电路原理实验指导册
- 格式:doc
- 大小:1.09 MB
- 文档页数:26
电工电子实验指导书一、引言电工电子实验是电工电子专业学生进行实践课程的重要部分。
本实验指导书旨在为学生提供详细的实验操作步骤和相关知识,帮助学生掌握电工电子实验的基本技能和原理。
二、实验目的本实验旨在使学生:1. 熟悉电工电子实验室的基本设备和仪器;2. 掌握基本的电工电子实验操作技能;3. 理解电工电子实验的基本原理和相关知识;4. 培养实验观察能力和解决问题的能力。
三、实验器材和材料1.示波器2.函数发生器3.直流电源4.电阻器5.电容器6.电感器7.连接线等四、实验内容本次实验共包括以下几个实验项目:1. 交流电压测量实验2. 直流电路测量实验3. 电阻测量实验4. 电容测量实验5. 电感测量实验实验一:交流电压测量实验1. 接线:使用连接线将示波器和测量电路连接。
2. 调节示波器:根据待测交流电压的幅值和频率,调节示波器的控制方式和显示范围。
3. 读取电压值:在示波器上读取交流电压的值,并记录。
实验二:直流电路测量实验1. 接线:使用连接线将电源、电阻器和电压表连接成直流电路。
2. 开启电源:根据实验要求确定电源的电压,并将电源开启。
3. 测量电压:使用电压表测量电路中各个元件的电压值,并记录。
实验三:电阻测量实验1. 接线:使用连接线将电源、电阻器和电流表连接成电阻测量电路。
2. 开启电源:根据实验要求确定电源的电压,并将电源开启。
3. 测量电阻:使用电流表测量电阻器中通过的电流,并结合已知电压计算出电阻的值。
实验四:电容测量实验1. 接线:使用连接线将电容器、电阻器和电源连接成电容测量电路。
2. 开启电源:根据实验要求确定电源的电压,并将电源开启。
3. 充电和放电:观察电容器充电和放电的过程,并记录相应的电容器电压。
4. 计算电容:使用已知的电阻值和充电时间计算电容器的电容值。
实验五:电感测量实验1. 接线:使用连接线将电感器、电阻器和电源连接成电感测量电路。
2. 开启电源:根据实验要求确定电源的电压,并将电源开启。
课程名称:数字逻辑电路实验指导书课时:8学时集成电路芯片一、简介数字电路实验中所用到的集成芯片都是双列直插式的,其引脚排列规则如图1-1所示。
识别方法是:正对集成电路型号(如74LS20)或看标记(左边的缺口或小圆点标记),从左下角开始按逆时针方向以1,2,3,…依次排列到最后一般排在左上端,接地一脚(在左上角)。
在标准形TTL集成电路中,电源端VCC,7脚为GND。
若集端GND一般排在右下端。
如74LS20为14脚芯片,14脚为VCC成芯片引脚上的功能标号为NC,则表示该引脚为空脚,与内部电路不连接。
二、TTL集成电路使用规则1、接插集成块时,要认清定位标记,不得插反。
2、电源电压使用范围为+4.5V~+5.5V之间,实验中要求使用Vcc=+5V。
电源极性绝对不允许接错。
3、闲置输入端处理方法(1)悬空,相当于正逻辑“1”,对于一般小规模集成电路的数据输入端,实验时允许悬空处理。
但易受外界干扰,导致电路的逻辑功能不正常。
因此,对于接有长线的输入端,中规模以上的集成电路和使用集成电路较多的复杂电路,所有控制输入端必须按逻辑要求接入电路,不允许悬空。
(也可以串入一只1~10KΩ的固定电阻)或接至某一固定(2)直接接电源电压VCC电压(+2.4≤V≤4.5V)的电源上,或与输入端为接地的多余与非门的输出端相接。
(3)若前级驱动能力允许,可以与使用的输入端并联。
4、输入端通过电阻接地,电阻值的大小将直接影响电路所处的状态。
当R ≤680Ω时,输入端相当于逻辑“0”;当R≥4.7KΩ时,输入端相当于逻辑“1”。
对于不同系列的器件,要求的阻值不同。
5、输出端不允许并联使用(集电极开路门(OC)和三态输出门电路(3S)除外)。
否则不仅会使电路逻辑功能混乱,并会导致器件损坏。
6、输出端不允许直接接地或直接接+5V电源,否则将损坏器件,有时为了使后,一般取R=3~5.1K 级电路获得较高的输出电平,允许输出端通过电阻R接至VccΩ。
非理想对称差动放大器的设计与仿真 实验目的:(1)熟悉PSPICE 软件的使用方法;(2)运用PSPICE 软件对非理想差动放大器进行设计与仿真;实验内容:1 电路参数设置已知参数指标: K R C 51=,K R C 5.52=,,1001=F β,1102=F βA S 151105-⨯=I ,A S 152105.5-⨯=I , 3Q ,4Q 的100=F β, I A S 15105-⨯=。
晶体管的选择:根据分析,选用元件库中的晶体管Q2N2222和Q2N3904。
输入电压的选择:根据分析,选用元件库中的VDC ,VSIN ,VSRC ,VSTIM 。
输入电阻的选择:根据分析,选用元件库中的Rbreak ,R 。
2 电路的直流分析的部分输出图1 设计电路图如上图1,差动放大电路中输入交流电压为1V ,-1V .在差动晶体管中由于配对晶体管参数失配和集电极负载电阻C R 失配使差动放大电路的性能变差,主要表现为:当输入加差模信号时输出会产生共模分量,当输入加共模信号时会产生差模分量.如果下一级也是差动放大电路,这种差模输入-共模输出或共模输入-差模输出的转换对整个放大电路的性能将产生十分不利的影响。
以下通过电路来分析讨论这一问题。
图2 差分放大电路直流工作点各个晶体管直流工作点见附录2,其上半部分为三极管的直流偏置情况。
IC 行列出了四个晶体管的工作电流分别为10.405CQ I MA =,20.444CQ I MA =, 30.861CQ I MA =,40.983CQ I MA =。
而IB,VBE,VBCVCE 为三极管的其他直流工作点参数。
图3 直流传输特性图3是当输入信号V1由0.125+变化时,输出电压V01和V02的变--0.125化曲线。
利用直流扫描分析可以清楚地看到直流传输特性,为分析电路直流工作状态提供方便。
3 交流小信号分析图4 差模输出曲线如上图为输入差模信号时输出电压曲线。
电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。
波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电路分析实验箱实验指导书一、实验目的1.了解电路分析实验箱的基本组成和功能;2.掌握电路分析实验箱的使用方法;3.熟悉基本电路的分析方法。
二、实验器材•电路分析实验箱(包括电压源、电流源、电阻、电容、电感等元件)•变阻器•万用表•示波器•接线板•电源线•实验箱手册三、实验原理电路分析实验箱是用于学习和实践电路分析的工具。
它由多个电路元件组成,可以模拟和研究各种电路的特性和运行原理。
实验箱内部包含电源和各种元件,可以通过拼接不同的电路拓扑结构,构建各种电路实验。
通过对电路的分析和实验,可以深入了解电路中的电压、电流、功率等基本概念,掌握电路分析的方法和技巧。
四、实验步骤1.将电路分析实验箱放在平稳的桌面上,连接电源线并接通电源。
2.根据实验需要,选择适当的电路元件和参数。
3.使用万用表测量所选元件的电阻、电容和电感值,并记录在实验记录表中。
4.将所选元件连接到电路分析实验箱的接线板上,按照预定电路拓扑结构进行拼接。
5.使用功率源和信号源分别给电路提供所需的电源和信号输入。
6.使用示波器观察电路的波形变化,并记录观察结果。
7.使用万用表测量电路中的电压和电流值,并记录在实验记录表中。
8.根据测量结果和实验数据,分析电路的特性和运行原理。
五、实验注意事项1.在进行实验之前,确保实验箱的电源线连接正确,电源正常工作。
2.在连接电路元件和参数之前,仔细检查元件的数值和规格是否与实验要求相符。
3.在进行电路拼接时,确保接线板的连接牢固,避免接触不良或短路。
4.在使用示波器观察电路波形时,注意调整示波器的触发模式和垂直/水平调节,确保观察清晰可见。
5.在测量电路电压和电流时,使用万用表正确选择测量范围和量程,避免超出表的额定范围。
6.实验结束后,关闭电源并整理实验器材,保持实验环境的整洁和安全。
六、实验结果与分析根据实验步骤和注意事项,完成实验后,将实验记录表中的测量结果和观察结果整理出来。
基于实验数据,对所构建的电路进行分析和解释,总结实验结果和发现。
《电路原理实验》实验教学大纲实验名称:电路原理实验课程代码:XXXXX学分:X学分课程性质:必修先修课程:无教材:《电路原理实验教程》参考书:《电路与电子学实验指导书》教学目的:1.通过本实验,使学生能够熟悉基本的电路元件和电路器件的使用,掌握电路的组装和测量技巧。
2.培养学生的实践动手能力,以及科学的观察、分析、提问和解决问题的能力。
教学内容:1.实验仪器和设备的熟悉与使用。
2.基本电路元件和器件的性质和特点。
3.电阻、电压、电流和功率的测量。
4.串并联电路的组装和测量。
5.基本交流电路的组装和测量。
6.二极管和晶体管的基本特性测量。
7.模拟电路的组装和测量。
8.数字电路的组装和测量。
教学方法:1.理论讲授与实验实践相结合。
2.示范实验和实验报告的撰写。
3.小组合作学习和讨论。
实验项目:实验项目一:电路仪器的熟悉与使用实验项目二:电热效应的测量实验项目三:串并联电路的实验实验项目四:基本交流电路的实验实验项目五:二极管和晶体管的特性测量实验项目六:模拟电路的组装和测量实验项目七:数字电路的组装和测量实验项目八:综合实验实验报告:每个实验项目完成后,学生需撰写实验报告,包括实验目的、原理、实验步骤、数据记录、结果分析和实验感想等内容。
实验考核:1.通过实验报告的撰写和提交。
2.实验结果的准确性和数据的分析能力。
3.实验器材的正确使用和实验的操作技能。
教学评价:1.每个实验项目完成后,学生的实验报告将由教师进行评价和打分。
2.学生的实验操作技能和实验分析能力将通过实际操作和观察评估。
3.学生的态度、团队合作和创新能力将通过平时的表现和讨论来评估。
参考教学进度安排:第一周:课程介绍与实验室安全注意事项第二周:电路仪器的熟悉与使用第三周:电热效应的测量第四周:串并联电路的实验第五周:基本交流电路的实验第六周:二极管和晶体管的特性测量第七周:模拟电路的组装和测量第八周:数字电路的组装和测量第九周:综合实验的设计与实施第十周:实验报告的撰写和提交。
实验一线性电路叠加性和齐次性的研究一、实验目的1.验证叠加原理;2.了解叠加原理的应用场合;3.理解线性电路的叠加性。
二、原理说明叠加原理指出:在有几个电源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个电源单独作用时在该元件上所产生的电流或电压的代数和。
具体方法是:一个电源单独作用时,其它的电源必须去掉(电压源短路,电流源开路);在求电流或电压的代数和时,当电源单独作用时电流或电压的参考方向与共同作用时的参考方向一致时,符号取正,否则取负。
在图1-1中:+'=UU''U叠加原理反映了线性电路的叠加性,线性电路的齐次性是指当激励信号(如电源作用)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。
叠加性和齐次性都只适用于求解线性电路中的电流、电压。
对于非线性电路,叠加性和齐次性都不适用。
三、实验设备1.直流数字电压表、直流数字毫安表2.恒压源(含+6V,+12V,0~30V可调)3.EEL-74A组件(含实验电路)四、实验内容实验电路如图1-2所示,图中:R1 = 150Ω,R2 = R5 = 100Ω,R3 =200Ω,R4 = 300Ω,电源U S1用恒压源中的+12V输出端,U S2用0~+30V可调电压输出端,并将输出电压调到+6V(以直流数字电压表读数为准),将开关S3投向R3侧。
1.U S1电源单独作用(将开关S1投向U S1侧,开关S2投向短路侧),参考图1-1(b),画出电路图,标明各电流、电压的参考方向。
用直流数字毫安表接电流插头测量各支路电流:将电流插头的红接线端插入数字毫安表的红(正)接线端,电流插头的黑接线端插入数字毫安表的黑(负)接线端,测量各支路电流,按规定:在结点A,电流表读数为‘+’,表示电流流出结点,读数为‘-’,表示电流流入结点,然后根据电路中的电流参考方向,确定各支路电流的正、负号,并将数据记入表1—1中。
实验一基尔霍夫定律的验证一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2、进一步掌握仪器、仪表的使用方法。
二、原理说明基尔霍夫定律是电路的基本定律。
测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。
即对电路中的任一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。
运用上述定律时必须注意电流的正方向,此方向可预先任意设定。
三、实验设备1、RXDI-1电路原理实验箱 1台2、万用表 1台四、实验内容及步骤实验线路如图A所示图A1、实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示。
2、分别将两路直流稳压电源(如:一路U2为+12V电源,另一路U1为0~24V可调直流稳压源)接入电路,令U1=6V、 U2=12V。
3、将电源分别接入三条支路中,记录电流值。
4、用电压表分别测量两路电源及电阻元件上的电压值,并记录。
五、实验报告1、根据实验数据,选定实验电路中的任一个节点,验证KCL的正确性。
2、根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正确性。
3、分析误差原因。
4、实验总结。
实验二戴维南定理—有源二端网络等效参数的测定—一、实验目的1、验证戴维南定理的正确性2、掌握测量有源二端网络等效参数的一般方法二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势E S等于这个有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流视为开路)时的等效电阻。
U0C和R0称为有源二端网络的等效参数。
2、有源二端网络等效参数的测量方法(1)开路电压、短路电流法在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U0C,然后将其输出端短路,用电流表测其短路电流I SC,则内阻为R0=U OC/I SC(2)伏安法用电压表、电流表测出有源二端网络的外特性如图A所示。
实验一叠加原理一、实验目的1、学会使用直流稳压电源和万用表2、通过实验证明线性电路的叠加原理二、实验设备1、双路直流稳压电源一台2、数字万用表一块3、实验电路板一块三、实验原理由叠加原理:在线性电路中,有多个电源同时作用时,在电路的任何部分产生的电流或电压,等于这些电源分别单独作用时在该部分产生的电流或电压的代数和。
为了验证叠加原理,实验电路如图1-1所示。
当1E 和2E 同时作用时,在某一支路中所产生的电流I ,应为1E 单独作用在该支路中所产生的电流I '和2E 单独作用在该支路中所产生的电流I ''之和,即I =I '+I ''。
实验中可将电流表串联接入到所测量的支路中,分别测量出在1E 和2E 单独作用时,以及它们共同作用时的电流值来验证叠加原理。
2E 四、实验内容及步骤1、直流稳压电源和万用表的使用参见本书的附录一、和附录二,掌握直流稳压电源和万用表的使用。
图1-1叠加原理实验电路2、验证叠加原理实验电路如图1-1所示,1E 、2E 由直流稳压电源供给。
1E 、2E 两电源是否作用于电路,分别由开关1S 、2S 来控制。
实验前先检查电路,调节两路稳压电源使V 121=E 、V 62=E ,进行以下测试,并将数据填入表1-1中。
(1)1E 单独作用时(1S 置“1”处,2S 置“'2”处),测量各支路的电流。
(2)2E 单独作用时(1S 置“1'”处,2S 置“2”处),测量各支路的电流。
(3)1E 、2E 共同作用时(1S 置“1”处,2S 置“2”处),测量各支路的电流。
表1-1数据记录与计算1I (mA )2I (mA)3I (mA)电源电压测量计算误差测量计算误差测量计算误差V 121=E V 62=E VE 6E V,1221==五、预习要求1、认真阅读本书附录中对稳压电源的介绍,掌握稳压电源的使用方法。
2、认真阅读本书附录中对万用表的介绍,掌握测量直流电压、电流,交流电压及电阻值的使用方法。
实验四 锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
(2)观察正弦波同步移相触发电路各点的波形,掌握锯齿波同步移相触发电路的调试方法。
二、实验所需挂件及附件三、实验内容(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
四、预习要求阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。
五、实验线路及原理锯齿波同步移相触发电路的原理图如图3-10所示。
锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成。
+15图3-10 锯齿波同步移相触发电路Ⅰ原理图由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压来控制锯齿波产生的时刻及锯齿波的宽度。
由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3 导通时,电容C2通过R4、V3放电。
调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。
控制电压U ct 、偏移电压U b 和锯齿波电压U T 在V5基极综合叠加,控制V5的截止与导通,从而构成移相控制环节,RP2、RP3 分别调节控制电压U ct 和偏移电压U b 的大小。
V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图3-11所示。
本装置有两路锯齿波同步移相触发电路,Ⅰ和Ⅱ,在电路上完全一样,只是锯齿波触发电路Ⅱ输出的触发脉冲相位与Ⅰ恰好互差180°,供单相整流及逆变实验用。
电位器RP1、RP2、RP3 均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。
六、实验方法及步骤(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。
电路原理实验指导书绍兴文理学院数理信息学院2011叶森钢编制实验一叠加原理的验证一、实验目的验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。
二、原理说明叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。
三、实验设备四、实验内容实验电路如图2-1所示1. 按图2-1电路接线,E1为+6V、+12V切换电源,取E1=+12V,E2为可调直流稳压电源,调至+6V。
2.令E1电源单独作用时(将开关S1投向E1侧,开关S2投向短路侧),用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端电压,数据记入表格中。
图 1-13. 令E2电源单独作用时(将开关S1投向短路侧,开关S2投向E2侧),重复实验步骤2的测量和记录。
4. 令E1和E2共同作用时(开关S1和S2分别投向E1和E2侧),重复上述的测量和记录。
5. 将E2的数值调至+12V,重复上述第3项的测量并记录。
五、实验注意事项1.测量各支路电流时,应注意仪表的极性, 及数据表格中“+、-”号的记录。
2. 注意仪表量程的及时更换。
六、预习思考题1. 叠加原理中E1、E2分别单独作用,在实验中应如何操作?可否直接将不作用的电源(E1或E2)置零(短接)?2. 实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么?七、实验报告1. 根据实验数据验证线性电路的叠加性与齐次性。
2. 各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。
3. 心得体会及其他。
实验二 戴维南定理─有源二端网络等效参数的测定─一、实验目的1. 验证戴维南定理的正确性。
2. 掌握测量有源二端网络等效参数的一般方法。
二、原理说明1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势Es 等于这个有源二端网络的开路电压U OC ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
U OC 和R 0称为有源二端网络的等效参数。
2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC ,然后再将其输出端短路,用电流表测其短路电流I SC ,则内阻为 R O =SCOC I U(2) 伏安法用电压表、电流表测出有源二端网络的外特性如图3-1所示。
根据外特性曲线求出斜率tg φ,则内阻 R O =tg φ=SCOC I U ΔIΔU =用伏安法,主要是测量开路电压及电流为额定值I N 时的输出端电压值U N ,则内阻为R O =NNOC I U U -若二端网络的内阻值很低时,则不宜测其短路电流。
图 2-1 图 2-2(3) 半电压法如图2-2所示,当负载电压为被测网络开路电压一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。
(4) 零示法在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图2-3所示。
图 2-3零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
三、实验设备四、实验内容被测有源二端网络如图2-4(a)所示。
(a) (b)图2-41. 用开路电压、短路电流法测定戴维南等效电路的UOC 和R。
按图3-4(a)电路接入稳压电源ES 和恒流源IS及可变电阻箱RL,测定 UOC和R。
2. 负载实验按图3-4(a)改变RL阻值,测量有源二端网络的外特性。
3. 验证戴维南定理用一只1KΩ的电位器,将其阻值调整到等于按步骤“1”所得的等效电阻R之值,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压UOC之值)相串联,如图3-4(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证。
4. 测定有源二端网络等效电阻(又称入端电阻)的其它方法:将被测有源网络内的所有独立源置零(将电流源IS断开;去掉电压源,并在原电压端所接的两点用一根短路导线相连),然后用伏安法或者直接用万用电表的欧姆档去测定负载RL 开路后输出端两点间的电阻,此即为被测网络的等效内阻R或称网络的入端电阻Ri。
5.用半电压法和零示法测量被测网络的等效内阻R0及其开路电压UOC,线路及数据表格自拟。
五、实验注意事项1. 注意测量时,电流表量程的更换。
2. 步骤“4”中,电源置零时不可将稳压源短接。
3. 用万用电表直接测R时,网络内的独立源必须先置零,以免损坏万用电表,其次,欧姆档必须经调零后再进行测量。
4. 改接线路时,要关掉电源。
六、预习思考题1. 在求戴维南等效电路时,作短路实验,测ISC的条件是什么?在本实验中可否直接作负载短路实验?请实验前对线路3-4(a)预先作好计算,以便调整实验线路及测量时可准确地选取电表的量程。
2. 说明测有源二端网络开路电压及等效内阻的几种方法,并比较其优缺点。
七、实验报告1. 根据步骤2和3,分别绘出曲线,验证戴维南定理的正确性,并分析产生误差的原因。
2. 根据步骤1、4、5各种方法测得的UOC 与R与预习时电路计算的结果作比较,你能得出什么结论。
3. 归纳、总结实验结果。
4. 心得体会及其他。
实验三受控源VCVS、VCCS、CCVS、CCCS的实验研究一、实验目的1.了解用运算放大器组成四种类型受控源的线路原理。
2.测试受控源转移特性及负载特性。
二、原理说明1.运算放大器(简称运放)的电路符号及其等效电路如图3-1所示:图3-1运算放大器是一个有源三端器件,它有两个输入端和一个输出端,若信号从“+”端输入,则输出信号与输入信号相位相同,故称为同相输入端;若信号从“-”端输入,则输出信号与输入信号相位相反,故称为反相输入端。
运算放大器的输出电压为u=A(up-un)其中A是运放的开环电压放大倍数,在理想情况下,A与运放的输入电阻Ri 均为无穷大,因此有up=unRuiippp==0Ruiinnn==这说明理想运放具有下列三大特征(1)运放的“+”端与“-”端电位相等,通常称为“虚短路”。
(2)运放输入端电流为零,即其输入电阻为无穷大。
(3)运放的输出电阻为零。
以上三个重要的性质是分析所有具有运放网络的重要依据。
要使运放工作,还须接有正、负直流工作电源(称双电源),有的运放可用单电源工作。
2、理想运放的电路模型是一个受控源—电压控制电压源(即VCVS),如图8-1(b)所示,在它的外部接入不同的电路元件,可构成四种基本受控源电路,以实现对输入信号的各种模拟运算或模拟变换。
3、所谓受控源,是指其电源的输出电压或电流是受电路另一支路的电压或电流所控制的。
当受控源的电压(或电流)与控制支路的电压(或电流)成正比时,则该受控源为线性的。
根据控制变量与输出变量的不同可分为四类受控源:即电压控制电压源(VCVS)、电压控制电流源(VCCS)、电流控制电压源(CCVS)、电流控制电流源(CCCS)。
电路符号如图3-2所示。
理想受控源的控制支路中只有一个独立变量(电压或电流),另一个变量为零,即从输入口看理想受控源或是短路(即输入电阻Ri =0,因而u1=0)或是开路(即输入电导Gi=0,因而输入电流i1=0),从输出口看,理想受控源或是一个理想电压源或是一个理想电流源。
图3-24、受控源的控制端与受控端的关系称为转移函数四种受控源转移函数参量的定义如下(1)压控电压源(VCVS)U2=f(U1) μ=U2/U1称为转移电压比(或电压增益)。
(2)压控电流源(VCCS)I2=f(U1) gm=I2/U1称为转移电导。
(3)流控电压源(CCVS)U2=f(I1) rm=U2/I1称为转移电阻。
(4)流控电流源(CCCS)I2=f(I1) α=I2/I1称为转移电流比(或电流增益)。
5、用运放构成四种类型基本受控源的线路原理分析(1)压控电压源(VCVS)如图3-3所示图3-3由于运放的虚短路特性,有 u p =u n =u 1 i 2=212n R u R u =又因运放内阻为∞ 有 i 1=i 2 因此 u 2=i 1R 1+i 2R 2=i 2(R 1+R 2)=21R u (R 1+R 2)=(1+21R R )u 1即运放的输出电压u 2只受输入电压u 1的控制与负载R L 大小无关,电路模型如图9-2(a)所示。
转移电压比 μ=2112R R 1u u +=μ为无量纲,又称为电压放大系数。
这里的输入、输出有公共接地点,这种联接方式称为共地联接。
(2)压控电流源(VCCS ) 将图8-3的R 1看成一个负载电阻R L ,如图3-4所示,即成为压控电流源VCCS 。
图3-4此时,运放的输出电流i L =i R =Ru Ru 1n =即运放的输出电流i L 只受输入电压u 1的控制,与负载R L 大小无关。
电路模型如图8-2(b)所示。
转移电导 R1u i 1L m g ==(S )这里的输入、输出无公共接地点,这种联接方式称为浮地联接。
(3)流控电压源(CCVS ) 如图 3-5 所示由于运放的“+”端接地,所以u p =0,“-”端电压u n 也为零,此时运放的“-”端称为虚地点。
显然,流过电阻R 的电流i 1就等于网络的输入电流i S 。
此时,运放的输出电压u 2=-i 1R =-i S R ,即输出电压u 2只受输入电流i S 的控制,与负载R L 大小无关,电路模型如图 3-2(c)所示。
转移电阻 R i u r S2m -==(Ω)此电路为共地联接。
图3-5(4)流控电流源(CCCS ) 如图3-6所示:图3-6u a =-i 2R 2=-i 1R 1 i L =i 1+i 2=i 1+21R R i 1=(1+21R R )i 1 =(1+21R R )i S即输出电流i L 只受输入电流i S 的控制,与负载R L 大小无关。
电路模型如图8-2(d)所示转移电流比 α=)R R (1i i 21SL +=α为无量纲,又称为电流放大系数。