第三章多维随机变量及其分布
- 格式:pdf
- 大小:814.05 KB
- 文档页数:36
本讲主要内容:1.二维离散随机变量2.二维连续随机变量(重点)3.二维随机变量函数的分布(重点)设X与Y为两个随机变量,那么我们称二元组(X,Y)为二维随机变量.一、二维离散随机变量定义7:设X与Y均为离散随机变量,取值分别x1, x2,…, x i,…,y1, y2,…,y j,…那么我们称(X,Y)为二维离散随机变量,并称P(X=x i, Y=y j)=p ij, i, j =1,2,…为(X,Y)的联合分布列.联合分布列的性质:① p ij≥0②边际分布列:X与Y独立的任何两行或者两列都成比例离散随机变量的独立性:设(X,Y)为二维离散随机变量,如果即联合分布列等于边际分布列的乘积,则称X与Y相互独立.条件分布列与乘法公式:二、二维随机变量的联合分布函数定义8:设(X,Y)为二维随机变量,我们称二元函数为(X,Y)的联合分布函数.联合分布函数的性质:(1)F(x,y)为x与y的右连续函数.(2)F(x,y)为x与y的不减函数.(3)(4)三、二维连续随机变量定义9:设(X,Y)为二维随机变量,如果(X,Y)的联合分布函数可以写成则称(X,Y)为二维连续随机变量,并称f(x,y)为(X,Y)的联合密度函数. 易知:联合密度函数的性质:(1),(2)边际密度函数:随机变量X的边际密度:随机变量Y的边际密度:连续随机变量的独立性:设(X,Y)为二维连续随机变量,如果则称X与Y相互独立.条件密度:我们称为在给定Y=y时X的条件密度.为在给定X=x时Y的条件密度.如果二维连续随机变量(X,Y)的联合密度为则称(X,Y)服从区域G上的二维均匀分布.其中为区域G的面积.【例39·解答题】假设随机变量Y服从参数的指数分布,随机变量求X1和X2的联合概率分布.[答疑编号986303101:针对该题提问]解:P(X1=0, X2=0)=P(Y≤1,Y≤2)=P(X1=1, X2=0)=P(Y>1,Y≤2)=【例40·解答题】某射手向一目标进行连续射击,每次命中的概率都是p,各次命中与否相互独立.以X表示第二次命中时的射击次数,以Y表示第三次命中时的射击次数.求(X,Y)的联合分布列以及Y的边际分布列.[答疑编号986303102:针对该题提问]解:P(X=m,Y=n)=令m-1=k=n=3, 4, 5……【例41·解答题】设(X,Y)具有联合分布列:且已知EX=-0.2,记Z=X+Y.求(1)a,b,c的值;[答疑编号986303103:针对该题提问](2)Z的概率分布;[答疑编号986303104:针对该题提问](3)P(X=Z).[答疑编号986303105:针对该题提问]解:(1)a+b+c=0.4-(a+0.2)+c+0.1= -0.2解得a=0.2 , b=c=0.1(2)Z的概率分布(3)【例42·解答题】设某汽车的车站人数X~P(),每个人在中途下车的概率都是P,且下车与否相互独立,以Y表示中途下车的人数。
第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。
例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。
⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。
在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。
1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。
1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。
因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。
随机变量X常称为⼀维随机变量。
2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。
定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。
⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。
(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。
第三章多维随机变量及其分布关键词:二维随机变量分布函数分布律概率密度边缘分布函数边缘分布律边缘概率密度条件分布函数条件分布律条件概率密度随机变量的独立性Z=X+Y的概率密度Z=Y/X及Z=XY的概率密度M=max(X,Y)及N=min(X,Y)的概率密度例:研究某一地区学龄儿童的发育情况。
仅研究身高H 的分布或仅研究体重W 的分布是不够的。
需要同时考察每个儿童的身高和体重值,研究身高和体重之间的关系,这就要引入定义在同一样本空间(即某地区全部学龄前儿童)的两个随机变量。
问题的提出实际中,某些随机试验的结果需要同时用两个或两个以上的随机变量描述例:研究某种型号炮弹的弹着点分布。
每枚炮弹的弹着点位置需要由横坐标和纵坐标来确定,而它们是定义在同一样本空间的两个随机变量。
一、二维随机变量的定义设E是一个随机试验,样本空间S={e};设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的向量(X,Y)叫做二维随机向量或二维随机变量。
S ey()()(),X e Y ex(X,Y)的性质不仅与X及Y有关,还依赖于X,Y间的相互关系,需将(X,Y)作为整体研究二、二维随机变量的分布函数设(X ,Y )是二维随机变量,对于任意实数x , y ,二元函数称为二维随机变量(X ,Y )的分布函数,或称为随机变量X 和Y 的联合分布函数。
{}(,)()()(,)F x y P X x Y y P X x Y y =≤≤==≤≤ 记成1、定义:若将(X ,Y )看成平面上随机点的坐标,则F (x ,y )在(x ,y )处的函数值即为随机点落在(x ,y )左下方无穷域内的概率2、几何意义:(X ,Y )落在矩形区域[x 1<x ≤x 2, y 1<y ≤y 2]上的概率为x 1x 2yy 1y 20xy(x,y )1212(,)P x x x y y y <≤<≤()()()()22211211,,,,F x y F x y F x y F x y --+=3、性质:1212,(,)(,)y x x F x y F x y <⇒≤任意固定当x 1x 2(x 1,y )(x 2,y )yy 2xy 1(x ,y 1)(x ,y 2)1212,(,)(,)x y y F x y F x y <⇒≤任意固定0(,)1F x y ≤≤ (,)0 (,)0(,)0,(,)1y F y x F x F F -∞=-∞=-∞-∞=+∞+∞=对任意固定,对任意固定,(1) 不减性:F (x , y )关于x , y 单调不减,即(2) 有界性:且(3) 右连续性0(,)(,)lim F x y F x y εε+→+=0(,)(,)lim F x y F x y εε+→+=(),,F x y x y 关于右连续,即:()222112111212(,)(,)(,)(,),0F x y F x y F x y F x y P x X x y Y y --+=<≤<≤≥ 1x 2x 1y 2y 01212,,x x y y <<若则22211211(,)(,)(,)(,)0F x y F x y F x y F x y --+≥(4)三、二维离散型随机变量及其分布律1、定义:,,,,21m x x x X 的可能值为设,,,,21n y y y Y 的可能值为中心问题:(X ,Y )取这些可能值的概率分别为多少?若二维随机变量(X ,Y )所有可能的取值是有限对或可列无限对,则称(X ,Y )是二维离散型随机变量。
第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={ω},若随机变量X1(ω),X2(ω),…,X n(ω)定义在S上,则称(X1(ω),X2(ω),…,X n(ω))为n维随机变量(向量)。
简记为(X1,X2,…,X n)。
二维随机向量(X,Y),它可看作平面上的随机点。
对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。
研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。
§ 3.1 二维随机变量的分布一.离散型随机变量1.联合分布律定义3.1 若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。
设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i, j=1,2,…——(3.1)称 (3.1)式为(X,Y)的联合分布律。
(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij ≥ 0,i, j=1,2,… (2) ∑ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.≥0②∑ p i.=1p .j = p{Y=y i }j=1,2,… ①p .j ≥0②∑ p .j =1我们称p i.和p .j 分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。
二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij (3.4) 同理可得 p .j =i∑p ij(3.5)例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y随机地在1到X中取一值。