塑性力学讲义-全量理论与增量理论
- 格式:ppt
- 大小:621.50 KB
- 文档页数:49
塑性力学中本构关系的讨论摘要:本构方程是塑性力学解决问题不同于弹性力学的一大不同点,本文从主要描述塑性变形问题的两个本构理论出发,借鉴现有理论和实验结果,对比增量理论和全量理论的优缺及各自在工程中的适用性。
关键词:塑性力学;增量理论;全量理论;有限元法引言塑性力学和弹性力学之间的根本差别在于弹性力学是以应力与应变成线性关系的广义胡克定律为基础的。
而塑性力学研究范畴中,应力与应变一般成非线性关系,而这种非线性的特征又不能一概而论,对于不同的材料,在不同的条件下,都具有不同的规律。
塑性变形的基本规律是建立在实验的基础上,根据实验结果简化抽象出塑性状态下应力与应变关系的特征。
与弹性力学比较,主要影响塑性力学本构方程的有以下几点:应力与应变之间的关系是非线性的,其比例系数不仅与材料有关而且与塑性应变有关;由于塑性变形的出现,弹塑性材料在卸载时,体元的应力-应变状态不能沿原来的加载路径返回,应力与应变之间不再存在一一对应的关系,而与加载历史有关;变形体中可分为弹性区和塑性区,在弹性区,加载与卸载都服从广义胡克定律,在塑性区,加载过程服从塑性规律而卸载过程服从广义胡克定律。
因此在塑性力学发展初期,最初提出的是以增量方法来讨论应力增量与应变增量之间的关系,它不受加载条件的限制,但在实际计算过程中,需要按加载过程中的变形路径进行积分,计算比较复杂。
Hencky于1924年提出的全量理论在实践中使用方便很多,但全量本构关系仅能应用于特定情况,及体元应力-应变过程为单调过程,不能描述弹塑性变形规律全貌。
1.增量理论塑性应力应变关系的重要特点是非线性和非简单对应,非线性及应力与应变关系不是线性关系,非简单对应及应变不能由应力唯一确定。
在材料变形的塑性阶段,应变状态不仅由应力状态决定,还由整个应力变化过程决定。
材料进入塑性变形阶段,任一点的总应变由弹性应变和塑性应变组成:e p ij ij ij εεε=+当外载荷有微小增量时总应变也有微小增量,其为弹性增量与塑性增量之和,因此有:p e ij ij ij d d d εεε=-根据静水压力实验,提出假设:塑性应变不引起体积改变。
第三章塑性本构关系全量和增量理论•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。
Il’yushin(伊柳辛)理论。
•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。
Levy-Mises理论和Prandtl-Reuss理论。
3-5 全量理论的适用范围简单加载定律变形:小变形加载:简单加载适用范围:物体内每一点应力的各个应力分量,在加载过程中成比例增长简单加载:()0ij ijt σασ=0ijσ非零的参考应力状态()t α随着加载单调增长加载时物体内应力和应变特点:应力和应变的主方向都保持不变应力和应变的主分量成比例增长应力Lode参数和应力Lode角保持常数应力点的轨迹在应力空间是直线小变形前提下,判断简单加载的条件:荷载按比例增长(包括体力);零位移边界材料不可压缩应力强度和应变强度幂函数关系m i iA σε=实际应用:满足荷载比例增长和零位移边界条件3-6 卸载定律卸载:按照单一曲线假设,应力强度减小•外载荷减小,应力水平降低•塑性变形发展,应力重分布,局部应力强度降低简单卸载定律:•各点的应力分量按比例减少•不发生新的塑性变形¾以卸载时的荷载改变量为假想荷载,按弹性计算得到应力和应变的改变量¾卸载前的应力和应变减去卸载过程中的改变量塑性本构关系的基本要素•初始屈服条件–判断弹性或者塑性区•后继屈服条件–描述材料硬化特性,内变量演化•流动法则–应变增量和应力以及应力增量之间的关系,包括方向和分配关系Saint-Venant(1870):应变增量和应力张量主轴重合•继承这个方向关系•提出分配关系()0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)适用范围:刚塑性材料3-7 流动法则--Levy-Mises & Prandtl-Reuss。