2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)8.6抛物线课件 新人教A版
- 格式:ppt
- 大小:2.07 MB
- 文档页数:41
第二节同角三角函数的根本关系与诱导公式[ 知识能否忆起 ]1.同角三角函数的根本关系式(1 平方关系: sin2α+cos2α=1(α∈R.(2 商数关系: tan α=.2.六组诱导公式角2kπ+α(k∈Zπ +α-απ-α-α+α函数正弦sin_α-sin_α-sin_αsin_αcos_αcos_α余弦cos_α-cos_αcos_α-cos_αsin_α-sin_α正切tan_ αtan_α-tan_α-tan_α对于角“±α〞(k∈Z 的三角函数记忆口诀“奇变偶不变,符号看象限〞,“奇变偶不变〞是指“当 k 为奇数时,正弦变余弦,余弦变正弦;当 k 为偶数时,函数名不变〞.“符号看象限〞是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号〞.[ 小题能否全取 ]1.sin 585°的值为 (A.- B.C.- D.解析:选 A sin 585 °= sin(360 °+225°=s in 225°= sin(180°+45°=- sin 45°=-.2.(教材习题改编 sin( π+θ=-cos(2π-θ,|θ|< ,那么θ等于 (A.- B.-C. D.解析:选 D∵sin(π+θ=-cos(2π-θ,∴- sin θ=-cos θ,∴ tan θ= .∵|θ|< ,∴θ= .3. tan θ= 2,那么= (A.2 B.- 2C.0 D.解析:选 B原式====- 2.4. (教材习题改编如果sin( +πA =,那么c os 的值是 ________.解析:∵ sin( π+ A =,∴- sin A = .∴c os=- sin A =.答案:5.α是第二象限角,tan α=-,那么cos α= ________.解析:由题意知cos α<0,又 sin 2α+cos2α=1,tan α==- .∴ cos α=- .答案:-应用诱导公式时应注意的问题(1 利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负号—脱周期—化锐角.特别注意函数名称和符号确实定.(2 在利用同角三角函数的平方关系时,假设开方,要特别注意判断符号.(3 注意求值与化简后的结果要尽可能有理化、整式化.同角三角函数的根本关系式典题导入[例 1](1(2021 江·西高考假设tan θ+= 4,那么 sin 2θ=(A. B.C. D.(2 sin(3π+α=2sin,那么= ________.[自主解答]+=,(1∵ tan θ4∴+=4,∴=4,即=4,∴sin 2θ=.(2 法一:由 sin(3π+α=2sin 得 tan α=2.原式===- .法二:由得 sin α= 2cos α.原式==- .[答案] (1D (2-在(2 的条件下, sin2α+sin 2α= ________.解析:原式= sin2α+2sin αcos α=== .答案:由题悟法1.利用 sin2α+cos2α=1 可以实现角α的正弦、余弦的互化,利用= tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用 (sin α±cos α2=1±2sin αcos α,可以知一求二 (参阅本节题型技法点拨.3.注意公式逆用及变形应用:1= sin2α+ cos2α, sin2α=1- cos2α, cos2α= 1- sin2α.以题试法1. (1(2021 长·沙模拟假设角α的终边落在第三象限,那么+的值为( A.3 B.- 3C.1 D.- 1(2 sin α= 2sin β, tan α= 3tan β,那么 cos α= ________.解析: (1 由角α的终边落在第三象限得sin α<0, cos α<0,故原式=+=+=-1- 2=- 3.(2∵ sin α= 2sin β, tan α= 3tan β,∴sin2α= 4sin2β,①tan2α= 9tan2β,②由①÷②得: 9cos2α= 4cos2β,③①+③得: sin2α+ 9cos2α=4,∵c os2α+ sin2α= 1,∴cos2α=,即 cos α=±.答案: (1B(2 ±三角函数的诱导公式典题导入[例 2](1= ________.(2 A=+ (k∈Z,那么 A 的值构成的集合是(A . {1 ,- 1,2,- 2}B. { - 1,1}C. {2 ,- 2} D .{1 ,- 1,0,2,- 2}[自主解答 ] (1 原式====-=-·=- 1.(2 当 k 为偶数时, A=+= 2;k 为奇数时, A=-=- 2.[答案 ] (1- 1(2C由题悟法利用诱导公式化简求值时的原那么(1 “负化正〞,运用-α的诱导公式将任意负角的三角函数化为任意正角的三角函数.(2 “大化小〞,利用 k·360 °+α(k∈Z的诱导公式将大于 360 °的角的三角函数化为 0°到360 °的三角函数.(3 “小化锐〞,将大于90°的角化为0°到 90°的角的三角函数.(4 “锐求值〞,得到 0°到 90°的三角函数后,假设是特殊角直接求得,假设是非特殊角可由计算器求得.以题试法2. (1(2021 滨·州模拟sin 600 +°tan 240 的°值等于 (A.- B.C.-D. +(2 f(x= asin( xπ+α+ bcos( xπ-β,其中α,β, a, b 均为非零实数,假设f(2 012=- 1,那么 f(2 013 等于 ________.解析: (1sin 600°+ tan 240°= sin(720 °- 120°+ tan(180 °+ 60°=- sin 120°+ tan 60°=-+=.(2 由诱导公式知f(2 012 = asin α+bcos β=- 1,∴f(2 013 = asin( π+α+bcos( π-β=- (asin α+ bcos β= 1.答案: (1B (21诱导公式在三角形中的应用典题导入[例 3]在△ABC中,假设sin(2-πA=-sin(π-B,cos A=-cos (π-B,求△ABC的三个内角.[自主解答 ]由得sin A =sin B , cos A= cos B 两式平方相加得2cos2A = 1,即 cos A =或 cos A=- .(1 当 cos A=时, cos B=,又角 A 、 B 是三角形的内角,∴A =, B =,∴C=π- (A + B = .(2 当 cos A=-时, cos B=-,又角 A 、B 是三角形的内角,∴A=,B=,不合题意.综上知, A=, B=, C= .由题悟法1.诱导公式在三角形中经常使用,常用的角的变形有: A + B =π- C,2A + 2B = 2π-2C,++=等,于是可得sin(A + B = sin C, cos= sin 等;2.求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小.以题试法3.在三角形ABC 中,(1 求证: cos2+ cos2= 1;(2 假设 cossintan (C-π <0,求证:三角形ABC 为钝角三角形.证明: (1 在△ ABC 中, A+B=π- C,那么=-,所以 cos= cos= sin,故 cos2+ cos2= 1.(2 假设 cossintan (C-π <0,那么(- sin A(-cos Btan C<0,即 sin Acos Btan C<0,∵在△ ABC 中, 0<A<π,0< B<π,0<C<π,∴s in A>0 ,或∴B 为钝角或 C 为钝角,故△ ABC 为钝角三角形.1. sin(θ+π <0, cos(θ-π >0,那么以下不等关系中必定成立的是( A . sin θ<0,cos θ>0B. sin θ>0, cos θ<0C. sin θ>0,cos θ>0 D . sin θ<0 , cos θ<0解析:选 B sin(θ+π<0,∴- sin θ<0, sin θ>0.∵c os(θ-π>0,∴- cos θ>0.∴ cos θ<0.2. (2021 ·徽名校模拟安tan x= 2,那么 sin2x+ 1= (A.0 B.C. D.解析:选 B sin2x+ 1=== .3. (2021 ·西高考假设=,那么江tan 2α= (A.- B.C.- D.解析:选 B∵ ==,∴ tanα=-3.∴tan 2α== .4. (2021 ·博模拟淄sin 2α=-,α∈,那么 sin α+cos α=( A.- B.C.- D.解析:选 B(sin α+cos α2= 1+ 2sin αcos α=1+ sin 2α=,又α∈, sin α+ cos α>0,所以 sin α+cos α=.5. cos=,且 |φ|<,那么 tan φ= (A.- B.C.- D.解析:选 D cos= sin φ=,又|φ|<,那么 cos φ=,所以 tan φ= .6. 2tan α·sin α= 3,-<α< 0,那么 sin α= (A.B .-C.D.-解析:选 B由2tanα·sinα=3得,=3,即 2cos2α+ 3cos α- 2= 0,又-<α< 0,解得 cos α= (cos α=- 2 舍去,故 sin α=- .7. cos- sin 的值是 ________.解析:原式= cos+ sin = cos+ sin= .答案:8.假设= 2,那么 sin( θ- 5π sin= ________.解析:由= 2,得sin θ+ cos θ= 2(sin θ- cos θ,两边平方得:1+ 2sin θcos θ=4(1- 2sin θcos θ,故 sin θcos θ=,∴sin(θ- 5πsin= sin θcos θ= .答案:9. (2021 ·山模拟中cos=,那么 sin= ________.解析: sin= sin=- sin =- cos=- .答案:-10.求值: sin(- 1 200 ·°cos 1 290 +°cos(-1 020 °·sin( - 1 050 +°tan 945 . °解:原式=- sin 1 200 ·°cos 1 290 +° cos 1 020 °·(- sin 1 050 +°tan 945 °=- sin 120 ·°cos 210 °+ cos 300 °·(- sin 330 °+ tan 225 °=(- sin 60 ·°(- cos 30 °+ cos 60 °·sin 30 +°tan 45 °=×+×+ 1= 2.11. cos( π+α=-,且α是第四象限角,计算:(1sin(2 -πα;(2(n∈Z.解:∵ cos(π+α=-,∴-cos α=-, cos α=.又∵ α是第四象限角,∴s in α=-=- .(1sin(2π-α= sin [2π+(-α]= sin(-α=-sinα=;(2=====-=- 4.12.(2021 ·信阳模拟角α的终边经过点 P.(1 求 sin的α值;(2 求·的值.解:(1∵ |OP|=1,∴点 P 在单位圆上.由正弦函数的定义得sinα=-.(2 原式=·==,由余弦函数的定义得cos α=.故所求式子的值为 . 1.=-,那么的值是 (A.B .-C.2 D.- 2解析:选 A由于·==-1,故=.2.假设角α的终边上有一点P(- 4, a,且 sinα· cos=,那么α a的值为(A.4 B.±4C.- 4 或- D.解析:选 C依题意可知角α的终边在第三象限,点P(- 4,a 在其终边上且sinα· cos=α易得 tan α=或,那么a=- 4 或- .3. A 、 B、 C 是三角形的内角,sin A ,- cos A 是方程 x2- x+ 2a=0 的两根.(1求角 A;(2 假设=- 3,求 tan B.解: (1 由可得,sin A -cos A =1.①又 sin2A + cos2A= 1,所以 sin2A +(sin A - 12= 1,即 4sin2A - 2sin A = 0,得 sin A = 0(舍去或 sin A =,那么 A=或,将 A =或代入①知 A =时不成立,故 A=.(2 由=- 3,得 sin2B - sin Bcos B - 2cos2B= 0,∵c os B ≠0,∴ tan2B -tan B- 2=0,∴tan B = 2 或 tan B=- 1.∵tan B =- 1 使 cos2B- sin2B= 0,舍去,故 tan B = 2.1. sin= m,那么 cos 等于 (A . mB .- mC.D.-解析:选 A∵sin=m,∴cos= sin= m.2.求证: sinθ+(1tan+θcos=θ+.证明:左边= sinθ+cosθ=s in +θ+ cos θ+=+=+=+=右边.3. sin( -πα- cos( π+α= .求以下各式的值:(1sin α- cos α;(2sin3+ cos3.解:由 sin( π-α- cos(π+α=,得 sin α+ cos α=,①将①两边平方,得1+ 2sin α·cos α=,故 2sin α·cos α=- .又<α<π,∴ sin α>0, cos α<0.(1(sin α- cos α2= 1- 2sin α·cos α= 1-=,∴ sin α- cos α= .(2sin3+ cos3=cos3α-sin3α= (cos α- sin α(cos2α+ cos α·sin α+sin2α=-×=- .。
第三节等比数列及其前n项和[备考方向要明了]考什么怎么考1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中,识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.以客观题的形式考查等比数列的性质及其基本量的计算,如2012年新课标全国T5,某某T13等.2.以解答题的形式考查等比数列的定义、通项公式、前n项和公式及性质的综合应用,如2012年某某T18等.[归纳·知识整合]1.等比数列的相关概念相关名词等比数列{a n}的有关概念及公式定义a n+1a n=q(q是常数且q≠0,n∈N*)或a na n-1=q(q是常数且q≠0,n∈N*且n≥2)通项公式a n=a1q n-1=a m·q n-m前n项和公式S n=⎩⎪⎨⎪⎧na1q=1a11-q n1-q=a1-a n q1-qq≠1等比中项设a,b为任意两个同号的实数,则a,b的等比中项G=±ab[探究] 1.b2=ac是a,b,c成等比数列的什么条件?提示:b2=ac是a,b,c成等比数列的必要不充分条件,因为当b=0时,a,c至少有一个为零时,b2=ac成立,但a,b,c不成等比数列;若a,b,c成等比数列,则必有b2=ac.2.如何理解等比数列{a n }与指数函数的关系? 提示:等比数列{a n }的通项公式a n =a 1qn -1可改写为a n =a 1q·q n.当q >0,且q ≠1时,y=q x是一个指数函数,而y =a 1q·q x是一个不为0的常数与指数函数的积,因此等比数列{a n }的图象是函数y =a 1q·q x的图象上的一群孤立的点.2.等比数列的性质(1)对任意的正整数m ,n ,p ,q ,若m +n =p +q 则a m ·a n =a p ·a q . 特别地,若m +n =2p ,则a m ·a n =a 2p .(2)若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m-S 2m )(m ∈N *,公比q ≠-1).(3)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k.[自测·牛刀小试]1.在等比数列{a n }中,如果公比q <1,那么等比数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .无法确定数列的增减性解析:选D 当a 1>0,0<q <1,数列{a n }为递减数列,当q <0,数列{a n }为摆动数列. 2.(教材习题改编)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 35解析:选B ∵数列{a n }为等比数列,∴a 5a 6=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1·a 2·…·a 10) =log 3(a 5a 6)5=5log 3a 5a 6=5log 39=10.3.(教材习题改编)在等比数列{a n }中,若a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:∵⎩⎪⎨⎪⎧a 5-a 1=15,a 4-a 2=6,∴⎩⎪⎨⎪⎧a 1q 4-1=15,a 1q 3-q =6.∴q 2-1≠0,q 4-1q 3-q =52.∴2q 2-5q +2=0,解得q =12或q =2.当q =2时,a 1=1,∴a 3=a 1q 2=4.当q =12时,a 1=-16,∴a 3=a 1q 2=-4.答案:4或-44.在等比数列{a n }中,a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5的值为________. 解析:由等比数列性质,已知转化为a 23+2a 3a 5+a 25=25, 即(a 3+a 5)2=25,又a n >0,故a 3+a 5=5. 答案:55.在1与4之间插入三个数使这五个数成等比数列,则这三个数分别是________. 解析:设等比数列的公比为q ,则4=q 4.即q =± 2. 当q =2时,插入的三个数是2,2,2 2. 当q =-2时,插入的三个数是-2,2,-2 2. 答案:2,2,22或-2,2,-2 2等比数列的基本运算[例1] (1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7(2)(2012·某某高考)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.(3)(2012·某某高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.[自主解答] (1)设数列{a n }的公比为q ,由⎩⎪⎨⎪⎧a 4+a 7=2,a 5·a 6=a 4·a 7=-8,得⎩⎪⎨⎪⎧a 4=4,a 7=-2,或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以⎩⎪⎨⎪⎧a 1=-8,q 3=-12,或⎩⎪⎨⎪⎧a 1=1,q 3=-2,所以⎩⎪⎨⎪⎧a 1=-8,a 10=1,或⎩⎪⎨⎪⎧a 1=1,a 10=-8,所以a 1+a 10=-7.(2)∵2(a n +a n +2)=5a n +1,∴2a n +2a n ·q 2=5a n ·q , 即2q 2-5q +2=0, 解得q =2或q =12(舍去).又∵a 25=a 10=a 5·q 5, ∴a 5=q 5=25=32. ∴32=a 1·q 4,解得a 1=2. ∴a n =2×2n -1=2n ,故a n =2n.(3)由S 2=3a 2+2,S 4=3a 4+2作差可得a 3+a 4=3a 4-3a 2,即2a 4-a 3-3a 2=0,所以2q 2-q -3=0,解得q =32或q =-1(舍去).[答案] (1)D (2)2n(3)32———————————————————等比数列运算的通法与等差数列一样,求等比数列的基本量也常运用方程的思想和方法.从方程的观点看等比数列的通项公式a n =a 1·q n -1(a 1q ≠0)及前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1中共有五个变量,已知其中的三个变量,可以通过构造方程或方程组求另外两个变量,在求公比q 时,要注意应用q ≠0验证求得的结果.1.(1)(2013·海淀模拟)在等数列{a n }中,a 1=8,a 4=a 3a 5,则a 7=( ) A.116B.18C.14D.12(2)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A.152B.314 C.334D.172解析:(1)选B 在等比数列{a n }中,a 24=a 3a 5,又a 4=a 3a 5,所以a 4=1,故q =12,所以a 7=18.(2)选B 显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12,或⎩⎪⎨⎪⎧a 1=9,q =-13,(舍去)故S 5=a 11-q 51-q=4⎝ ⎛⎭⎪⎫1-1251-12=314.等比数列的判定与证明[例2] 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)在(1)的条件下证明⎩⎨⎧⎭⎬⎫a n 2n 是等差数列,并求a n .[自主解答] (1)证明:∵由a 1=1,及S n +1=4a n +2, 有a 1+a 2=4a 1+2,a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3. 由S n +1=4a n +2,①知当n ≥2时,有S n =4a n -1+2,② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1). 又∵b n =a n +1-2a n ,∴b n =2b n -1.∴{b n }是首项b 1=3,公比q =2的等比数列. (2)由(1)可得b n =a n +1-2a n =3×2n -1,∴a n +12n +1-a n 2n =34. ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)34=34n -14. a n =(3n -1)×2n -2.———————————————————等比数列的判定方法(1)定义法:若a n+1a n=q(q为非零常数,n∈N*)或a na n-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列.(2)等比中项公式法:若数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列.(3)通项公式法:若数列通项公式可写成a n=c·q n(c,q均是不为0的常数,n∈N*),则{a n}是等比数列.(4)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.2.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列⎩⎨⎧⎭⎬⎫S n+54是等比数列.解:(1)设成等差数列的三个正数分别为a-d,a,a+d.依题意,得a-d+a+a+d=15,解得a=5.所以{b n}中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去).故{b n}的第3项为5,公比为2.由b3=b1·22,即5=b1×22,解得b1=54.所以{b n}是以54为首项,以2为公比的等比数列,其通项公式为b n=54×2n-1=5×2n-3.(2)证明:由(1)得数列{b n}的前n项和S n=541-2n1-2=5×2n-2-54,即S n+54=5×2n-2.所以S1+54=52,S n+1+54S n+54=5×2n-15×2n-2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,以2为公比的等比数列.等比数列的性质及应用[例3] (1)在等比数列{a n }中,若a 1·a 2·a 3·a 4=1,a 13·a 14·a 15·a 16=8,则a 41·a 42·a 43·a 44=________.(2)已知数列{a n }为等比数列,S n 为其前n 项和,n ∈N *,若a 1+a 2+a 3=3,a 4+a 5+a 6=6,则S 12=________.[自主解答](1)法一:a 1·a 2·a 3·a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,①a 13·a 14·a 15·a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,② 由②÷①,得a 41·q 54a 41·q6=q 48=8⇒q 16=2,又a 41·a 42·a 43·a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)·(q 16)10=1·210=1 024.法二:由性质可知,依次4项的积为等比数列,设公比为q ,T 1=a 1·a 2·a 3·a 4=1,T 4=a 13·a 14·a 15·a 16=8,∴T 4=T 1·q 3=1·q 3=8,即q =2.∴T 11=a 41·a 42·a 43·a 44=T 1·q 10=210=1 024.(2)法一:设等比数列{a n }的公比为q ,则a 4+a 5+a 6a 1+a 2+a 3=a 1·q 3+a 2·q 3+a 3·q 3a 1+a 2+a 3=q 3=63,即q 3=2.故S 12=(a 1+a 2+a 3)+(a 4+a 5+a 6)+(a 7+a 8+a 9)+(a 10+a 11+a 12)=(a 1+a 2+a 3)+(a 1·q 3+a 2·q 3+a 3·q 3)+(a 1·q 6+a 2·q 6+a 3·q 6)+(a 1·q 9+a 2·q 9+a 3·q 9)=(a 1+a 2+a 3)+(a 1+a 2+a 3)q 3+(a 1+a 2+a 3)q 6+(a 1+a 2+a 3)q 9=(a 1+a 2+a 3)(1+q 3+q 6+q 9)=3×(1+2+22+23)=45.法二:设等比数列{a n }的公比为q , 则a 4+a 5+a 6a 1+a 2+a 3=q 3=63,即q 3=2.因为S 6=a 1+a 2+a 3+a 4+a 5+a 6=9,S 12-S 6=a 7+a 8+a 9+a 10+a 11+a 12,所以S 12-S 6S 6=a 7+a 8+a 9+a 10+a 11+a 12a 1+a 2+a 3+a 4+a 5+a 6= a 1·q 6+a 2·q 6+a 3·q 6+a 4·q 6+a 5·q 6+a 6·q 6a 1+a 2+a 3+a 4+a 5+a 6=q 6=4.所以S 12=5S 6=45. [答案] (1)1 024 (2)45 ———————————————————等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.3.已知等比数列前n 项的和为2,其后2n 项的和为12,求再后面3n 项的和. 解:∵S n =2,其后2n 项为S 3n -S n =S 3n -2=12, ∴S 3n =14.由等比数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等比数列, 即(S 2n -2)2=2·(14-S 2n )解得S 2n =-4,或S 2n =6.当S 2n =-4时,S n ,S 2n -S n ,S 3n -S 2n ,…是首项为2,公比为-3的等比数列, 则S 6n =S n +(S 2n -S n )+…+(S 6n -S 5n )=-364, ∴再后3n 项的和为S 6n -S 3n =-364-14=-378.当S 2n =6时,同理可得再后3n 项的和为S 6n -S 3n =126-14=112. 故所求的和为-378或112.3个防X ——应用等比数列的公比应注意的问题 (1)注意q =1时,S n =na ,这一特殊情况.(2)由a n +1=qa n (q ≠0),并不能断言{a n }为等比数列,还要验证a 1≠0.(3)在应用等比数列的前n 项和公式时,必须注意对q =1和q ≠1分类讨论,防止因忽略q =1这一特殊情况而导致错误.4个思想——求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和的公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)整体思想:当公比q ≠1时,S n =a 11-q n 1-q =a 11-q ·(1-q n),令a 11-q =t ,则S n =t (1-q n ).把a 11-q与q n当成一个整体求解,也可简化运算.(3)分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当q =1时,S n=na 1;当q ≠1时,S n =a 11-q n1-q;在判断等比数列单调性时,也必须对a 1与q 分类讨论.(4)函数思想:在等比数列{a n }中,a n =a 1q·q n,它的各项是函数y =a 1q·q x图象上的一群孤立的点,可以根据指数函数的一些性质研究等比数列问题(如单调性),注意函数思想在等比数列问题中的应用.创新交汇——以等比数列为背景的新定义问题1.在新情境下先定义一个新数列,然后根据定义的条件推断这个新数列的一些性质或者判断一个数列是否属于这类数列的问题是近年来新兴起的一类问题,同时,数列也常与函数、不等式等形成交汇命题.2.对于此类新定义问题,我们要弄清其本质,然后根据所学的数列的性质即可快速解决.[典例] (2012·某某高考)定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”,现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln|x |. 则其中是“保等比数列函数”的f (x )的序号为( ) A .①②B .③④ C .①③D .②④[解析] 法一:设{a n }的公比为q . ①f (a n )=a 2n ,∵a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2, ∴{f (a n )}是等比数列.排除B 、D. ③f (a n )=|a n |, ∵|a n +1||a n |=⎪⎪⎪⎪⎪⎪a n +1a n =|q |, ∴{f (a n )}是等比数列. 法二:不妨令a n =2n.①因为f (x )=x 2,所以f (a n )=4n .显然{f (2n)}是首项为4,公比为4的等比数列. ②因为f (x )=2x,所以f (a 1)=f (2)=22,f (a 2)=f (4)=24,f (a 3)=f (8)=28,所以f a 2f a 1=2422=4≠f a 3f a 2=2824=16,所以{f (a n )}不是等比数列.③因为f (x )=|x |,所以f (a n )=2n =(2)n. 显然{f (a n )}是首项为2,公比为2的等比数列. ④因为f (x )=ln|x |,所以f (a n )=ln 2n=n ln 2. 显然{f (a n )}是首项为ln 2,公差为ln 2的等差数列. [答案] C [名师点评]1.本题具有以下创新点(1)命题背景新颖:本题是以“保等比数列函数”为新定义背景,考查等比数列的有关性质.(2)考查内容创新:本题没有直接指明判断等比数列的有关性质,而是通过新定义将指数函数、对数函数及幂函数、二次函数与数列有机结合,对学生灵活处理问题的能力有较高要求.2.解决本题的关键有以下两点(1)迅速脱掉“新定义”的外衣,认清本题的实质是:已知数列{a n }为正项等比数列,判断数列{a 2n },{2a n },{|a n |}及{ln|a n |}是否为等比数列问题.(2)灵活运用排除法或特殊值法也是正确解决本题的关键. [变式训练]1.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n =( )A.32B.32或23 C.23D .以上都不对 解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b=92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23. 2.设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫12,2B.⎣⎢⎡⎦⎥⎤12,2 C.⎣⎢⎡⎦⎥⎤12,1D.⎣⎢⎡⎭⎪⎫12,1 解析:选D 由已知可得a 1=f (1)=12,a 2=f (2)=[f (1)]2=⎝ ⎛⎭⎪⎫122,a 3=f (3)=f (2)·f (1)=[f (1)]3=⎝ ⎛⎭⎪⎫123,…,a n =f (n )=[f (1)]n =⎝ ⎛⎭⎪⎫12n ,∴S n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n .∵n ∈N *,∴12≤S n <1.一、选择题(本大题共6小题,每小题5分,共30分)1.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫23nC .4×⎝ ⎛⎭⎪⎫32n -1D .4×⎝ ⎛⎭⎪⎫23n -1解析:选C (a +1)2=(a -1)(a +4)⇒a =5,a 1=4,q =32,故a n =4·⎝ ⎛⎭⎪⎫32n -1.2.(2012·某某高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B 由题意可知a 3a 11=a 27=16,因为{a n }为正项等比数列,所以a 7=4.所以log 2a 10=log 2(a 7×23)=log 225=5.3.各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ) A .33 B .72 C .84 D .189解析:选C ∵a 1+a 2+a 3=21,∴a 1+a 1·q +a 1·q 2=21,3+3×q +3×q 2=21, 1+q +q 2=7,解得q =2或q =-3.∵a n >0,∴q =2,a 3+a 4+a 5=21×q 2=21×4=84.4.(2013·某某模拟)已知a ,b ,m ,n ,x ,y 均为正数,且a ≠b ,若a ,m ,b ,x 成等差数列,a ,n ,b ,y 成等比数列,则有( )A .m >n ,x >yB .m >n ,x <yC .m <n ,x <yD .m <n ,x >y 解析:选B ∵m =a +b2,n =ab (a ≠b ),∴m >n .又2b =m +x ,由b 2=ny ,得b =ny , 即2ny =m +x ≥2mx ,∴ny ≥mx , 即ny ≥mx ,y x ≥mn>1.∴y >x .5.已知等比数列{a n }中,a 1=2,a 5=18,则a 2a 3a 4等于() A .36 B .216 C .±36 D.±216解析:选B 由等比数列的性质得a 23=a 1·a 5=2×18=36, 又a 3=a 1q 2=2q 2>0,故a 3=6. 所以a 2a 3a 4=a 33=216.6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =() A .2n -1B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1D.12n -1解析:选B 利用等比数列知识求解. ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n . ∴a n =S n -S n -1=2a n +1-2a n .∴3a n =2a n +1. ∴a n +1a n =32.又∵S 1=2a 2,∴a 2=12.∴a 2a 1=12.∴{a n }从第二项起是以32为公比的等比数列.∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -11-32=⎝ ⎛⎭⎪⎫32n -1⎝⎛也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,⎭⎪⎫求得S n =⎝ ⎛⎭⎪⎫32n -1.二、填空题(本大题共3小题,每小题5分,共15分)7.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________. 解析:∵S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-28.若数列{a n }(a n ∈R )对任意的正整数m ,n 满足a m +n =a m a n ,且a 3=22,那么a 12=________.解析:令m =1,则a n +1=a n a 1⇒a 1=q ,a 3=a 1q 2=22⇒q 3=22,a 12=q 12=64. 答案:649.(2013·聊城模拟)已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a ,b∈R ,满足f (a ·b )=af (b )+bf (a ),f (2)=2,a n =f 2n n (n ∈N *),b n =f 2n 2n(n ∈N *),考察下列结论.①f (0)=f (1);②f (x )为偶函数;③数列{a n }为等比数列;④{b n }为等差数列.其中正确的是________.解析:令a =0,b =0,则f (0)=0,令a =b =1, 则f (1)=2f (1),故f (0)=f (1)=0; 设a =-1,b =x ,因为f (1)=f [(-1)×(-1)]=-2f (-1), 则f (-1)=0,所以f (-x )=-f (x )+xf (-1)=-f (x ),f (x )为奇函数;f (2n)=2f (2n -1)+2n -1f (2)=2f (2n -1)+2n⇒f 2n2n=f 2n -12n -1+1,则{b n }为等差数列;∵b 1=f 22=1,∴b n =1+(n -1)×1=n .∴f 2n2n =n ,a n =f 2n n=2n,则数列{a n }为等比数列.答案:①③④三、解答题(本大题共3小题,每小题12分,共36分) 10.数列{a n }中,S n =1+ka n (k ≠0,k ≠1). (1)证明:数列{a n }为等比数列; (2)求通项a n ;(3)当k =-1时,求和a 21+a 22+…+a 2n . 解:(1)∵S n =1+ka n ,①S n -1=1+ka n -1,②①-②得S n -S n -1=ka n -ka n -1(n ≥2), ∴(k -1)a n =ka n -1,a n a n -1=k k -1为常数,n ≥2. ∴{a n }是公比为kk -1的等比数列.(2)∵S 1=a 1=1+ka 1,∴a 1=11-k. ∴a n =11-k ·⎝ ⎛⎭⎪⎫k k -1n -1=-kn -1k -1n.(3)∵{a n }中a 1=11-k ,q =k k -1,∴{a 2n }是首项为⎝⎛⎭⎪⎫1k -12,公比为⎝ ⎛⎭⎪⎫k k -12的等比数列.当k =-1时,等比数列{a 2n }的首项为14,公比为14,∴a 21+a 22+…+a 2n =14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .11.设数列{a n }是一等差数列,数列{b n }的前n 项和为S n =23(b n -1),若a 2=b 1,a 5=b 2.(1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和S n .解:(1)∵S 1=23(b 1-1)=b 1,∴b 1=-2.又S 2=23(b 2-1)=b 1+b 2=-2+b 2,∴b 2=4.∴a 2=-2,a 5=4. ∵{a n }为等差数列, ∴公差d =a 5-a 23=63=2, 即a n =-2+(n -2)·2=2n -6. (2)∵S n +1=23(b n +1-1),①S n =23(b n -1),②①-②得S n +1-S n =23(b n +1-b n )=b n +1,∴b n +1=-2b n .∴数列{b n }是等比数列,公比q =-2,首项b 1=-2, ∴b n =(-2)n. ∴S n =23[(-2)n-1].12.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{}对n ∈N *均有c 1b 1+c 2b 2+…+b n=a n +1成立,求c 1+c 2+c 3+…+c 2 013.解:(1)∵由已知得a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ), 解得d =2或d =0(舍去).∴a n =1+(n -1)·2=2n -1(n ∈N *). 又b 2=a 2=3,b 3=a 5=9, ∴数列{b n }的公比为3. ∴b n =3·3n -2=3n -1(n ∈N *).(2)由c 1b 1+c 2b 2+…+b n=a n +1得当n ≥2时,c 1b 1+c 2b 2+…+-1b n -1=a n .两式相减得,n ≥2时,b n=a n +1-a n =2.∴=2b n =2·3n -1(n ≥2).又当n =1时,c 1b 1=a 2, ∴c 1=3.∴=⎩⎪⎨⎪⎧3n =1,2·3n -1n ≥2.∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.1.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .52B .7 C .6 D .4 2解析:选A 法一:由等比中项的性质知a 1a 2a 3=(a 1a 3)·a 2=a 32=5,a 7a 8a 9=(a 7a 9)·a 8=a 38=10,所以a 2a 8=5013,所以a 4a 5a 6=(a 4a 6)·a 5=a 35=(a 2a 8)3=(5016)3=5 2.法二:由等比数列的性质知a 1a 2a 3,a 4a 5a 6,a 7a 8a 9构成等比数列,所以(a 1a 2a 3)(a 7a 8a 9)=(a 4a 5a 6)2,即a 4a 5a 6=±5×10=±52,又数列各项均为正数,所以a 4a 5a 6=5 2.2.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4 D .1∶3解析:选C 由等比数列的性质:S 3、S 6-S 3、S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34.3.设正项等比数列{a n }的前n 项和为S n ,已知a 3=4,a 4a 5a 6=212. (1)求首项a 1和公比q 的值; (2)若S n =210-1,求n 的值. 解:(1)∵a 4a 5a 6=a 35=212⇒a 5=16,∴a 5a 3=q 2=4⇒q =2,a 1q 2=a 3,解得a 1=1.(2)由S n =210-1,得S n =a 1q n -1q -1=2n-1,∴2n -1=210-1⇒2n =210,即n =10.4.已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明{b n }是等比数列; (2)求{a n }的通项公式. 解:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,以-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 又a 1=1也符合上式,所以{a n }的通项公式为a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).。