD⊥BC,BE⊥AC,垂足分别为D、E,且AB =2AE,求∠EDC的度数.25.(8分)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:选定一个点P,连接P A、PB,在PM上取一点C,恰好有P A=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.小刚同学测量的结果正确吗?为什么?26.(10分)如图,Rt△ABC中,∠A=90.(1)利用圆规和直尺,在∠A的内部找一个点P,使点P到AB、AC的距离相等,且PB =PC.(不写作法,保留作图痕迹)(2)若BC的垂直平分线交直线AB于点E,AC=12、AB=8.求AE的长.27.(12分)问题探究:如图1,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①BE、CF与EF之间的关系为:BE+CF EF;(填“>”、“=”或“<”)②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.2019-2020学年江苏省盐城市建湖县八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分、在毎小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内)1.(3分)下列倡导节约的图案中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)8的立方根是()A.B.2C.4D.【分析】根据立方根的定义即可求出答案.【解答】解:8的立方根为2,故选:B.【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.3.(3分)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.【点评】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.(3分)等腰三角形一边长为6,另一边长为2,则此三角形的周长为()A.10或14B.10C.14D.18【分析】本题应分为两种情况2为底或6为底,还要注意是否符合三角形三边关系.【解答】解:∵等腰三角形的一边长为2,另一边长为6,∴有两种情况:①6为底,2为腰,而2+2=4<6,那么应舍去;②2为底,6为腰,那么6+6+2=14;∴该三角形的周长是6+6+2=14.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.(3分)如图,△ABC≌△ADE,点E在BC边上,∠AED=80°,则∠CAE的度数为()A.80°B.60°C.40°D.20°【分析】根据全等三角形的性质得出∠C=∠AED=80°,AE=AC,根据等腰三角形的性质得出∠AEC=∠C=80°,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠AED=80°,∴∠C=∠AED=80°,AE=AC,∴∠AEC=∠C=80°,∴∠CAE=180°﹣∠C﹣∠AEC=180°﹣80°﹣80°=20°,故选:D.【点评】本题考查了全等三角形的性质,等腰三角形的性质和三角形的内角和定理,能熟记全等三角形的性质定理的内容是解此题的关键,注意:全等三角形的对应边相等,对应角相等.6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=5,CF =3,则BD的长是()A.0.5B.1C.2D.1.5【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=5,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=5,∴DB=AB﹣AD=5﹣3=2.故选:C.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.7.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC交AC、CF于M、F,若EM=3,则CE2+CF2的值为()A.36B.9C.6D.18【分析】根据角平分线的定义可以证明出△CEF是直角三角形,再根据平行线的性质以及角平分线的定义证明得到EM=CM=MF然后求出EF的长度,然后利用勾股定理列式计算即可求解.【解答】解:∵CE平分∠ACB交AB于E,CF平分∠ACD,∴∠1=∠2=∠ACB,∠3=∠4=∠ACD,∴∠2+∠3=(∠ACB+∠ACD)=90°,∴△CEF是直角三角形,∵EF∥BC,∴∠1=∠5,∠4=∠F,∴∠2=∠5,∠3=∠F,∴EM=CM,CM=MF,∵EM=3,∴EF=3+3=6,在Rt△CEF中,CE2+CF2=EF2=62=36.故选:A.【点评】本题考查了直角三角形的性质,平行线的性质,以及角平分线的定义,证明出△CEF是直角三角形是解决本题的关键.8.(3分)如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点,且BC =4cm,AC=5cm,则点O到边AB的距离为()A.1cm B.2cm C.3cm D.4cm【分析】直接利用内心的定义结合三角形面积求法得出答案.【解答】解:∵点O为∠CAB与∠ACB的平分线的交点,∴点O在∠ACB的角平分线上,∴点O为△ABC的内心,过O作OP⊥AB,连接OB,S△ABC==OP•(AB+BC+AC),又∵AC=5,BC=4,△ABC为直角三角形,∠B=90°∴AB=3,∴×3×4=•OP(3+4+5),解得:OP=1.故选:A.【点评】此题主要考查了角平分线的性质以及三角形面积求法,正确表示出三角形面积是解题关键.二、填空题(本大题共有10小题,每小题2分,共20分,不需写出解管过程、请将答案直接写在题中横线上)9.(2分)等边三角形是一个轴对称图形,它有3条对称轴.【分析】根据轴对称图形和对称轴的概念求解.【解答】解:等边三角形是一个轴对称图形,它有3条对称轴.故答案为:3.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10.(2分)如果一个正数的两个平方根分别为3m+4和2﹣m,则这个数是25.【分析】根据正数的两个平方根互为相反数列方程求出m,再求出3m+4,然后平方计算即可得解.【解答】解:根据题意知3m+4+2﹣m=0,解得:m=﹣3,所以这个数为(3m+4)2=(﹣5)2=25,故答案为:25.【点评】本题主要考查了平方根的定义.解题的关键是明确一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.(2分)如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A =∠D;④BO=CO.能判定△ABC≌△DCB的是①③.(填正确答案的序号)【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:能判定△ABC≌△DCB的是①③,理由是:①∵在△ABC和△DCB中∴△ABC≌△DCB(SAS);③∵在△ABC和△DCB中∴△ABC≌△DCB(AAS);故答案为:①③.【点评】本题考查了全等三角形的判定,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.12.(2分)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的依据是SSS证明△COM≌△CON,全等三角形对应角相等.【分析】由三边相等得△COM≌△CON,再根据全等三角形对应角相等得出∠AOC=∠BOC.【解答】解:由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故答案为:SSS证明△COM≌△CON,全等三角形对应角相等.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.13.(2分)等腰三角形一腰上的高与另一腰的夹角为20°,则这个等腰三角形底角是55°或35°.【分析】根据等腰三角形的性质及三角形内角和定理进行分析,画出图形即可解决问题.【解答】解:①∵AB=AC,∠ABD=20°,BD⊥AC,∴∠A=70°,∴∠ABC=∠C=(180°﹣70°)÷2=55°.②∵AB=AC,∠ABD=20°,BD⊥AC,∴∠BAC=20°+90°=110°∴∠ABC=∠C=(180°﹣110°)÷2=35°.故答案为:55°或35°.【点评】此题主要考查三角形内角和定理及三角形外角的性质的综合运用,熟练掌握这两个定理是解决问题的关键.14.(2分)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=15度.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠F的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CE=CD,∴∠CDE=30°,∠FDG=150°,∵DF=DG,∴∠F=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质.解题的关键是利用外角的性质得出结论.15.(2分)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=6,则FG的长为1.【分析】只要证明EG=EB,DF=DC即可解决问题.【解答】解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵BE=3,CD=4,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG,即3+4=6+FG,∴FG=1,故答案为1.【点评】本题考查等腰三角形的判定和性质、角平分线的定义,平行线的性质等知识,解题的关键是等腰三角形的证明,属于基础题.16.(2分)如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有3种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.(2分)如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D是线段CE的中点,AD⊥BC于点D.若∠B=36°,BC=8,则AB的长为8.【分析】连接AE,根据线段垂直平分线的性质得到AE=BE,由等腰三角形的性质得到∠BAE=∠B=36°,根据三角形的外角的性质得到∠AEC=∠BAE+∠B=72°,推出∠BAC=∠C,于是得到结论.【解答】解:连接AE,∵AB的垂直平分线EF交BC于点E,∴AE=BE,∴∠BAE=∠B=36°,∴∠AEC=∠BAE+∠B=72°,∵AD⊥CE,D是线段CE的中点,∴AE=AC,∴∠C=∠AEC=72°,∴∠BAC=180°﹣∠B﹣∠C=72°,∴∠BAC=∠C,∴AB=BC=8,故答案为:8.【点评】本题考查了线段垂直平分线的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.18.(2分)如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=5,AD =BC=13,点E为射线AD上的一个动点,若△ABE与△A'BE关于直线BE对称,当△A'BC为直角三角形时,AE的长为1或25.【分析】分点E在线段AD上,点E在线段AD的延长线上两种情况讨论,由题意可得AB=A'B=5,∠EA'B=90°,AE=A'E,A'C=12,根据勾股定理和全等三角形的性质,可求AE的长.【解答】解:若点E在线段AD上,∵若△ABE与△A′BE关于直线BE对称,∴AB=A'B=,5,∠EA'B=90°,AE=A'E∵△A'BC为直角三角形∴∠BA'C=90°∴A'C===12,∵∠EA'B=90°,∠BA'C=90°∴∠CA'E=180°∴点E,点C,点A'共线在Rt△CDE中,DC2+DE2=CE2.∴(A'E+12)2=(13﹣AE)2+25,∴AE=1,若点E在线段AD的延长线上,且点C在A'E上,如图所示:∵△ABE与△A′BE关于直线BE对称,∴AB=A'B=,5,∠A=∠A'=90°在Rt△A'BC中,A'C===12,∵∠BCA'+∠DCE=90°,∠DCE+∠DEC=90°∴∠BCA'=∠DEC,∵∠A'=∠EDC=90°,AB=CD=A'B,∴在△A'C和△DCE中,,∴△A'BC≌△DCE(AAS),∴DE=A'C=12,∴AE=1AD+DE=13+12=25;故答案为:1或25.【点评】本题考查了矩形的性质,轴对称的性质,勾股定理,熟练运用这些性质解决问题是本题的关键.三、解答题(本大题共有9小题,共76分,请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤).19.(8分)求下列各等式中x的值.(1)(x+3)2﹣21=0(2)29+(x﹣5)3=2【分析】(1)移项后两边开方,即可得出两个一元一次方程,求出方程的解即可.(2)先移项、合并同类项,再开立方,即可求出答案.【解答】解:(1)移项得:(x+3)2=21,开方得:x+3=±,解得:x1=﹣3+,x2=﹣3﹣.(2)移项、合并同类项得:(x﹣5)3=﹣27,即x﹣5=﹣3,x=﹣2.【点评】本题考查了平方根和立方根的运用.解题的关键是掌握平方根和立方根的定义.20.(6分)如图,AD⊥AB,DE⊥AE,BC⊥AE,垂足分别为A、E、C,且AD=AB,求证:△AED≌△BCA.【分析】根据垂直得出∠E=∠ACB=∠DAB=90°,根据三角形的内角和定理求出∠D =∠BAC,根据AAS推出全等即可.【解答】证明:∵AD⊥AB,DE⊥AE,BC⊥AE,∠E=∠ACB=∠DAB=90°,∴∠D+∠DAE=90°,∠BAC+∠DAE=90°,∴∠D=∠BAC,在△AED和△BCA中∴△AED≌△BCA(AAS).【点评】本题考查了全等三角形的判定和三角形的内角和定理,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.21.(8分)如图,点E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M.求证:(1)AB∥CD;(2)点M是线段EF的中点.【分析】(1)证明Rt△ABF≌Rt△CDE可得∠BAF=∠DCE,即可得出结论;(2)可证明△DEM≌△BFM,即可得出结论.【解答】证明:(1)∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴∠BAF=∠DCE,∴AB∥CD;(2)∵Rt△ABF≌Rt△CDE,∴DE=BF,在△DEM和△BFM中,,∴△DEM≌△BFM(AAS),∴MB=MD.即点M是线段EF的中点.【点评】本题考查了全等三角形的判定与性质,平行线的判定,本题中求证Rt△ABF≌Rt△CDE是解题的关键.22.(8分)如图,AB=AC,点D、E分别在AB、AC上,且AD=AE,BE、CD交于点O,求证:AO垂直平分BC.【分析】先由SAS得出△ADC≌△AEB,得出∠ACD=∠ABE,再根据AAS证明△BOD ≌△COE,得出OB=OC,由线段垂直平分线的判定得出结论.【解答】证明:在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠ACD=∠ABE.∵AB=AC,AD=AE,∴BD=CE.在△BOD与△COE中,,∴△BOD≌△COE(AAS),∴OB=OC,∴点O在线段BC的垂直平分线上.同理AB=AC,点A在线段BC的垂直平分线上∴AO垂直平分BC.【点评】本题主要考查了全等三角形的判定及性质,线段垂直平分线的判定.通过证明两套三角形全等得出OB=OC是解题的关键.23.(8分)如图,在△ABC中,AD平分∠BAC,点E在AC的垂直平分线上.(1)若AB=5,BC=7,求△ABE的周长;(2)若∠B=57°,∠DAE=15°,求∠C的度数.【分析】(1)根据线段垂直平分线的性质得到AE=CE,于是得到结论;(2)设∠C=α,根据等腰三角形的性质得到∠EAC=∠C=α,根据角平分线的定义得到∠BAC=2∠DAC=2×(15°+α),根据三角形的内角和即可得到结论.【解答】解:∵点E在AC的垂直平分线上,∴AE=CE,∴AE+BE=BE+CE=BC=7,∴△ABE的周长=AB+BE+AE=AB+BC=12;(2)设∠C=α,∵AE=CE,∴∠EAC=∠C=α,∵∠DAE=15°,∴∠DAC=15°+α,∵AD平分∠BAC,∴∠BAC=2∠DAC=2×(15°+α),∵∠B+∠C+∠BAC=180°,∴57°+α+2(15°+α)=180°,∴α=31°,∴∠C=31°.【点评】本题考查了线段垂直平分线的性质,等腰三角形的性质,角平分线的定义,三角形的内角和,熟练掌握线段垂直平分线的性质是解题的关键.24.(8分)如图,在△ABC中,AB=AC,AD⊥BC,BE⊥AC,垂足分别为D、E,且AB =2AE,求∠EDC的度数.【分析】由垂直的定义得到∠AEB=∠BEC=90°,根据直角三角形的性质得到∠ABE=30°,求得∠BAE=60°,推出△ABC是等边三角形,得到∠C=60°,根据直角三角形和等边三角形的性质即可得到结论.【解答】解:∵BE⊥AC,∴∠AEB=∠BEC=90°,∵AB=2AE,∴∠ABE=30°,∴∠BAE=60°,∵AB=AC,∴△ABC是等边三角形,∴∠C=60°,∵AD⊥BC,∴BD=CD,∴DE=DC,∴△CDE是等边三角形,∴∠CDE=60°.【点评】本题考查了直角三角形斜边上的中线,等边三角形的判定和性质,正确的识别图形是解题的关键.25.(8分)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:选定一个点P,连接P A、PB,在PM上取一点C,恰好有P A=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.小刚同学测量的结果正确吗?为什么?【分析】由勾股定理的逆定理证出△BCP是直角三角形,∠BCP=90°,得出∠ACB=90°,再由勾股定理求出AB即可.【解答】解:小刚同学测量的结果正确,理由如下:∵P A=14m,PB=13m,PC=5m,BC=12m,∴AC=P A﹣PC=9m,PC2+BC2=52+122=169,PB2=132=169,∴PC2+BC2=PB2,∴△BCP是直角三角形,∠BCP=90°,∴∠ACB=90°,∴AB===15(m).【点评】本题考查了勾股定理和勾股定理的逆定理的综合运用;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.26.(10分)如图,Rt△ABC中,∠A=90.(1)利用圆规和直尺,在∠A的内部找一个点P,使点P到AB、AC的距离相等,且PB =PC.(不写作法,保留作图痕迹)(2)若BC的垂直平分线交直线AB于点E,AC=12、AB=8.求AE的长.【分析】(1)分别作∠BAC的平分线和BC的垂直平分线,它们的交点为P,则P点满足条件;(2)先利用勾股定理计算出BC,然后利用直角三角形斜边上的中线性质求解.【解答】解:(1)如图,点P为所作;(2)在Rt△ABC中,BC==4,∵BC的垂直平分线交直线AB于点E,即E点为BC的中点,∴AE=BC=2.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.27.(12分)问题探究:如图1,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①BE、CF与EF之间的关系为:BE+CF>EF;(填“>”、“=”或“<”)②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.【分析】(1)如图1中,延长ED到H,使得DH=DE,连接CH,FH.证明△BDE≌△CDH(SAS),推出BE=CH,利用三角形的三边关系即可解决问题.(2)结论:EF2=BE2+CF2.如图2中,延长ED到H,使得DH=DE,连接CH,FH.利用全等三角形的性质以及勾股定理即可解决问题.(3)结论:EF=BE+CF.利用旋转法构造全等三角形即可解决问题.【解答】解:(1)如图1中,延长ED到H,使得DH=DE,连接CH,FH.∵BD=CD,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵DE=DH,FD⊥EH,∴FE=FH,在△FCH中,∵CH+CF>FH,∴BE+CF>EF.故答案为>.(2)结论:EF2=BE2+CF2.理由:如图2中,延长ED到H,使得DH=DE,连接CH,FH.∵BD=CD,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∠B=∠DCH,∵DE=DH,FD⊥EH,∴FE=FH,∵∠A=90°,∴∠B+∠ACB=90°,∴∠ACB+∠DCH=90°,∴∠FCH=90°,∴FH2=CH2+CF2,∴EF2=BE2+CF2.(3)如图3中,结论:EF=BE+CF.理由:∵DB=DC,∠B+∠ACD=180°,∴可以将△DBE绕点D顺时针旋转得到△DCH,A,C,H共线.∵∠BDC=130°,∠EDF=65°,∴∠CDH+∠CDF=∠BDE+∠CDF=65°,∴∠FDE=∠FDH,∵DF=DF,DE=DH,∴△FDE≌△FDH(SAS),∴EF=FH,∵FH=CF+CH=CF+BE,∴EF=BE+CF.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。
2019-2020学年江苏省徐州市八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学2.16的算术平方根是( )A .8B .8-C .4D .4±3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 cm .10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 (只需写一个,不添加辅助线).11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 .12.已知等腰三角形的周长为16cm ,其中一边长为4cm ,则该等腰三角形的腰长是 cm .13.若29a =1=-,则a b -的值是 .14.如图,在Rt ABC ∆中,90B ∠=︒,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知35C ∠=︒,则BAE ∠的度数为 ︒.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 .16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 .三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = ,AD = (直接写出结果).20.已知:如图点O在射线AP上,1215∠=︒.B∠=∠=︒,AB AC=,40(1)求证:ABO ACO∆≅∆;(2)求POC∠的度数.21.已知:如图,90∠=∠=︒,M,N分别是AC,BD的中点.求证:MN BD⊥.ABC ADC22.已知:如图,BE CD=,==,BC DA⊥垂足为E,8BE DE(1)求证:BEC DEA∆≅∆;(2)若MN是边AD的垂直平分线,分别交AD、CD于M、N,且5CE=,求AEN∆的周长.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13=,梯子底端离墙角的距离AB m=.5BO m(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A 下滑4m 到点C ,那么梯子的底部B 在水平方向上滑动的距离4BD m =吗?为什么?24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.25.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.2019-2020学年江苏省徐州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学【解答】解:A 、不是轴对称图形,本选项错误;B 、是轴对称图形,本选项正确;C 、不是轴对称图形,本选项错误;D 、不是轴对称图形,本选项错误.故选:B .2.16的算术平方根是( )A .8B .8-C .4D .4±【解答】解:2(4)16±=,16∴的算术平方根是4,故选:C .3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒【解答】解:在等腰ABC ∆中,120A ∠=︒,A ∴∠为等腰三角形的顶角,B C ∴∠=∠,120A ∠=︒,30B C ∴∠=∠=︒;故选:D .4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 【解答】解:三角形的三条垂直平分线的交点到三角形三个顶点的距离相等, ∴凳子应放在ABC ∆的三条垂直平分线的交点最适当.故选:B .5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS【解答】解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等()ASA .故选:A .6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±【解答】解:A 、原式5=,不符合题意;B 、原式3=-,不符合题意;C 、原式|4|4=-=,不符合题意;D 、原式0.6=±,符合题意,故选:D .7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>【解答】解:A 、ABC ∆中,A B C ∠=∠-∠,是直角三角形,故此选项不合题意; B 、ABC ∆中,::1:2:3a b c =,设三边长为:x ,2x ,3x ,由222(2)(3)x x x +≠,故此三角形不是直角三角形,符合题意;C 、ABC ∆中,222a c b =-,符合勾股定理逆定理,是直角三角形,故此选项不合题意;D 、ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>,则2222222()(2)()m n mn m n -+=+,是直角三角形,故此选项不合题意; 故选:B .8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 【解答】解:设第二个小的等边三角形的边长为x ,则第三个小的等边三角形的边长为:x a +,第四个小的等边三角形的边长为:2x a +,最大的个小的等边三角形的边长3b x a =+, 又3b x =,33x x a ∴=+,32x a ∴=, 932b x a ∴==, 故选:D .二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 10 cm .【解答】解:直角三角形中斜边上的中线等于斜边的一半,∴斜边长2510cm =⨯=.10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 AB ED = (只需写一个,不添加辅助线).【解答】解:添加AB ED =,BF CE =,BF FC CE FC ∴+=+,即BC EF =,//AB DE ,B E ∴∠=∠,在ABC ∆和DEF ∆中AB ED B E CB EF =⎧⎪∠=∠⎨⎪=⎩,()ABC DEF SAS ∴∆≅∆,故答案为:AB ED =.11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 3 .【解答】解:过点D 作DE BC ⊥交BC 于点E ,如图所示:,90A∠=︒,DA AB∴⊥,又BD是ABC∠的平分线,DA DE∴=,又3AD=,3DE∴=,即点D到边BC的距离是3,故答案为3.12.已知等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的腰长是6cm.【解答】解:①4cm是腰长时,底边为:16428cm-⨯=,三角形的三边长分别为4cm、4cm、8cm,448+=,∴不能组成三角形,②4cm是底边长时,腰长为:1(164)62cm ⨯-=,三角形的三边长分别6cm、6cm、4cm,能组成三角形,综上所述,该等腰三角形的腰长是6cm.故答案为:6.13.若29a=1=-,则a b-的值是4或2-.【解答】解:29a=1=-,3a∴=±,1b=-,当3a=时,原式3(1)4=--=,当3a=-时,原式3(1)2=---=-,故答案为:4或2-14.如图,在Rt ABC∆中,90B∠=︒,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知35C∠=︒,则BAE∠的度数为20︒.【解答】解:ED 是AC 的垂直平分线,AE CE ∴=,35EAC C ∴∠=∠=︒,在Rt ABC ∆中,90B ∠=︒,9055BAC C ∴∠=︒-∠=︒,20BAE BAC EAC ∴∠=∠-∠=︒.故答案为:20.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 1 .【解答】解:设1l 、2l 之间的距离为x ,过A 作3AG l ⊥于G ,过C 作3CH l ⊥于H ,由题意得:2AG =,2CH x =+,90ABC ∠=︒,90ABG CBH ∴∠+∠=︒,90ABG GAB ∠+∠=︒,CBH GAB ∴∠=∠,AB BC =,90AGB BHC ∠=∠=︒,()AGB BHC AAS ∴∆≅∆,2BH AG ∴==,2BG HC x ==+,222AB AG BG =+,2134(2)x ∴=++,解得:1x =,5x =(不合题意舍去),1l ∴、2l 之间的距离为1.16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 5.【解答】解:ABC ∆是直角三角形,90C ∴∠=︒,由折叠的性质得:12BDC BDC CDC '∠=∠'=∠,12ADE A DE ADA ''∠=∠=∠,90BCD C ∠=∠=︒,1180902BDE BDC A DE '∴∠=∠+∠'=⨯︒=︒,DC AB '⊥,5()BE cm ∴===,BDE ∆的面积1122BE DC DE BD '=⨯=⨯, 3412()55DE BD DC cm BE ⨯⨯'∴===; 故答案为:125cm . 三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-【解答】解:(1)24121x =,21214x ∴=, 112x ∴=±; (2)3(2)8x -=-,22x ∴-=-,0x ∴=;18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.【解答】解:(1)、(2)如图所示:.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = 6 ,AD = (直接写出结果).【解答】解:(1)如图,点D 即为所求.(2)作DH BC ⊥于H .在Rt ABC ∆中,10BC =,8AB =,6AC ∴===, BD 平分ABC ∠,ABD HBD ∴∠=∠,90A DHB ∠=∠=︒,BD BD =,()ABD HBD AAS ∴∆≅∆,8AB BH ∴==,AD DH =,设AD DH x ==,在Rt CDH ∆中,222CD DH CH =+,222(6)2x x ∴-=+,83x ∴=, 83AD ∴=, 故答案为6,83. 20.已知:如图点O 在射线AP 上,1215∠=∠=︒,AB AC =,40B ∠=︒.(1)求证:ABO ACO ∆≅∆;(2)求POC ∠的度数.【解答】(1)证明:在ABO ∆与ACO ∆中12AB AC AO AO =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆;(2)解:ABO ACO ∆≅∆,40C B ∴∠=∠=︒,2154055POC C ∴∠=∠+∠=︒+︒=︒.21.已知:如图,90ABC ADC ∠=∠=︒,M ,N 分别是AC ,BD 的中点.求证:MN BD ⊥.【解答】证明:如图,连接BM 、DM ,90ABC ADC ∠=∠=︒,M 是AC 的中点,12BM DM AC ∴==, 点N 是BD 的中点,MN BD ∴⊥.22.已知:如图,BE CD ⊥垂足为E ,8BE DE ==,BC DA =,(1)求证:BEC DEA ∆≅∆;(2)若MN 是边AD 的垂直平分线,分别交AD 、CD 于M 、N ,且5CE =,求AEN ∆的周长.【解答】(1)证明:BE CD⊥,90BEC DEA∴∠=∠=︒,在Rt BEC∆与Rt DEA∆中BE DE BC DA=⎧⎨=⎩,Rt BEC Rt DEA(HL)∴∆≅∆;(2)解:Rt BEC Rt DEA∆≅∆,5AE CE∴==,MN是边AD的垂直平分线,AN DN∴=,AEN∴∆的周长5813AN EN AE AE DN EN AE DE=++=++=+=+=.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13AB m=,梯子底端离墙角的距离5BO m=.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离4BD m=吗?为什么?【解答】解:(1)AO DO⊥,AO∴==,12m =,∴梯子顶端距地面12m 高;(2)滑动不等于4m ,4AC m =,8OC AO AC m ∴=-=,OD ∴===,54BD OD OB ∴=-=->,∴滑动不等于4m .24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.【解答】解:(1)根据折叠可知:5AB AF ==,13AD =,12DF =,22212513+=,即222FD AF AD +=,根据勾股定理的逆定理,得ADF ∆是直角三角形.(2)设BE x =,则EF x =,根据折叠可知:90AFE B ∠=∠=︒,90AFD ∠=︒,180DFE ∴∠=︒,D ∴、F 、E 三点在同一条直线上,12DE x ∴=+,13CE x =-,5DC AB ==,在Rt DCE ∆中,根据勾股定理,得222DE DC EC =+,即222(12)5(13)x x +=+-,解得1x =.答:BE 的长为125.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.【解答】解:(1)ACP BPQ ∆≅∆,AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==,5BP ∴=,BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆;(2)存在x 的值,使得ACP ∆与BPQ ∆全等, ①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:572t =-,2t xt = 解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:5xt =,272t t =- 解得:207x =,74t =.。
2019-2020学年江苏省镇江市句容市八年级(上)期中数学试卷一、填空题(每小题2分,共24分)1.如果等腰三角形的顶角等于50°,那么它的底角为°.2.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.3.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=.4.如图,已知∠B=∠E,AB=DE,要推得△ABC≌△DEF,若以“SAS”为依据,添加的条件是.5.图中直角三角形未知边b的长度是.6.如图,△ACF≌△ADE,AC=6,AF=2,则CE的长.7.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=.8.等腰△ABC中,AB=AC,AD平分∠BAC,若AB=5cm、BC=6cm,则AD=cm.9.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,若OD=8,OP=10,则PE=.10.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.11.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为.12.如图,Rt△ABC的周长为30cm,面积为30cm2,以AB、AC为边向外作正方形ABPQ和正方形ACMN.则这两个正方形的面积之和为cm2二、选择(每小题3分,共21分)13.下列是我国一些银行的手机银行的图标中,其中是轴对称图形的是()A.B.C.D.14.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.2,3,4B.3,4,6C.5,12,13D.4,6,715.如图,∠BAD=∠BCD=90°,AB=CB,据此可以证明△BAD≌△BCD,证明的依据是()A.AAS B.ASA C.SAS D.HL16.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙17.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是()A.5B.8C.7D.618.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=BE B.EC=BE C.BC=EC D.AE=EC19.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,AB、CD交于F,若AE=6,AD=8,则AF的长为()A.5B.C.D.6三、解答题20.如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.22.已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.23.作图:(1)如图1,△ABC在边长为1的正方形网格中:①画出△ABC关于直线l轴对称的△DEF(其中D、E、F是A、B、C的对应点)②直接写出△DEF的面积平方单位.(2)如图2,在四边形ABCD内找一点P,使得点P到AB、AD的距离相等,并且点P到点B、C的距离也相等.(用直尺与圆规作图,不写作法,保留作图痕迹).24.如图,在△ABC中,AC=21,BC=13,D是AC边上一点,AD=16,BD=12,DE⊥AB,E为垂足,求线段DE的长.25.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:如图,小亮将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端1米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,如果设旗杆的高度为x米(滑轮上方的部分忽略不计),求x的值.26.已知:如图,点B、C、E三点在同一条直线上,CD平分∠ACE,∠DBM=∠DAN,DM⊥BE于M,DN⊥AC 于N.(1)求证:△BDM≌△ADN;(2)若AC=7,BC=3,则CM的长=.27.如图,AB⊥BC,射线CM⊥BC,且AB=7cm,BC=22cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,当BP=时,△ADP是等腰直角三角形.(2)如图2,若P是BC的中点,求证:DP平分∠ADC.(3)若△PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,则B′D=cm.2019-2020学年江苏省镇江市句容市八年级(上)期中数学试卷参考答案与试题解析一、填空题(每小题2分,共24分)1.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.2.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.3.【解答】解:∵两个三角形全等,长度为3的边是对应边,∴长度为3的边对的角是对应角,∴∠α=67°.4.【解答】解:∵∠B=∠E,AB=DE∴要利用SAS,则还缺少一边即:BC=EF,故答案为:BC=EF5.【解答】解:由勾股定理可得:b=,故答案为:12.6.【解答】解:∵△ACF≌△ADE,∴AE=AF,∴AC﹣AE=AC﹣AF,∴CE=AC﹣AF=6﹣2=4.故答案为:4.7.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故答案为:35°8.【解答】解:∵AB=AC,AD平分∠BAC,∴BD=BC=3,AD⊥BC,由勾股定理得,AD==4(cm),故答案为:4.9.【解答】解:∵OD=8,OP=10,PD⊥OA,∴由勾股定理得,PD===6,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=6.故答案为:6.10.【解答】解:根据题意:BC=6,D为BC的中点;故BD=DC=3.有轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=3,∠BDC′=60°,故△BDC′为等边三角形,故BC′=3.故答案为:3.11.【解答】解:在Rt△ABC中,AB==10,根据折叠的性质可知:AE=AB=10,DE=BD∵AC=8∴CE=AE﹣AC=2在Rt△CDE中,DE2=CD2+CE2.∴BD2=(BC﹣BD)2+CE2.∴BD2=(6﹣BD)2+4∴BD=故答案为12.【解答】解:∵Rt△ABC的周长为30cm,面积为30cm2,∴b+c=30﹣a,bc=60,∴(b+c)2=b2+c2+2bc=a2+120=(30﹣a)2,解得:a=13,∴两个正方形的面积之和为b2+c2=a2=169cm2,故答案为:169.二、选择(每小题3分,共21分)13.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.14.【解答】解:A、22+32≠42,根据勾股定理的逆定理不是直角三角形,故此选项错误;B、32+42≠62,根据勾股定理的逆定理不是直角三角形,故此选项错误;C、122+52=132,根据勾股定理的逆定理是直角三角形,故此选项正确;D、42+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误.故选:C.15.【解答】解:∵∠BAD=∠BCD=90°,∴△BAD和△BCD均为直角三角形.∵,∴△BAD≌BCD(HL).16.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.17.【解答】解:连接OD,∵PO=PD,∴OP=DP=OD,∴∠DPO=60°,∵等边△ABC,∴∠A=∠B=60°,AC=AB=9,∴∠OP A=∠PDB=∠DP A﹣60°,∴△OP A≌△PDB,∵AO=3,∴AO=PB=3,∴AP=6.故选:D.18.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:A.19.【解答】解:连接BD,∵CA=CB,CE=CD,∠ECA=90°﹣∠ACD=∠DCB,∴△ECA≌△DCB(SAS),∴DB=AE=6,∠CDB=∠E=45°,∴∠EDB=ADC+CDB=90°,在Rt△ABD中,AD=8,DB=6,则:AB=10,在Rt△ABC中,AB=10,则:BC=10•sin45°=5,在Rt△ECD中,ED=AE+AD=14,则:DC=7,∵∠CDB=45°=∠FBC,∠DCB=∠DCB,∴△CBF∽△CDB,∴,即:,解得:BF=,AF=AB﹣BF=,故选:B.三、解答题20.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).21.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.22.【解答】证明:连接AC,∵△ABC中,AB=BC,∴∠BCA=∠BAC.又∵∠BAD=∠BCD,∠BCD=∠BCA+∠ACD,∠BAD=∠BAC+∠CAD;∴∠CAD=∠ACD.∴AD=CD(等角对等边).23.【解答】解:(1)①如图所示,△DEF即为所求;②△DEF的面积为4×5﹣×1×5﹣×1×4﹣×3×4=9.5,故答案为:9.5;(2)如图2所示,点P即为所求.24.【解答】解:CD=21﹣16=5,∵DC2+BD2=52+122=169,BC=132=169,∴DC2+BD2=BC2,∴△BCD是直角三角形,且∠BDC=90°,在Rt△ADB中,由勾股定理,得AB=20,在Rt△ADB中,AB×DE=AD×BD,即×20×DE=×16×12,解得DE=.故线段DE的长是.25.【解答】解:设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平方=x2+12,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+12=(x﹣1)2+52,解得x=12.5.答x值为12.526.【解答】解:(1)∵CD平分∠ACE,DM⊥BE,DN⊥AC,∴DN=DM∵∠DBM=∠DAN,∠AND=∠BMD,ND=DM,∴Rt△ADN≌Rt△BDM(AAS);(2)∵DC=DC,DN=DM∴Rt△DCN≌Rt△DCM(HL)∴CM=CN∵Rt△ADN≌Rt△BDM∴BM=AN∵AC=AN+CN=BM+CM=BC+CM+CM=7∴3+2CM=7∴CM=2故答案为227.【解答】解:(1)当BP=15cm时,△ADP是等腰直角三角形,∵∠APD=90°,∴∠APB+∠DPC=90°,∵∠ABP=90°,∴∠APB+∠BAP=90°,∴∠BAP=∠CPD,∵BP=15,∴PC=BC﹣BP=7,∴AB=PC,在△ABP和△PCD中,,∴△ABP≌△PCD(ASA),∴P A=PD,又DP⊥AP,∴△ADP是等腰直角三角形,故答案为:15cm;(2)延长线段AP、DC交于点E,在△ABP和△ECP中,,∴△DP A≌△DPE(ASA),∴P A=PE,又DP⊥AP,∴DA=DE,∴∠ADP=∠EDP,即DP平分∠ADC;(3)连接B′A,B′P,延长AB′交CD于H,∵△PDC是等腰三角形,∴∠DPC=45°,∴∠APB=45°,∴BP=AB=7,∴CP=CD=15,∵△ABP为等腰直角三角形,B关于AP的对称点B′,∴四边形ABPB′为矩形,∴B′P=AB=7,AH⊥CD,∴四边形B′PCH为矩形,∴B′H=PC=15,DH=DC﹣CH=8,在Rt△DB′H中,=17(cm),故答案为:17.。
2024-2025学年八年级数学上学期期中测试卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(苏科版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列说法中,错误的有()A.平面上两个全等的图形不一定关于某直线对称B.周长相等的两个等边三角形全等C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.有两边及一角对应相等的两个三角形全等3.(3分)如图,∠C=∠DFE=90°,下列条件中,不能判定△ACB与△DFE全等的是()A .∠A =∠D ,AB =DEB .AC =DF ,BC =EF C .AB =DE ,BC =EFD .∠A =∠D ,∠ABC =∠E4.(3分)等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为( )A .50°B .130°C .50°或130°D .55°或130°5.(3分)五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列示意图中正确的是( )A .B .C .D .6.(3分)如图,在△ABC 中,AC 的垂直平分线交AB 于点D ,垂足为点E ,CD 平分∠ACB ,若∠A =50°,则∠B 的度数为( )A .25°B .30°C .35°D .40°7.(3分)如图,一张三角形纸片ABC ,其中∠C =90°,AC =6,BC =8.某同学将纸片折叠使点A 落在B 处,折痕记为n .则n 的长度是( )A .154B .3C .125D .58.(3分)如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E .△ABC 的面积为70,AB =16,BC =12.求DE 的长为( )A.4B.5C.10D.289.(3分)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4B.5C.6D.810.(3分)在△ABC中,已知D为直线BC上一点,若∠ABC=α,∠BAD=β,且AB=AC=CD,则β与α之间不可能存在的关系式是()A.β=90°−32αB.β=180°−32αC.β=32α−90°D.β=120°−32α第II卷二、填空题(本题共6小题,每小题3分,共18分.)11.(3分)若在直角三角形中,斜边比一直角边大1,且另一直角边长为5,则斜边上的中线长为.12.(3分)如图,△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,D,E在同一条直线上,若∠BEC=40°,则∠ADE=°.13.(3分)把长方形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕EF,若AB=3cm,BC =5cm,则线段DE=cm.14.(3分)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.15.(3分)如图所示的网格是正方形网格,则∠PAB﹣∠PCD=°.(点A,B,C,D,P 是网格线交点)16.(3分)如图,在△ABC中,∠B=90°,AB=4,BC=3,E为AC边上一动点(不与点A重合),△AEF为等边三角形,过点E作EF的垂线,D为垂线上任意一点,连接DF,G为DF的中点,连接CG,则CG的最小值是.三、解答题(本题共8小题,共72分.第17-18题每题6分,第19-20题每题8分,第21-22题每题10分,第23-24题每题12分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)如图,已知CB=DE,∠C=∠E,∠BAD=∠CAE,AC与DE交于点F.求证:AD平分∠BDE.18.(6分)如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE为AB上的高,DE=12,S△ABE=60,求△ABC的面积.19.(8分)如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=12,BO=4,求OD的长.20.(8分)方格纸中每个小方格都是边长为1的正方形.(1)在图1中画一个格点正方形,使其面积等于5;(2)在图2中确定格点C,使△ABC为等腰三角形(如果有多个点C,请分别以点C1,C2,C3…编号);(3)在图3中,请用无刻度的直尺找出一个格点P,使BP平分∠ABC.(不写画法,保留画图痕迹)21.(10分)已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长.22.(10分)在海平面上有A,B,C三个标记点,其中A在C的北偏西54°方向上,与C的距离是800海里,B在C的南偏西36°方向上,与C的距离是600海里.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B处有一艘轮船准备沿直线向点A处航行,轮船航行的速度为每小时20海里.轮船在驶向A处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).23.(12分)如图1,在△ABC中,AD⊥BC于D,且BD:AD:CD=3:4:2.(1)求证:△ABC是等腰三角形;(2)如图2,已知S△ABC=40cm2,动点M从点C出发以2cm/s的速度沿线段CB向点B运动,同时动点N从点B出发以相同的速度沿线段BA向点A运动,当其中一点到达终点时整个运动都停止.设运动时间为t s.若△DMN的边与AC平行,求t的值;(3)在(2)的条件下,设AD的垂直平分线交AB于点E,利用图3及备用图分析:在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.24.(12分)央视科教频道播放的《被数学选中的人》节目中说到:“数学区别于其它学科最主要的特征是抽象与推理”.几何学习尤其需要我们从复杂的问题中进行抽象,形成一些基本几何模型,用类比等方法,进行再探究、推理,以解决新的问题.(1)模型探究.如图1,△ABC和△AED中,AB=AC,AE=AD,∠BAC=∠EAD,连接BE、CD.这里△ABE与△ACD有一个公共的顶点,且将其中的一个三角形通过旋转可以和另一个三角形重合,我们将这样的图形称为“手拉手模型”.请你说明△ABE与△ACD全等的理由.(2)模型应用.如图2,△ABC中,AB=AC,∠BAC=50°,D为平面内一点,且∠ADB=∠ACB.求∠BDC的度数.聪明的小亮同学,想到可以通过辅助线构造“手拉手模型”来解决这个问题.小亮先在线段BD上找到一点E,使得AE=AD.请你根据小亮的思路,求出∠BDC的度数(要有必要的说理过程).(3)拓展提高.如图3,△ABC是等腰直角三角形,斜边BC=15,点D是射线BC上的一点,连接AD,以点A为直角顶点作等腰Rt△ADE(点A、D、E按逆时针方向排列),若CD=5,直接写出DE2的值.。
专题06 勾股定理1.(2019·江苏滨海县·八年级期中)两个边长分别为,,a b c 的直角三角形和一个两条直角边都是c 的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为( )A .22()a b c +=B .22()a b c -=C .222+=a b cD .222a c b -=1.(2019·江苏东台市·八年级期中)下列各组数是勾股数的是( )A .13,14,15 B .1C .0.3,0.4,0.5 D .5,12,132.(2020·宜兴市实验中学八年级期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =8,大正方形的面积为25,则小正方形的边长为( )A .4B .3C .2D .1.53.(2021·江苏锡山区·八年级期中)如图,分别以直角△ABC 的三边AB 、BC 、CA 为直径向外作半圆,设直线AB 左边阴影部分面积为S 1,右边阴影部分面积为S 2,则( )A .S 1=S 2B .S 1<S 2C .S 1>S 2D .无法确定4.(2019·江苏鼓楼区·南京市第二十九中学)在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2-S3-S4=_________.5.(2019·江苏泰州市·泰州中学附属初中八年级期中)如图,△ABC中,△ACB=90°,分别以AC、AB为边向外作正方形,面积分别为S1,S2.若S1=2,S2=5,则BC=____________.6.(2021·南京外国语学校八年级期中)如图,所有阴影四边形都是正方形,两个空白三角形均为直角三角形,且A、B、C三个正方形的边长分别为2、3、4,则正方形D的面积为_____.7.(2020·江苏宿迁市·南师附中宿迁分校八年级期中)如图是一棵勾股树,它是由正方形和直角三角形拼成的额,若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是____8.(2019·泰兴市洋思中学八年级期中)如图,以△ABC的三边向三角形外作等边三角形,其中S1=S2=6,S3=12,则图中三角形ABC为________三角形.考点三、勾股定理的运用1.(2019·涟水县郑梁梅中学八年级期中)如图,正方形网格中 ,每小格正方形边长为1,则网格上的三角形ABC 中,边长为无理数的边数有( )A .0条B .1条C .2条D .3条2.(2020·江苏苏州市·苏州中学八年级期中)如图,在数轴上以-1表示的点为圆心,以直角三角形的斜边为半径作出一条圆弧(虚线),该圆弧与数轴交于点A ,点A 所表示的数为m ,则m 的值为( )A .1-B .1C .D .1-3.(2019·江苏苏州市·八年级期中)如图,在Rt ABC ∆中,9,6AB BC ==,90B ∠=︒.将ABC ∆折叠,使点A 与BC 的中点D 重合,折痕为MN ,则线段BN 的长是( )A.4B.3C.6D.5A B C都在4.(2020·江苏苏州市·苏州草桥中学八年级期中)如图,网格中每个小正方形的边长均为1,点,,格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A B.0.8C.3D5.(2020·江苏苏州市·苏州中学八年级期中)如图,如图,在等边△ABC中,AB=6,AD△BC,E是AC上的一点,M是AD上的点,若AE=2,求ME+MC的最小值()A.B.2C.4D6.(2019·江苏淮阴区·八年级期中)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB长度为_____.7.(2019·江苏苏州市·苏州中学八年级期中)若等腰三角形的腰长为5,底边长为6,则其腰上的高为_________.8.(2020·江苏宿迁市·八年级期中)在△ABC中,△ACB=90°,AC=6,AB=10,BC=_____.9.(2019·江苏苏州市·苏州中学八年级期中)已知ABC 是等边三角形,若其高等于 __________ .10.(2020·扬州中学教育集团树人学校八年级期中)甲、乙两人同时从同一地点出发,甲往东走了9 km ,乙往南走了12 km ,这时两人相距_______km .11.(2020·江苏南京市·八年级期中)一个直角三角形的两边长分别是3和7,则第三边长的平方为_______. 12.(2020·南通市新桥中学八年级期中)如图,△ABC 中AB =AC ,△C =30°,现将△ABC 折叠,使得点B 与点A 重合,若折痕DE =1,则BC 的长为_____ .考点四、证明等综合解答1.(2020·江苏南京市·八年级期中)如图,在ABC ∆中,AD BC ⊥,垂足为点D ,13AB =,5BD =,15AC =.(1)求AD 的长;(2)求BC 的长.2.(2019·涟水县郑梁梅中学八年级期中)如图是单位长度为1的正方形网格.(1)在图1的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.3.(2020·江苏苏州市·八年级期中)如图,在四边形ABCD中,△DAB=30°,点E为AB的中点,DE△AB交AB于点E,DE BC=2,CD=4.(1)求△ABC的度数.(2)求CE的长.4.(2020·江苏滨海县·八年级期中)细心观察图形,认真分析各式,然后解答问题.OA 22212=+=,1S =;OA 322213=+=,22S =OA 422214=+=,3S =(1)(直接写出答案)OA 10= ,并用含有n (n 是正整数)的等式表示上述变规律:OA n 2= ;S n = .(25.(2020·江苏苏州市·苏州中学八年级期中)如图,C 为线段BD 上一动点,分别过点B 、D 作AB△BD ,ED△BD ,连接AC 、EC .已知AB=5,DE=1,BD=8,设CD=x .(1)请求出AC+CE 的最小值.(26.(2019·江苏阜宁县·八年级期中)如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,E F 、分别是AB 、AC 边上的点,且DE DF ⊥.(1)证明:DE DF =;(2)证明:222BE CF EF +=.7.(2020·泰兴市济川初级中学八年级期中)我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做双勾股三角形.(1) 根据“双勾股三角形”的定义,请你判断命题“等边三角形一定是双勾股三角形”是真命题还是假命题,并说明理由;(2) 在Rt△ABC 中,△C=90°,AB=c ,AC=b ,BC=a ,若Rt△ABC 是双勾股三角形,求a :b :c ;(3) 如图,△ABC 、△ABD 都是以AB 为斜边的直角三角形,DA=DB ,若在△ABD 内存在点E ,使AE=AD ,CB=CE .试说明△ACE 是双勾股三角形.1.(2020·江苏江都区·八年级期中)如图,在ABC 中,90C ︒∠=,2AC =,点D 在BC 上,ADC 2B ∠=∠,AD =BC 的长为( )A 1B 1C 1D 12.(2019·江苏铜山区·八年级期中)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”,如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12321S S S ++=,则2S 的值是( )A.9.5B.9C.7.5D.73.(2020·江苏苏州市·八年级期中)如图,在△ABC中,D是BC边上的中点,连结AD,把△ACD沿AD 翻折,得到△AD C',D C'与AB交于点E,连结B C',若BD=B C'=2,AD=3,则点D到A C'的距离( )AB C D4(2019·江苏徐州市·八年级期中)如图,已知△ABC 中,△ABC=90°,AB=BC= ,三角形的顶点在相互平行的三条直线l1、l2、l3上,且l2、l3之间的距离为2,则l1、l2 之间的距离为______.5.(2020·连云港外国语学校八年级期中)如图,一个高16m,底面周长8m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为___________长.6.(2019·江苏徐州市·八年级期中)如图的实线部分是由 Rt△ABC 经过两次折叠得到的,首先将 Rt△ABC 沿 BD 折叠,使点 C 落在斜边上的点 C′处,再沿 DE 折叠,使点 A 落在 DC′的延长线上的点 A′处.若图中△C=90°,DE=3cm ,BD=4cm ,则 DC′的长为_____.7.(2019·江苏常熟市·八年级期中)如图,在Rt ABC △中,90ACB ∠=︒,2BC AC =,点A 与数轴上表示1的点重合,点C 与数轴上表示2的点重合,以A 为圆心,AB 长为半径画圆弧,与数轴交于点D ,则点D 所表示的数是______.8.(2020·江苏苏州市·八年级期中)如图,在等腰直角三角形ABC 中,△BAC=90°,D ,E 是斜边BC 上两点,△DAE=45°,3,BD CE ==4,则ABC 的面积为__________.9.(2020·宜兴市实验中学八年级期中)如图,长方形ABCD 中,△DAB =△B =△C =△D =90°,AD =BC=18,AB =CD =24.点E 为DC 上的一个动点, △ADE 与△A D'E 关于直线AE 对称,当△CD'E 为直角三角形时,DE 的长为_____.C10.(2019·江苏淮阴区·八年级期中)如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为△△△△△…,若第1个等腰直角三角形的直角边为1,则第2020个等腰直角三角形的面积为_____.11.(2020·扬州市梅岭中学)如图1,有一个面积为2的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长后,变成图3:“生长”10次后,如果继续“生长”下去,它将变得更加“枝繁叶茂”.随着不断地“生长”,形成的图形中所有正方形的面积和也随之变化.若生长n 次后,变成的图中所有正方形的面积用n S 表示,则n S =______.12.(2021·江苏鼓楼区·八年级期中)如图,矩形ABCD 中,3AD =,2AB =.点E 是AB 的中点,点F 是BC 边上的任意一点(不与B 、C 重合),EBF △沿EF 翻折,点B 落在B '处,当DB '的长度最小时,BF 的长度为______.13.(2021·江苏江阴市·八年级期中)如图所示,直线12l l ⊥,垂足为点O ,A 、 B 是直线1l 上的两点,且OBAB = 1,直线1l 绕点O 按逆时针方向旋转,旋转角度为()0180αα︒<<︒.当 α= ________ 时,直线2l 上仅存在一点P ,使得△BP A 是以B 为顶角的等腰三角形,此时 OP = _________ .14.(2019·江苏淮安区·八年级期中)在△ABC 中,△BAC =90°,AB =AC .点D 从点B 出发沿射线BC 移动,以AD 为边在AB 的右侧作△ADE ,且△DAE =90°,AD =AE .连接CE .(1)如图1,若点D 在BC 边上,则△BCE = °;(2)如图2,若点D 在BC 的延长线上运动.△△BCE的度数是否发生变化?请说明理由;△若BC=3,CD=6,则△ADE的面积为.15.(2021·江苏锡山区·八年级期中)如图,方格纸中,每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上.(1)在图中画出ACE,使ACE与ABC关于直线AC对称(点E与点B是对称点);(2)直接填出结果:△AB=;△ACE与四边形ABCD重叠部分的面积为.16.(2019·江苏兴化市·八年级期中)(知识背景)我国古代把直角三角形较短的直角边称为“勾”,较长的的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像3、4、5这样为三边长能构成直角三角形的3个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;⋯可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,当勾为3时,股14(91)2=-,弦15(91)2=+; 当勾为5时,股112(251)2=-,弦113(251)2=+; 当勾为7时,股124(491)2=-,弦125(491)2=+. 请仿照上面三组样例,用发现的规律填空:(1)如果勾用(3n n ,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= . (问题解决)(2)古希腊的哲学家柏拉图也提出了构造勾股数组的公式.具体表述如下:如果2a m =,21b m =-,21(c m m =+为大于1的整数),则a 、b 、c 为勾股数.请你证明柏拉图公式的正确性;(3)毕达哥拉斯在他找到的勾股数的表达式中发现弦与股的差为1,若用2221(a a a ++为任意正整数)表示勾股数中最大的一个数,请你找出另外两个数的表达式分别是多少.17.(2020·江苏南京市·南京一中八年级期中)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:△△AEB的度数为°;△线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且△ACB=△DCE=90°,点A、D、E在同一直线上,若AE=30,DE=14,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索△AOE的度数,直接写出结果,不必说明理由.18.(2021·南京外国语学校八年级期中)阅读理解:(问题情境)教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?(探索新知)从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积.ab,化简证得勾股定理:a2+b2=c2.从而得数学等式:(a+b)2=c2+4×12(初步运用)(1)如图1,若b=2a,则小正方形面积:大正方形面积=;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC=3,求该风车状图案的面积.(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.(迁移运用)如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.19.(2020·江苏海安市·八年级期中)我们定义:两边平方和等于第三边平方的两倍的三角形叫做“奇异三角形”.(1)根据“奇异三角形”的定义,请你判断命题:“等边三角形一定是奇异三角形” 是命题.(填写“真命题、假命题”)(2)在RtΔABC中,△ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtΔABC是“奇异三角形”,则a:b:c=.(3)如图,在四边形ACBD中,△ACB=△ADB=90°,AD=BD,若在四边形ACBD内存在点E使得AE=AD,CB=CE.△求证:ΔACE是“奇异三角形”;△当ΔACE是直角三角形时,且AC AB 的长.20.(2019·无锡市钱桥中学八年级期中)如图1,在长方形ABCD中,BC=3,动点P从B出发,以每秒1t s个单位的速度,沿射线BC方向移动,作PAB∆关于直线PA的对称'PAB∆,设点P的运动时间为()(1)当P点在线段BC上且不与C点重合时,若直线PB’与直线CD相交于点M,且△PAM=45°,试求:AB的长(2)若AB=4△如图2,当点B’落在AC上时,显然△PCB’是直角三角形,求此时t的值△是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由21。
2019-2020学年江苏省南京市鼓楼区八年级(上)期中数学试卷一、选择题(共8小题).1.有些国家的国旗设计成了轴对称图形,观察如图代表国旗的图案,你认为是轴对称图形的有()A.4个B.3个C.2个D.1个2.在实数﹣,,0,﹣,2.161161161…,中,无理数有()A.1个B.2个C.3个D.4个3.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或204.以下列数组为边长的三角形中,能构成直角三角形的是()A.5,12,13B.8,15,16C.9,16,25D.12,15,20 5.下列说法中,正确的有()A.只有正数才有平方根B.27的立方根是±3C.立方根等于﹣1的实数是﹣1D.1的平方根是16.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.37.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④二、填空题(共10小题,每小题2分,共20分)9.由四舍五入法得到的近似数2.5×103精确到位.10.16的平方根为;(﹣4)3的立方根是.11.若,则x﹣y=.12.如图中有6个条形方格图,图上由实线围成的图形与(1)是全等形的有.13.如图,△ABC中,DE是AC的垂直平分线,AB=5,BC=7,则△ABD的周长是.14.已知等腰三角形的一个外角等于110°,则它的顶角是°.15.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4=°.16.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于点E、点D.若∠BAC=130°,那么∠EAD=.17.如图,在四边形ABCD中,AB=AC=BD,AC与BD相交于O,且AC⊥BD.①AB∥CD;②△ABD≌△BAC;③AB2+CD2=AD2+CB2;④∠ACB+∠BDA=135°.其中结论正确的是(填序号).18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题(共9小题,共64分)19.计算:(1)﹣(2)()2+|1﹣|+()0.20.求下列各式中的x的值(1)4x2﹣9=0(2)64(x+1)3=﹣125.21.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠ACE=∠BCD.22.如图,在△ABC中,AB=5,AC=13,AD是边BC上的中线,E在AD的延长线上,AD=ED=6,求△ABC的面积.23.如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.24.如图(1)是用硬板纸做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并用这个图形证明勾股定理;(2)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)25.阅读理解:求的近似值.小明的方法:设=10+x,其中0<x<1,则105=(10+x)2,即105=100+20x+x2.∵0<x<1∴0<x2<1,∴105≈100+20x,解之得x≈0.25,即的近似值为10.25,小莉的方法:设=11﹣y,其中0<y<1,则105=(11﹣y)2,即105=121﹣22y+y2,∵0<y<1∴0<y2<1,∴105≈121﹣22y,解之得y≈0.73,即的近似值为10.27.【反思比较】你认为的方法更接近.(填“小明”或“小莉”)【深入思考】下面关于x与y之间的数量关系A.x+y>1 B.x+y=1 C.x+y<1 D.无法确定你认为正确的是.请说明理由.26.(1)我们已经如道:在△ABC中,如果AB=AC,则∠B=∠C,下面我们继续研究:如图①,在△ABC中,如果AB>AC,则∠B与∠C的大小关系如何?为此,我们把AC 沿∠BAC的平分线翻折,因为AB>AC,所以点C落在AB边的点D处,如图②所示,然后把纸展平,连接DE.接下来,你能推出∠B与∠C的大小关系了吗?试写出说理过程.(2)如图③,在△ABC中,AE是角平分线,且∠C=2∠B.求证:AB=AC+CE.(3)在(2)的条件下,若点P,F分别为AE、AC上的动点,且S△ABC=15,AB=8,则PF+PC的最小值为.27.如图,已知等边△ABC,点D为△ABC内的一点,连接DA、DB、DC,∠ADB=120°.以CD为边向CD上方作等边△CDE,连接AE(0°<∠ACE<60°).(1)求证:△BDC≌△AEC.(2)若DC=2n,AD=AE,则△ADE的面积为.(3)若DA=n2+1,DB=n2﹣1,DC=2n(n为大于1的整数).求证:DA2+DC2=AC2.参考答案一、选择题(共8小题,每小题2分,共16分)1.有些国家的国旗设计成了轴对称图形,观察如图代表国旗的图案,你认为是轴对称图形的有()A.4个B.3个C.2个D.1个解:根据轴对称的概念可知:加拿大国旗、瑞士国旗是轴对称图形,符合题意;澳大利亚国旗、乌拉圭国旗都不是轴对称图形,不符合题意.故选:C.2.在实数﹣,,0,﹣,2.161161161…,中,无理数有()A.1个B.2个C.3个D.4个解:在实数﹣,,0,﹣,2.161161161…,中,无理数有﹣,﹣,一共2个.故选:B.3.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或20解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.4.以下列数组为边长的三角形中,能构成直角三角形的是()A.5,12,13B.8,15,16C.9,16,25D.12,15,20解:A、∵52+122=132,∴A正确;B、∵82+152≠162,∴B错误;C、∵92+162≠252,∴C错误;D、∵122+152≠202,∴D错误;故选:A.5.下列说法中,正确的有()A.只有正数才有平方根B.27的立方根是±3C.立方根等于﹣1的实数是﹣1D.1的平方根是1解:A、只有正数才有平方根,错误,0的平方根是0,故本选项错误;B、27的立方根是3,故本选项错误;C、立方根等于﹣1的实数是﹣1正确,故本选项正确;D、1的平方根是±1,故本选项错误.故选:C.6.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选:D.7.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④解:由题意,①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴①②③正确,④错误.故选:B.二、填空题(共10小题,每小题2分,共20分)9.由四舍五入法得到的近似数2.5×103精确到百位.解:2.5×103精确到百位.故答案是:百.10.16的平方根为±4;(﹣4)3的立方根是﹣4.解:16的平方根为±4;(﹣4)3的立方根是﹣4.故答案为:±4、﹣4.11.若,则x﹣y=5.解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,x﹣y=3﹣(﹣2)=3+2=5.故答案为:5.12.如图中有6个条形方格图,图上由实线围成的图形与(1)是全等形的有(2),(3),(6).解:由图可知,图上由实线围成的图形与(1)是全等形的有(2),(3),(6),故答案为:(2),(3),(6),13.如图,△ABC中,DE是AC的垂直平分线,AB=5,BC=7,则△ABD的周长是12.解:∵DE是AC的垂直平分线,∴DA=DC.∵AB=5,BC=7,∴△ABD的周长=AB+BD+DA=AB+BD+DC=AB+BC=12,故答案为:12.14.已知等腰三角形的一个外角等于110°,则它的顶角是70或40°.解:①若110°是顶角的外角,则顶角=180°﹣110°=70°;②若110°是底角的外角,则底角=180°﹣110°=70°,那么顶角=180°﹣2×70°=40°.故它的顶角是70°或40°.故答案为:70或40.15.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4=180°.解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180.16.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于点E、点D.若∠BAC=130°,那么∠EAD=80°.解:∵∠BAC=130°,∴∠B+∠C=50°,∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAE=∠BAC﹣(∠DAB+∠EAC)=∠BAC﹣(∠B+∠C)=80°.故答案为:80°17.如图,在四边形ABCD中,AB=AC=BD,AC与BD相交于O,且AC⊥BD.①AB∥CD;②△ABD≌△BAC;③AB2+CD2=AD2+CB2;④∠ACB+∠BDA=135°.其中结论正确的是③④(填序号).解:在四边形ABCD中,∠ABD与∠BAC不一定相等,故①AB∥CD;②△ABD≌△BAC都不一定成立,∵AC⊥BD,∴Rt△CDH中,CD2=DH2+CH2;Rt△ABH中,AB2=AH2+BH2;Rt△ADH中,AD2=DH2+AH2;Rt△BCH中,BC2=CH2+BH2;∴AB2+CD2=AD2+CB2,故③正确;∵AC⊥BD,∴∠ABH+∠BAH=90°,又∵AB=AC=BD,∴等腰△ABC中,∠ACB=(180°﹣∠BAC),等腰△ABD中,∠ADB=(180°﹣∠ABD),∴∠ACB+∠BDA=(180°﹣∠BAC)+(180°﹣∠ABD)=180°﹣(∠ABH+∠BAH)=180°﹣45°=135°,故④正确.故答案为:③④.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8.解:设CD与BE交于点G,∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,由折叠的性质可知△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8,故答案为:4.8.三、解答题(共9小题,共64分)19.计算:(1)﹣(2)()2+|1﹣|+()0.解:(1)原式=5﹣(﹣3)=5+3=8;(2)原式=3+﹣1+1=3+.20.求下列各式中的x的值(1)4x2﹣9=0(2)64(x+1)3=﹣125.解:(1)移项4x2=9,系数化为1,x2=,x=±;(2)(x+1)3=﹣,x+1=﹣,x=﹣.21.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠ACE=∠BCD.【解答】证明:∵C是AB的中点,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠ACE=∠BCD.22.如图,在△ABC中,AB=5,AC=13,AD是边BC上的中线,E在AD的延长线上,AD=ED=6,求△ABC的面积.解:∵AD是边BC上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE=5,∵AE=AD+ED=12,AC=13,CE=5,∴AE2+CE2=AC2,∴△ACE是直角三角形,∴△ABC的面积=△ACE的面积=×5×12=30.23.如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE.(2)∵△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.24.如图(1)是用硬板纸做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并用这个图形证明勾股定理;(2)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)【解答】解解:(1)如图所示,是梯形;由上图我们根据梯形的面积公式可知,梯形的面积=(a+b)(a+b).从上图我们还发现梯形的面积=三个三角形的面积,即ab+ab+c2.两者列成等式化简即可得:a2+b2=c2;(2)画边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.25.阅读理解:求的近似值.小明的方法:设=10+x,其中0<x<1,则105=(10+x)2,即105=100+20x+x2.∵0<x<1∴0<x2<1,∴105≈100+20x,解之得x≈0.25,即的近似值为10.25,小莉的方法:设=11﹣y,其中0<y<1,则105=(11﹣y)2,即105=121﹣22y+y2,∵0<y<1∴0<y2<1,∴105≈121﹣22y,解之得y≈0.73,即的近似值为10.27.【反思比较】你认为小明的方法更接近.(填“小明”或“小莉”)【深入思考】下面关于x与y之间的数量关系A.x+y>1 B.x+y=1 C.x+y<1 D.无法确定你认为正确的是B.请说明理由.解:我认为小明的方法更接近.故答案为小明.因为10+x=11﹣y,所以x+y=1,故答案为B.26.(1)我们已经如道:在△ABC中,如果AB=AC,则∠B=∠C,下面我们继续研究:如图①,在△ABC中,如果AB>AC,则∠B与∠C的大小关系如何?为此,我们把AC 沿∠BAC的平分线翻折,因为AB>AC,所以点C落在AB边的点D处,如图②所示,然后把纸展平,连接DE.接下来,你能推出∠B与∠C的大小关系了吗?试写出说理过程.(2)如图③,在△ABC中,AE是角平分线,且∠C=2∠B.求证:AB=AC+CE.(3)在(2)的条件下,若点P,F分别为AE、AC上的动点,且S△ABC=15,AB=8,则PF+PC的最小值为.解:(1)∠C>∠B,理由如下:∵点C落在AB边的点D处,∴∠ADE=∠C,∵AC沿∠BAC的平分线翻折,∠ADE为△EDB的一个外角,∴∠ADE=∠B+∠DEB,∴∠ADE>∠B,即:∠C>∠B;(2)如图3,在AB上截取AD=AC,连接DE,∵AE是角平分线,∴∠BAE=∠CAE.在△ADE和△ACE中,∴△ADE≌△ACE(SAS),∴∠ADE=∠C,DE=CE.∵∠ADE=∠B+∠DEB,且∠C=2∠B.∴∠B=∠DEB,∴DB=DE,∵AB=AD+DB,AD=AC,DB=DE=CE.∴AB=AC+CE.(3)如图4,在AB上截取AH=AF,连接CH,∵AH=AF,∠HAP=∠F AP,AP=AP,∴△AHP≌△AFP(SAS),∴HP=PF,∴PF+PC=PH+PC,∴点P在线段CH上,且CH⊥AB时,PF+PC的值最小,∵S△ABC=15=×AB×CH,AB=8,∴CH=,∴PF+PC的最小值为,故答案为:.27.如图,已知等边△ABC,点D为△ABC内的一点,连接DA、DB、DC,∠ADB=120°.以CD为边向CD上方作等边△CDE,连接AE(0°<∠ACE<60°).(1)求证:△BDC≌△AEC.(2)若DC=2n,AD=AE,则△ADE的面积为n2.(3)若DA=n2+1,DB=n2﹣1,DC=2n(n为大于1的整数).求证:DA2+DC2=AC2.解:(1)∵△ABC是等边三角形,∴∠ACB=60°,BC=AC,∵△CDE是等边三角形,∴∠DCE=60°,CD=CE,∴∠BCA=∠DCE=60°,∴∠BCD=∠ACE,∴△BDC≌△AEC(SAS);(2)如图,由(1)知,△BDC≌△AEC,∴∠CBD=∠CAE,BD=AE,∵AE=AD,∴BD=AD,∴∠ABD=∠BAD,∵∠ADB=120°,∴∠ABD=∠BAD=30°,∵△ABC是等边三角形,∴∠BAC=∠ABC=60°,∴∠CBD=∠ABC﹣∠ABD=30°,∠CAD=∠BAC﹣∠DAB=30°,∴∠CAE=∠CBD=30°,∴∠DAE=∠CAD+∠CAE=60°,∵AD=AE,∴△ADE是等边三角形,∴AD=DE,∠ADE=60°,∵△CDE是等边三角形,∴DE=CD=2n,∴AD=2n,过点E作EF⊥AD于F,在Rt△DEF中,DF=DE=n,根据勾股定理得,EF==n,∴S△ADE=AD•EF=×2n×n=n2,故答案为:n2;(3)∵△CDE是等边三角形,∴∠CED=60°,DE=DC=2n∵△BDC≌△AEC,∴∠AEC=∠BDC,AE=DB,EC=DC,∵DB=n2﹣1,∴AE=n2﹣1,∴AE2+DE2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=DA2,∴△ADE是以AD为斜边的直角三角形,∴∠AED=90°,∴∠AEC=∠AED+∠CED=150°,∴∠BDC=∠AEC=150°,∵∠ADB=120°,∴∠ADC=360°﹣∠ADB﹣∠BDC=90°,在Rt△ACD中,AD2+CD2=AC2.。
2019-2020年八年级数学上学期期中试题 苏科版 (V)
一.选择题(本大题共10小题,每题3分,共30分.)
1.下列美丽的图案中是轴对称图形的个数有……………………………………( )
2.一个等腰三角形的两边长分别是3和7,则它的周长是……………………( )
A.17
B.15
C. 13
D. 13或17 3.下列说法正确的是………………………………………………………………( ) A. 全等三角形是指形状相同的两个三角形 B. 全等三角形是指面积相等的两个三角形 C. 两个等边三角形是全等三角形
D. 全等三角形是指两个能完全重合的三角形
4. 如图,在边长为1个单位长度的小正方形组成的网格中,
A 、
B 都是格点,则线段AB 的长度为…………………………………………( ) A. 5 B. 6 C.7 D. 25
5.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是…………………………………………………………………( )
A. ∠A =∠C -∠B
B. a :b :c =2:3:4
C. a 2=b 2-c 2
D.a =34,b =54
,c =
1
6.如图,在△ABC 中,AB =AC ,∠A =36º,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有……………………………………………………( ) A. 5个 B. 4个 C. 3个 D. 2个
7.如图,四边形ABCD 关于直线l 是对称的,有下面的结论:①AB ∥CD ;②AC ⊥BD ;③AO =CO ;④AB ⊥BC ,其中正确的结论有……………………………………( ) A .①② B.②③ C.①④ D.②
8.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE . 若∠B =82º,
∠BAE =26º,则∠EAD 的度数为………………………………………………( ) A.28º B. 30º C.36º D.45º 9.如图,∠AOB 的平分线上一点P 到OA 的距离为5,Q 是OB 上任意一点,则( )
(第4题图)
A .PQ ≥5
B .PQ >5
C .PQ ≤5
D .PQ <5
10.如图,已知∠AOB =60º,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM 的长为……………………………………………………( ) A.3
B.4
C.5
D. 6
二.填空题(本大题共10小题,每空2分,共20分.) 11.正方形是一个轴对称图形,它有 条对称轴.
12.等腰三角形的顶角是80°,一腰上的高与底边的夹角是 °. 13.某直角三角形三条边的平方和为98,则这个直角三角形的斜边长为 . 14.直角三角形的一直角边长6cm ,斜边长10cm ,则其斜边上的高是 cm. 15.在△ABC 中,∠A =80°,当∠B =
°时,△ABC 是等腰三角形.
16.如图,已知AD 是线段BC 的垂直平分线,且BD =3cm ,△ABC 的周长为20cm ,则AC =
.
17.如图,△OAD ≌△OBC ,且∠O =70°,∠AEB =100°,则∠C =
°.
18. 如图,四边形ABCD 中,BC =AC =DC ,BC ⊥CD ,且∠B =60°,则∠BAD 的度数是
.
19. 如图,已知OB 、OC 为△ABC 的角平分线,过点O 作DE ∥BC 交AB 、AC 于D 、E ,若
AB =7,AC =5,则△ADE 的周长为 .
20. 如图,E 为正方形ABCD 边AB 上一点,BE =3AE =3,P 为对角线BD 上一个动点,则
PA +PE 的最小值是 .
三.解答题(本大题共6小题,共50分. 解答需写出必要的文字说明或演算步骤)
21.(8分)
(2)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.
①利用尺规作图在AC 边上找一点D ,使点D 到AB 、
BC 的距离相等.(不写作法,保留作图痕迹); ②在网格中,△ABC 的下方,直接画出△EBC , 使△EBC 与△ABC 全等.
(1)如图,已知△ABC (AC <BC ),用尺规在BC 上确定一点P ,使P A +PC =BC . (不写作法,保留作图痕迹.)
B
A
22.(8分)已知:如图,AB =AC ,∠DAM =∠DNE =∠BAC ,
求证:△ABD ≌△ACE .
23.(10分)如图,△ABC 中,∠B =90°,BC =8,BC 上一点D ,使BD :CD =3:5. (1)若AD 平分∠BAC ,求点D 到AC 边的距离; (2)若点D 恰好在AC 边的垂直平分线上,求AB 的长.
24.(8分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB =∠ECD =90º,点D 为
AB 边上的一点,
(1)求证:△ACE ≌△BCD ;(2)若AD =5,BD =12,求DE 的长.
A
E
M
C
D
B N
A B C
25.(6分)如图,在△ABC 中,点D 在边AC 上,DB =BC ,E 是CD 的中点,F 是AB 的中
点,求证:EF =1
2AB .
26.(10分)如图,长方形ABCD ,AB =9,AD =4. E 为CD 边上一点,CE =6. (1)求AE 的长.
(2)点P 从点B 出发,以每秒1个单位的速度沿着边BA 向终点A 运动,连接PE .
设点P 运动的时间为t 秒,则当t 为何值时,△PAE 为等腰三角形?
A B
C
D E F --------------------------------------------密----------封----------线----------内----------请----------不----------要----------答----------题------
初二数学期中考试参考答案与评分标准
三、解答题
21.(1)作AB 的垂直平分线,与BC 的交点即为点P ………………………………(3分)
②符合条件的点E 有两个……………………………………………………(8分)
22. 先证∠DAB =∠EAC …………………………………………………………………(2分)
再证∠D =∠E ………………………………………………………………………(5
分)又∵AB =AC ,∴△ABD ≌△ACE .………………………………………………(8分)
25. 证明:连结BE (图略)……………………………………………………………(1分)
∵在△BCD 中,DB =BC ,E 是CD 的中点,∴BE ⊥CD ……………………(4分)
在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF =1
2AB ………………………(6分)
26. (1)在长方形ABCD 中,∠D =90°,CD =AB =9………………………………(1分)
在Rt △ADE 中,DE =9-6=3,AD =4,∴AE =5………………………(3分)
(2)若△PAE 为等腰三角形,则有三种可能.
当EP =EA 时,AP =6,∴t =BP =3………………………………………………(5分)当AP =AE 时,则9-t =5,∴t =4………………………………………………(7分)
当PE =PA 时,则(6-t )2+42=(9-t )2
,∴t =296…………………………………(10
分)综上所述,符合要求的t 值为3或4或29
6
.。