海洋能及潮汐发电
- 格式:pdf
- 大小:2.79 MB
- 文档页数:27
海洋能的主要能量形式1、潮汐能因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量成为潮汐能。
潮汐与潮流能来源于月球、太阳引力,其它海洋能均来源于太阳辐射,海洋面积占地球总面积的71%,太阳到达地球的能量,大部分落在海洋上空和海水中,部分转化成各种形式的海洋能。
潮汐能的主要利用方式为发电,目前世界上最大的潮汐电站是法国的朗斯潮汐电站,我国的江夏潮汐实验电站为国内最大。
2、波浪能波浪能是指海洋表面波浪所具有的动能和势能,是一种在风的作用下产生的,并以位能和动能的形式由短周期波储存的机械能。
波浪的能量波高的平方、波浪的运动周期以及迎波面的宽度成正比。
波浪能是海洋能源中能量最不稳定的一种能源。
波浪发电是波浪能利用的主要方式,此外,波浪能还可以用于抽水、供热、海水淡化以及制氢等。
3、海水温差能海水温差能是指涵养表层海水和深层海水之间水温差的热能,是海洋能的一种重要形式。
低纬度的海面水温较高,与深层冷水存在温度差,而储存着温差热能,其能量与温差的大小和水量成正比。
温差能的主要利用方式为发电,首次提出利用海水温差发电设想的是法国物理学家阿松瓦尔,1926年,阿松瓦尔的学生克劳德试验成功海水温差发电。
1930年,克劳德在古巴海滨建造了世界上第一座海水温差发电站,获得了10kW的功率。
温差能利用的最大困难是温差大小,能量密度低,其效率仅有3%左右,而且换热面积大,建设费用高,目前各国仍在积极探索中。
4、盐差能盐差能是指海水和淡水之间或两种含盐浓度不同的海水之间的化学电位差能,是以化学能形态出现的海洋能。
主要存在与河海交接处。
同时,淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。
盐差能是海洋能中能量密度最大的一种可再生能源。
据估计,世界各河口区的盐差能达30TW,可能利用的有2.6TW。
我国的盐差能估计为1.1×10^8kw,主要集中在各大江河的出海处,同时,我国青海省等地还有不少内陆盐湖可以利用。
新能源的潮汐能技术与海洋能利用潮汐能技术和海洋能利用作为新能源领域的重要组成部分,正日益受到人们的关注。
本文将探讨潮汐能技术的原理与发展、海洋能的利用方式以及它们在新能源领域的前景。
一、潮汐能技术的原理与发展潮汐是由于地球引力和离心力的作用而引起的大海水位周期性变化现象。
潮汐能技术利用潮汐能源,将潮汐能转化为电能或其他形式的能源。
潮汐能技术的发展可以追溯到数百年前,但直到近年来才得到长足的发展。
目前,潮汐能技术主要有三种形式:潮汐发电、潮汐动力和潮汐储能。
潮汐发电是最常见的形式,通过建立潮汐发电站,利用潮汐水流带动涡轮机转动发电机,将机械能转化为电能。
潮汐动力则是利用潮汐水流的动力性质,应用于航运、海底资源开发等领域。
潮汐储能则是通过将潮汐能转化为储能形式,实现能源的有效储存和利用。
随着科学技术的不断进步,潮汐能技术在近年来取得了巨大的突破。
潮汐发电技术逐渐商业化,不仅在少数国家得到实际应用,还在全球范围内积极推进。
潮汐动力技术也在航运、海底资源开发等领域得到广泛运用。
潮汐储能技术则处于初级阶段,但已展示出广阔的应用前景。
二、海洋能的利用方式海洋能是指利用海水运动、潮汐、波浪、海流等天然能源,将其转化为电能或其他形式的能源。
海洋能是一种取之不尽、用之不竭的资源,具有广阔的开发潜力。
海洋能的主要利用方式包括波浪能利用、潮汐能利用、海流能利用和温差能利用。
波浪能利用通过建立波浪能发电站,将波浪的能量转化为电能。
潮汐能利用已在前文中介绍,是指将潮汐能源转化为电能或其他形式的能源。
海流能利用则利用海水的流动动能,将其转化为电能或其他形式的能源。
温差能利用则是利用海洋中的温差,通过海水温差发电设备将其转化为电能。
海洋能的利用方式众多,各种形式的海洋能设备正在不断发展和完善。
这些技术的应用将为新能源的发展提供更多的选择和可能性。
三、新能源领域的前景潮汐能技术和海洋能的利用作为新能源领域的重要组成部分,具有广阔的发展前景。
海洋能波浪能潮汐能之间的关系海洋能、波浪能和潮汐能是可再生能源的一种,它们都来源于海洋。
海洋能是指利用海洋中的能量转化为可用能的一种能源形式,其中包括波浪能和潮汐能。
波浪能是指利用海洋表面波浪的能量,而潮汐能是指利用海洋潮汐运动的能量。
尽管它们都属于海洋能的范畴,但波浪能和潮汐能在产生方式、利用方式和适用场景上存在一些差异。
波浪能是海洋能的一种表现形式,它是由风力、地球自转和地形等因素引起的海洋表面波浪运动所携带的能量。
波浪能的利用通常需要借助波浪发电装置,通过将波浪能转化为机械能,再进一步转化为电能。
波浪发电装置的种类多样,例如浮标式装置、压力差装置和摆式装置等,它们利用波浪的力量推动装置产生机械运动,进而驱动发电设备发电。
波浪能具有能源稳定、可再生、环保等优点,但受到波浪频率和强度的限制,适用范围相对较窄。
与波浪能相比,潮汐能的产生方式和利用方式有所不同。
潮汐能是由月球和太阳引力作用下,海洋中的潮汐运动携带的能量。
潮汐能的利用主要通过潮汐发电站来实现,它利用潮汐水位的高低差异和流动速度来驱动涡轮机发电。
潮汐发电站通常分为两种类型:潮汐动力发电站和潮汐能量发电站。
潮汐动力发电站利用潮汐水流的动能直接驱动涡轮机发电,而潮汐能量发电站则利用潮汐水位的高低差异来驱动涡轮机发电。
潮汐能具有可预测性、能量密度高等优点,但受到地理位置限制,只有特定地区的海岸线才适合建设潮汐发电站。
海洋能、波浪能和潮汐能在可再生能源领域具有重要意义。
它们是一种绿色、清洁的能源形式,可以替代传统的化石能源,减少对环境的污染和气候变化的影响。
海洋能的利用不仅可以满足能源需求,还可以促进经济发展和创造就业机会。
波浪能和潮汐能作为海洋能的两种主要形式,各自具有优势和适用场景,可以互补发展。
在实际应用中,可以根据地理条件和能源需求的不同,选择合适的海洋能形式进行开发利用。
然而,海洋能、波浪能和潮汐能的开发利用仍面临一些挑战和限制。
首先,由于海洋环境的复杂性和不确定性,海洋能设备的设计和建设成本较高。
海洋中所蕴藏的可再生自然能源称为海洋能,源于太阳和月亮对地球的引力变化以及太阳辐射给予海洋巨大的能量。
只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭。
潮汐现象就是海水在月球和太阳引力作用下所产生的周期性运动,潮汐的潮差又引起潮流。
潮差与潮流的能量都可以用来发电。
海洋能Ocean Energy海洋能源主要指海洋中所蕴藏的可再生的自然能源,主要为潮汐能、波浪能、海流能、海水温差能和海水盐差能。
究其成因,潮汐能和潮流能来源于太阳和月亮对地球的引力变化,其他均源于太阳辐射。
海洋能具有可再生性。
海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭。
海洋能总蕴藏量高达天文数字,但单位体积、单位面积、单位长度所拥有的能量较小。
这就是说,要想得到大能量,就得从大量的海水中获得。
潮汐能潮汐现象是海水在月球和太阳引力作用下所产生的周期性运动,由于月亮离地球较近,月球与太阳引潮力之比为11:5,引起海洋潮汐主要是月亮。
月球的引力使地球向月面和背月面的水位升高。
通常,将白天海水上涨叫“潮”,晚上海水上涨叫“汐”,合称“潮汐”。
由于太阳的引潮力也不小,月亮与太阳在不同位置引起潮汐也不同,图1与图2是月亮与太阳在不同位置引起潮汐的示意图,图中地球周围的蓝色代表潮汐,为能看清夸张的进行表现。
图1 潮汐形成的示意图(一)在农历每月的初一太阳和月球在地球的一侧,两者引潮力相加,会引起较高的潮差,称之为“大潮”;在农历的初八太阳与月亮相对地球的位置垂直,太阳的引潮力在垂直方向吸引海水,削弱了月亮引起的潮汐,使潮差减至最小,称之为“小潮”。
图2 潮汐形成的示意图(二)在农历每月的十五或十六附近,太阳和月亮在地球的两侧,太阳和月球的引潮力你推我拉也会引起较高的潮差,也称之为“大潮”。
在农历每月的二十三太阳与月亮相对地球的位置垂直,太阳的引潮力削弱了月亮的引潮力,引起的潮差也最小,也称之为“小潮”。
利用海洋技术提高海洋资源利用效率随着人口的不断增长和经济的迅猛发展,海洋资源的利用和管理已经成为一个全球性的问题。
海洋覆盖了地球表面的70%,拥有丰富的能源、矿产、生物资源等。
然而,由于技术限制和管理不善,海洋资源的有效利用率仍然较低。
因此,利用海洋技术来提高海洋资源的利用效率变得尤为重要。
一、海洋能源的开发利用海洋能源是指利用海洋蕴藏的能量资源,如潮汐能、波浪能、海流能和海洋热能等。
这些能源具有丰富、稳定的特点,有望成为替代传统能源的重要来源。
为了提高海洋能源的开发利用效率,需要借助各种高新技术的支持。
首先,利用先进的潮汐发电技术可以充分利用潮汐能。
潮汐能是指利用潮汐升降的能量,通过建设潮汐发电站,可以将潮汐能转化为电能。
目前,世界上已经有一些潮汐发电站投入使用,但是其规模仍然较小。
为了提高潮汐发电的效率,可以利用先进的水轮机技术,如水轮发电机组,将转动的潮汐能转化为电能。
同时,可以通过优化潮汐发电站的设计,提高发电效率和输出功率。
其次,通过开发利用波浪能和海洋热能,也可以提高海洋能源的利用效率。
波浪能是指利用海浪的机械能产生动力的能源形式,而海洋热能则是指利用海水的温差产生热能。
利用波浪能和海洋热能可以通过建设波浪发电厂和海洋温差发电站的方式来实现。
为了提高利用效率,需要采用高效的波浪发电和海洋温差发电设备,并进行合理的布局和调度。
二、海洋矿产资源的开采海洋矿产资源是指存在于海床或海洋中的矿产资源,如海底沉积物、石油、天然气等。
由于陆地矿产资源的日益枯竭和海上矿产资源的丰富,海洋矿产资源的开采变得尤为重要。
然而,由于海洋环境的恶劣和技术的不成熟,海洋矿产资源的开采利用率仍然不高。
为了提高海洋矿产资源的开采效率,可以利用海洋技术来解决技术难题。
例如,可以采用遥感探测技术来寻找和勘探海洋矿产资源。
遥感探测是通过卫星和飞机等远离地球表面的设备,利用电磁波的反射或散射来获取地球表面目标的信息。
通过遥感探测技术,可以大规模地获取海洋矿产资源的分布和储量等信息,从而指导矿产资源的开采。
海洋能利用技术的研究与应用海洋是地球上最丰富的资源之一,海洋能源是一种广阔的能源来源,可以为人类带来巨大的利益。
在过去的几十年中,海洋能源已经成为一个备受关注的话题。
随着技术的不断发展,许多海洋能利用技术已经得到了广泛的研究与应用。
一、海洋潮汐能利用技术海洋潮汐能是一种可再生的能源,可以通过利用潮汐来生成电力。
随着技术的不断发展,现在已经有许多海洋潮汐能利用技术得到了广泛的应用。
具体来说,海洋潮汐能利用技术包括潮汐能发电、潮汐双能发电、直接涡轮式发电和压力差发电等。
潮汐能发电是利用潮汐引起的涨潮和落潮过程中水位差来驱动涡轮发电机,发电机将机械能转化为电能,从而实现发电。
潮汐双能发电则是在建造潮汐电站的过程中,利用潮汐能发电的同时,还可以将它与其他能源捆绑一起进行利用。
直接涡轮式发电则是直接将流动的海水通过涡轮来实现发电,而压力差发电则是利用海水的压力差来实现发电。
二、海洋波浪能利用技术除了潮汐能外,海洋波浪能也是另一种广泛应用的海洋能源来源。
海洋波浪能利用技术包括浮浪式发电机、波浪能抽气发电机和波浪能压电发电机等。
浮浪式发电机是一种利用波浪的浮力来产生电能的技术,它通过将一些特殊的装置浮在海面上,利用装置的上下运动来驱动涡轮,从而产生电能。
波浪能抽气发电机则是通过利用波浪运动的抽吸作用来驱动发电机,从而实现发电。
波浪能压电发电机则是将一些特殊的材料放置在波浪震动的地方,利用材料的压电效应来产生电能。
三、海洋热能利用技术海洋热能是指海洋中蕴藏的热能资源,它具有丰富的资源量,可以为人类提供大量的能源。
海洋热能利用技术包括海洋热能的发电和海洋热能的直接利用两种方式。
海洋热能发电是一种利用温差发电的技术,它通过将一些特殊的液体放置在温度不同的两个区域之间,利用液体的膨胀和收缩来驱动涡轮,从而实现发电。
海洋热能的直接利用则是利用海洋中的热能来进行空调或者供暖等。
四、海洋风能利用技术海洋风能是指利用海洋中的风来产生能源的一种技术。
海洋能发电潮汐波浪和温差能源利用近年来,海洋能力发电作为一种可再生能源形式,备受关注。
相比于传统的煤炭、石油等能源,海洋能发电拥有巨大的潜力和优势。
其中,潮汐能、波浪能和温差能是海洋能发电的主要形式。
本文将分别介绍这三种类型的海洋能发电,并探讨其利用前景与挑战。
一、潮汐能发电潮汐能发电利用潮汐水位差异产生的能量。
它可分为蓄能式和输送式两种形式。
蓄能式潮汐能发电通过建设潮汐发电站,利用潮汐差异驱动发电机发电。
输送式潮汐能发电则通过建设潮汐能转换装置,将潮汐能转化为电能,并输送至陆地。
潮汐能发电具备可预测性、持续性和稳定性等特点,因此具有较高的利用价值。
二、波浪能发电波浪能发电通过利用海洋波浪运动产生的机械能转化为电能。
波浪能发电可分为浮标式和浮筒式两种形式。
浮标式波浪能发电机通过浮标上下浮动驱动液压装置工作,将波浪能转化为电能。
而浮筒式波浪能发电机则通过利用海洋波浪的垂直运动推动发电装置发电。
波浪能发电具有能源密度大、可预测性好等优点,但目前仍存在技术难题和经济成本较高等挑战。
三、温差能发电温差能发电利用海洋温差产生的能量进行发电。
它通过建设温差发电站,将海洋温差转化为电能。
这种技术需要海水表层温度相对较高,而海水深处温度相对较低。
温差能发电具有较高的能量密度和稳定性,而且可预测性好。
然而,温差能发电的工程难度较大,技术上仍存在一些挑战。
海洋能发电作为一种可再生能源形式,具有巨大发展潜力。
它不仅可以减少对传统能源的依赖,降低环境污染,还能够推动经济发展和提高能源安全。
然而,海洋能发电也面临一些挑战,如技术成熟度不高、建设成本较高等问题。
未来,需要加大技术研发和政策支持力度,推动海洋能发电的实用化和产业化。
总结而言,海洋能发电的潮汐能、波浪能和温差能是三种主要的发电形式。
它们在能源利用效率、可持续性和环境友好性方面具备优势。
然而,技术创新和成本降低仍然是实际应用中需要解决的问题。
通过持续的努力和投资,我们有理由相信海洋能发电将在未来成为重要的能源替代选择,为可持续发展做出贡献。
海洋能发电技术的发展与应用在当今世界,随着能源需求的不断增长和传统能源的日益枯竭,寻找和开发新型可再生能源成为了人类社会发展的重要课题。
海洋,这个占据了地球表面约 71%的广阔领域,蕴含着巨大的能量。
海洋能发电技术作为一种新兴的能源获取方式,正逐渐引起人们的关注,并在近年来取得了显著的发展。
海洋能主要包括潮汐能、波浪能、海流能、温差能和盐差能等多种形式。
这些能源具有储量丰富、可再生、清洁环保等优点。
其中,潮汐能是指由于月球和太阳对地球的引力作用,引起海平面周期性升降而产生的能量。
潮汐发电就是利用涨潮和落潮时的水位差,推动水轮机旋转,从而带动发电机发电。
波浪能则是由风对海面的作用引起的海水波动所产生的能量,通过波浪能转换装置可以将其转化为电能。
海流能是指海水流动所具有的动能,利用海流推动涡轮机发电是获取海流能的主要方式。
温差能是由于海洋表层海水和深层海水之间的温度差而产生的能量,盐差能则是由于海水和淡水之间的盐度差所蕴含的能量。
潮汐能发电是海洋能发电中发展较为成熟的技术之一。
早在 20 世纪初,法国就建成了世界上第一座潮汐发电站。
此后,英国、加拿大、俄罗斯等国家也相继开展了潮汐能发电的研究和建设工作。
我国在潮汐能发电方面也取得了一定的成果,如浙江温岭的江厦潮汐电站,是我国目前规模最大的潮汐电站。
潮汐能发电具有规律性强、可预测性好等优点,但也存在着建设成本高、对地理环境要求苛刻等局限性。
波浪能发电技术近年来发展迅速。
波浪能装置的种类繁多,常见的有振荡水柱式、摆式、筏式等。
振荡水柱式装置通过波浪的上下运动,推动空气在一个封闭的腔室内来回流动,从而驱动涡轮机发电。
摆式装置则是利用波浪的冲击力使摆体来回摆动,通过机械传动装置带动发电机发电。
筏式装置则是由多个浮体组成,通过浮体的相对运动来获取能量。
波浪能发电的优点是能量密度较高,但由于波浪的随机性和不稳定性,其能量转换效率还有待提高,并且装置的维护成本也较高。
潮汐能的海洋能源利用潮汐能,是指根据地球引力及其它天文力所引起的海洋潮汐现象,将其中蕴含的能量转化为可用能源的一种方式。
近年来,随着全球对可再生能源需求的增加以及环境保护的呼吁,潮汐能作为一种绿色清洁能源备受关注。
本文将探讨潮汐能的海洋能源利用方式及其优势。
一、潮汐能的利用方式1. 潮汐发电潮汐发电是目前最主要的潮汐能利用方式之一。
通过利用潮汐涌动时的动能,将其转化为电能。
通常,利用潮水涌动时的液压能,通过建设潮汐发电站来发电。
潮汐发电站的建设一般需要充分考虑到潮汐的日变化、月变化等因素,以确定最佳的发电方案。
2. 潮汐能转化为机械能除了将潮汐能转化为电能,潮汐能还可以通过其他方式转化为机械能。
例如,将潮汐能应用于泵水系统,利用潮汐能将海水抽到较高处。
这种方式可以用于农田灌溉、淡化海水等领域。
3. 潮汐能供暖、制冷潮汐能还可以用于供暖、制冷等方面。
将潮汐能与地热能等结合,通过工程手段将其转化为热能,用于供应建筑物的暖气或制冷系统,实现能源的可持续利用。
二、潮汐能的优势1. 可再生、清洁环保潮汐能是一种可再生、清洁环保的能源形式。
地球上不断进行着的潮汐运动使得潮汐能源的供应永无止境,与石油、煤炭等传统能源相比,潮汐能不会产生二氧化碳等有害气体,对环境友好。
2. 高密度能源相较于其他可再生能源,潮汐能是一种能量密度较高的能源形式。
每单位体积或质量的潮汐能所包含的能量都相对较大,这为有效利用潮汐能提供了很大的便利。
3. 稳定可靠潮汐是地球上一种稳定运动的自然现象,与太阳能和风能相比,潮汐能是一种更加稳定可靠的能源形式。
这种稳定性使得潮汐能在提供基础能源供应方面具有很大的潜力。
三、潮汐能的挑战与前景虽然潮汐能作为一种可再生清洁能源具有很多优势,但是也面临一些挑战。
首先,潮汐能的利用成本较高,建设海上设施需要大量资金投入。
此外,潮汐能的开发也受到地理条件的限制,只有具备适宜的海岸线和潮汐差的地区才能充分利用潮汐能。
海洋能发电技术的发展与应用前景近年来,随着能源需求的增加和可再生能源的重要性逐渐凸显,海洋能发电技术成为人们关注的焦点。
海洋能发电是指利用潮汐、波浪、海流、海洋温差等海洋能源来产生电能的技术。
本文旨在探讨海洋能发电技术的发展现状以及其应用前景。
一、潮汐能发电技术的发展与应用前景潮汐能是指利用潮汐的上升和下降来获得能量的一种海洋能发电技术。
潮汐能发电技术经过多年的发展,已经具备可行性和商业化应用的潜力。
目前主流的潮汐能发电技术主要包括潮汐发电机和潮汐涡轮发电机。
潮汐发电机利用潮汐涨落的动能,通过潮汐水流的驱动产生电能。
同时,潮汐涡轮发电机则通过在水中设置涡轮装置,通过潮汐水流的流动来驱动涡轮并产生电能。
这些技术的发展不仅可以满足当地的电力需求,还可以为周边地区提供可再生的清洁能源。
未来,潮汐能发电技术有望在全球范围内得到更广泛的应用。
二、波浪能发电技术的发展与应用前景波浪能发电技术是一种利用海洋波浪动能来产生电能的技术,具有丰富的资源和较高的能量密度。
目前,主要的波浪能发电技术包括浮动式波浪能转换器和压力差波浪能转换器。
浮动式波浪能转换器通过将浮标与发电机连系,当波浪推动浮标上下浮动时,通过机械装置将波浪动能转化为电能。
而压力差波浪能转换器则通过利用波浪对设备的压力差来产生电能。
这些技术在海洋能发电领域具有重要的应用前景。
三、海流能发电技术的发展与应用前景海流能发电技术是指利用海洋中的水流动能转化为电能的技术。
海流能发电技术具有稳定性和预测性强的特点,成为可再生能源领域的热门技术。
目前,主要的海流能发电技术包括水轮发电机和垂直轴悬浮式涡轮发电机。
水轮发电机是利用水流对叶轮的冲击力来产生转动,从而驱动发电机产生电能。
垂直轴悬浮式涡轮发电机则是通过将多个轮叶组合成悬浮式结构,使其可以自动调整叶尖挂角,并将旋转的动能转化为电能。
这些技术在海洋能发电领域的应用前景可观。
四、海洋温差能发电技术的发展与应用前景海洋温差能发电技术是指利用海洋中不同温度层之间的温差来产生电能的技术。