水工隧洞和坝下涵管设计图集(精)
- 格式:ppt
- 大小:1.28 MB
- 文档页数:4
水工建筑物——坝下涵管在土石坝枢纽中,当由于两岸地质条件或其他原因,不易开挖隧洞时,可以采用在土石坝下埋设涵管的方式来满足泄水、引水的需求。
一、坝下涵管的特点与在山岩中开挖隧洞相比,坝下涵管不需要开山凿洞,结构简单、施工方便、工期较短、造价也低,因此在中、小型工程中使用较多。
同时,坝下涵管的进口通常在水下较深处,也是属于深式泄水或放水建筑物。
因此,其工作特点、工程布置、进出口的形式与构造等方面与水工隧洞均有相似之处。
但是,坝下涵管的管身埋设于土石坝坝下,穿坝而过,如设计施工不良或运用管理不当,极易影响土石坝的安全。
根据国内外土石坝失事资料的统计分析表明,坝下涵管的缺陷是引起土石坝失事的重要原因之一。
涵管的材料与土石坝的填土是两种性质差别较大的材料,如果两者结合不好,水库中的水就会沿管壁与填土之间接触面产生集中渗流,引起管外填土的渗透变形,特别当涵管由于坝基的不均匀沉陷或连接结构等方面原因,发生断裂、漏水时,后果更加严重,甚至导致坝体的失事。
因此在坝下涵管的设计、施工中必须采取适当的措施,做到管身与周围土体的紧密结合,加强管身的防渗处理,保证坝下涵管及坝体安全可靠运行。
对于高坝或多地震地区的坝,应尽量避免采用坝下涵管。
二、坝下涵管的位置选择坝下涵管的线路选择及工程布置的一般原则为经济合理、安全可靠、运行方便。
在进行坝下涵管的位置选择时,主要应考虑以下几个方面的问题。
1.地质条件应尽量将涵管设在岩基上。
如不可能时,对于坝高在10m以下的涵管也可设于压缩性小、均匀而密实的土基上,但必须有充分的技术论证。
涵管上部所受的外荷载沿管轴线方向变化较大,将可能产生不均匀沉陷,而引起管身断裂,因此,必须避免将管身部分设于岩基上、部分设于土基上,以防止因地基的不均匀沉降而使得管身断裂。
不得将涵管直接建在坝体填土中。
在进出口的位置,要注意山坡地质的稳定性,防止山坡塌方堵塞涵管。
2.地形条件涵管应布置在与进口高程相适应的位置,以免增加过多的挖方工程量。
坝下涵管的分类及特点在土石坝枢纽中,当由于两岸地质条件或其他原因,不易开挖隧洞时,可以采用在土石坝下埋设涵管的方式来满足泄水、引水的需求。
一、坝下涵管的特点与在山岩中开挖隧洞相比,坝下涵管不需要开山凿洞,结构简单、施工方便、工期较短、造价也低,因此在中、小型工程中使用较多。
同时,坝下涵管的进口通常在水下较深处,也是属于深式泄水或放水建筑物。
因此,其工作特点、工程布置、进出口的形式与构造等方面与水工隧洞均有相似之处。
但是,坝下涵管的管身埋设于土石坝坝下,穿坝而过,如设计施工不良或运用管理不当,极易影响土石坝的安全。
根据国内外土石坝失事资料的统计分析表明,坝下涵管的缺陷是引起土石坝失事的重要原因之一。
涵管的材料与土石坝的填土是两种性质差别较大的材料,如果两者结合不好,水库中的水就会沿管壁与填土之间接触面产生集中渗流,引起管外填土的渗透变形,特别当涵管由于坝基的不均匀沉陷或连接结构等方面原因,发生断裂、漏水时,后果更加严重,甚至导致坝体的失事。
因此在坝下涵管的设计、施工中必须采取适当的措施,做到管身与周围土体的紧密结合,加强管身的防渗处理,保证坝下涵管及坝体安全可靠运行。
对于高坝或多地震地区的坝,应尽量避免采用坝下涵管。
二、坝下涵管的位置选择坝下涵管的线路选择及工程布置的一般原则为经济合理、安全可靠、运行方便。
在进行坝下涵管的位置选择时,主要应考虑以下几个方面的问题。
1.地质条件应尽量将涵管设在岩基上。
如不可能时,对于坝高在10m以下的涵管也可设于压缩性小、均匀而密实的土基上,但必须有充分的技术论证。
涵管上部所受的外荷载沿管轴线方向变化较大,将可能产生不均匀沉陷,而引起管身断裂,因此,必须避免将管身部分设于岩基上、部分设于土基上,以防止因地基的不均匀沉降而使得管身断裂。
不得将涵管直接建在坝体填土中。
在进出口的位置,要注意山坡地质的稳定性,防止山坡塌方堵塞涵管。
2.地形条件涵管应布置在与进口高程相适应的位置,以免增加过多的挖方工程量。
很高兴能为您撰写关于水工压力隧洞与坝下涵管结构应力计算的文章。
这是一个非常专业和深度的主题,需要充分的研究和理解。
我会按照您的要求,从简到繁地探讨这个主题,同时共享我的个人观点和理解。
一、水工压力隧洞与坝下涵管结构应力计算1. 水工压力隧洞结构应力计算水工压力隧洞是指用于输水、排水、泄洪或发电等用途的隧洞工程。
在设计水工压力隧洞时,必须充分考虑结构的受力情况。
应力计算是非常重要的一部分,它涉及到材料的力学特性、水压力的作用、隧洞结构的稳定性等方面。
根据我查阅的资料和经验,水工压力隧洞结构应力计算需要考虑的因素包括但不限于隧洞的尺寸、材料的强度、水压力的大小和作用方式等。
2. 坝下涵管结构应力计算坝下涵管是指由水工坝的导流洞、泄洪洞、闸室等进入下游水渠的通道。
在设计坝下涵管时,结构的稳定性和安全性是首要考虑的因素。
应力计算是确保坝下涵管结构安全可靠的关键一步。
根据我对这个主题的理解,坝下涵管结构应力计算需要考虑的因素包括涵管的形状、材料的强度、水流压力的作用、地下水压力等。
二、水工压力隧洞与坝下涵管结构应力计算的深入探讨经过对水工压力隧洞与坝下涵管结构应力计算的全面评估,我发现这两个领域有着许多复杂的问题需要解决。
对于水工压力隧洞来说,需要考虑的涉及因素远不止上文提及的那些,还包括水工压力隧洞的布置、支护及排水等,每一项因素都对结构的应力计算有着直接的影响。
而对于坝下涵管结构应力计算来说,地质条件、水文条件的变化也是一个非常复杂的问题。
在实际设计中,针对不同的地质条件和水文条件,相应的计算方法和模型也需要做相应的调整。
总结:根据我个人的观点和理解,水工压力隧洞与坝下涵管结构应力计算是一个需要理论和实践相结合的领域。
在设计水工压力隧洞和坝下涵管时,不仅需要考虑结构的强度和稳定性,还需要考虑隧洞和涵管内部的水压力、地下水压力等因素。
只有在全面评估并合理计算这些因素后,才能设计出安全可靠的水工压力隧洞与坝下涵管结构。
第七章水工隧洞与坝下涵管第一节水工隧洞概述水工隧洞———在水利枢纽中为满足泄洪、灌溉、发电等各项任务在岩层中开凿而成的建筑物。
一、水工隧洞的特点(一)结构特点在岩层中开挖隧洞后,引起洞孔附近应力重新分布,岩体产生新的变形,严重的会导致岩石崩塌。
围岩除了产生作用在衬砌上的围岩压力以外,同时又具有承载能力,可以与衬砌共同承受内水压力等荷载。
围岩压力与岩体承载能力的大小,主要取决于地质条件。
因此,应使隧洞尽量避开软弱岩层和不利的地质构造。
(二)水流特点枢纽中的泄水隧洞,其进口深式泄水洞。
由于作用在隧洞上的水头较高,流速较大,如果隧洞在弯道、渐变段等处的体型不合适或衬砌表面不平整,都可能出现气蚀而引起破坏,所以要求隧洞体型设计得当、施工质量良好。
泄水隧洞的水流流速高、单宽流量大、能量集中,在出口处有较强的冲刷能力,必须采取有效的消能防冲措施。
(三)施工特点隧洞洞身断面小,施工场地狭窄,洞线长,施工作业工序多,干扰大,工期一般较长。
尤其是兼有导流任务的隧洞,其施工进度往往控制着整个工程的工期。
因此,加快施工进度是隧洞工程建设中需要引起足够的重视。
二、水工隧洞的类型1.按用途分类(1)泄洪洞:配合溢洪道宣泄洪水,保证安全。
(2)引水洞:引水发电、灌溉或供水。
(3)排沙洞:排放水库泥沙,延长水库的使用年限,有利于水电站的正常运行。
(4)放空洞:在必要的情况下放空水库。
(5)导流洞:在水利枢纽的施工期用来施工导流。
在设计水工隧洞时,应根据枢纽的规划任务,尽量考虑一洞多用,以降低工程造价。
如施工导流洞与永久隧洞相结合,枢纽中的泄洪、排沙、放空隧洞的结合等。
2.按洞内水流状态分类(1)有压洞:工作闸门布置在隧洞出口,洞身全断面被水流充满,隧洞内壁承受较大的内水压力。
(2)无压洞:工作闸门布置在隧洞的进口,水流没有充满全断面,有自由水面。
一般说来,隧洞可以设计成有压的,也可设计成无压的,也可设计成前段是有压的而后段是无压的。
水工压力隧洞与坝下涵管结构应力计算下载水工压力隧洞与坝下涵管结构应力计算1. 前言在水利工程中,水工压力隧洞与坝下涵管结构的应力计算是非常重要的,它关系到工程结构的安全性和稳定性。
本文将针对这一主题展开讨论,从简单到复杂逐步深入,以全面评估这一问题,并撰写一篇有价值的文章。
2. 为什么需要进行应力计算水工压力隧洞与坝下涵管结构在运行中承受着巨大的水压力,因此需要进行应力计算,以确保结构的安全。
应力计算可以帮助我们了解结构在受力情况下的变形和应力分布,为设计提供依据,并规避一些潜在的安全隐患。
3. 应力计算的基本原理在进行应力计算时,我们需要考虑结构的材料性质、受力情况、几何形状等因素。
通过应力分析、受力分析和变形分析,我们可以计算出结构在受力状态下的应力分布和变形情况,从而评估结构的安全性。
4. 水工压力隧洞结构应力计算水工压力隧洞是一种受到水压力作用的地下隧道结构,其应力计算涉及到土压力、水压力和地下水压力的综合作用。
我们需要考虑隧洞的地质条件、水文地质条件、隧洞结构的几何形状等因素,通过有限元分析等方法,计算出隧洞结构在不同受力情况下的应力分布,并对其安全性进行评估。
5. 坝下涵管结构应力计算坝下涵管结构是一种受到水压力作用的水工结构,其应力计算需要考虑水压力、地下水压力以及结构自重等因素。
我们需要进行结构的受力分析和变形分析,计算出结构在受力状态下的应力分布和变形情况,从而评估结构的安全性。
6. 个人观点与理解在进行水工压力隧洞与坝下涵管结构的应力计算时,我认为需要充分考虑结构的复杂性和不确定性,结合实际工程经验和科学分析方法,不断优化计算模型,以确保计算结果的准确性和可靠性。
应力计算的过程也需要与工程实际紧密结合,及时调整和改进计算方案,确保工程结构的安全稳定。
7. 总结与回顾通过本文的讨论,我们对水工压力隧洞与坝下涵管结构的应力计算有了较为全面的了解。
我们从应力计算的基本原理开始,逐步深入探讨了水工压力隧洞和坝下涵管结构的应力计算方法,并分享了个人观点与理解。
中小型水利水电工程典型设计图集(1)土石坝分册
中小型水利水电工程典型设计图集(2)重力坝与拱坝
中小型水利水电工程典型设计图集(3)挡水建筑物分册橡胶坝与翻板坝
中小型水利水电工程典型设计图集(4)溢洪道与泄洪隧洞分册
中小型水利水电工程典型设计图集(5)水电站引水建筑物分册引水隧洞与调压室中小型水利水电工程典型设计图集(6)水电站引水建筑物分册压力管道
中小型水利水电工程典型设计图集(7)水电站厂房分册
中小型水利水电工程典型设计图集(8)水电站机电分册.水力机械分册
中小型水利水电工程典型设计图集(9)水闸分册
中小型水利水电工程典型设计图集(10)水工闸门分册
中小型水利水电工程典型设计图集(11)泵站分册
中小型水利水电工程典型设计图集(12)渠系建筑物分册
中小型水利水电工程典型设计图集(13)滩涂湿地分册
中小型水利水电工程典型设计图集(14)城市水利分册
中小型水利水电工程典型设计图集(15)枢纽布置分册
中小型水利水电工程典型设计图集(16)水电站机电分册电气一次和电气二次。