统计学--正态分布和参考值范围
- 格式:ppt
- 大小:291.00 KB
- 文档页数:31
1、正态分布的特点及其应用性质:①以均数为中心,两头低中间高,左右完全对称的钟型曲线;②只有一个高峰,在X=μ,总体中位数亦为μ;③μ为位置参数,当σ恒定时,μ越大,曲线沿横轴越向右移动;σ为形态参数,当μ恒定时,σ越大,表示数据越分散,曲线越矮胖,反之,曲线越瘦高;④对于任何服从正态分布N(μ,σ2)的随机变量X作的线性变换,都会变换成u服从于均数为0,方差为1的正态分布,即标准正态分布;⑤正态分布在μ±1σ处各有一个拐点;⑥正态曲线下的面积分布有一定的规律:X轴与正态曲线所夹面积恒为1;区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
应用:①概括估计变量值的频数分布;②制定参考值范围;③质量控制;④是许多统计方法的理论基础。
2、确定参考值范围的一般原则和步骤、方法一般原则和步骤:①抽取足够例数的正常人样本作为观察对象;②对选定的正常人进行准确而统一的测定,以控制系统误差;③判断是否需要分组测定;④决定取单侧范围值还是双侧范围值;⑤选定适当的百分范围;⑥选用适当的计算方法来确定或估计界值。
方法:①正态分布法:②百分位数法(偏态分布):3、标准差与标准误的区别与联系区别:含义:标准差反映观察值在个体中的变异大小,标准差越大,变量值越分散。
标准误是指样本统计量的标准差,反映来自同一总体的样本统计量的离散程度以及样本统计量与总体参数的差异程度,即抽样误差的大小。
计算方法:标准差:总体标准差:样本标准差:标准误:均数的标准误:率的标准误:用途:标准差①用于对称分布,特别是正态分布资料,表示观察值分布的离散程度②结合均数,描述正态分布的特征、估计参考值范围③结合样本统计量,计算均数标准误④计算变异系数⑤反映均数的代表性标准误①衡量样本均数的可靠性②估计总体均数的可信区间③用于均数的假设检验与n的关系:随着n增加,样本标准差稳定于总体标准差;随着n增加,样本标准误减少并趋于0。