专题4.2 与球相关的外接与内切问题-2121届高考数学压轴题讲义(选填题)(解析版)
- 格式:pdf
- 大小:1.72 MB
- 文档页数:19
立体几何中的“内切”与“外接”问题的探究1 球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111D C B A ABCD-,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。
常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2ar OJ ==;二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题 。
例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( ) A .22B .1C .212+D .21.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.10π3 B.4π C.8π3 D.7π31.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多。
下面以正三棱柱为例,介绍本类题目的解法——构造直角三角形法。
【最新整理,下载后即可编辑】立体几何中的“内切”与“外接”问题的探究1 球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。
常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2ar OJ ==;二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1aR O A ==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题 。
例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( ) A .22B .1C .212+D .21.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径22222l a b c R ++==例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( )A.10π3B.4πC.8π3D.7π31.3球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多。
下面以正三棱柱为例,介绍本类题目的解法——构造直角三角形法。
球的切、接、截面问题是历年高考的热点内容,常以选择题、填空题的形式出现,一般围绕球与其他几何体的内切、外接问题命题,考查球的体积、表面积等.类型一外接球解决与外接球相关问题的关键是确定球心,然后通过球心和接点作截面,进而将球的外接问题转化为平面几何问题,利用平面几何知识来分析、处理.例1(1)(2024·江苏启东中学阶段考试)已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB =5,BC=7,AC=2,则此三棱锥的外接球的体积为()A.8π3B.82π3C.16π3D.32π3答案B解析由题意知,可将三棱锥放入长方体中考虑,则长方体的外接球即为三棱锥的外接球,故球的半径为长方体体对角线的一半,设PA=x,则PB2+PC2=BC2=7,即5-x2+4-x2=7,解得x=1,故PA=1,PB=2,PC=3,所以R=12+22+(3)22=2,所以此三棱锥的外接球的体积为43πR3=82π3.(2)(2022·新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π答案A解析设正三棱台上、下底面所在圆面的半径分别为r1,r2,所以2r1=33sin60°,2r2=43sin60°,则r1=3,r2=4.设球心到上、下底面的距离分别为d1,d2,球的半径为R(R≥4),所以d1=R2-9,d2=R2-16,故|d1-d2|=1或d1+d2=1,即|R2-9-R2-16|=1或R2-9+R2-16=1,解得R2=25,符合题意,所以球的表面积为S=4πR2=100π.故选A.(3)(2023·全国乙卷)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=________.答案2解析如图,将三棱锥S-ABC转化为直三棱柱SMN-ABC,设△ABC的外接圆的圆心为O1,半径为r,则2r=ABsin∠ACB=332=23,可得r= 3.设三棱锥S-ABC的外接球的球心为O,连接OA ,OO 1,则OA =2,OO 1=12SA ,因为OA 2=O 1A 2+OO 21,即4=3+14SA 2,所以SA =2.(4)(2022·新高考Ⅰ卷改编)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是________.答案274,643解析如图,设该球的半径为R ,球心为O ,正四棱锥的底边长为a ,高为h ,正四棱锥的侧棱与高所成的角为θ,则正四棱锥的底边长a =2l sin θ,高h =l cos θ.依题意,得36π=43πR 3,解得R =3.在△OPC 中,作OE ⊥PC ,垂足为E ,则可得cos θ=l 2R =l6∈12,32,所以l =6cos θ,所以正四棱锥的体积V =13a 2h =13(2l sin θ)2·l cos θ=23(6cos θ)3sin 2θcos θ=144(sin θcos 2θ)2.设sin θ=t ,易得t ∈12,32.令y =sin θcos 2θ=t (1-t 2)=t -t 3,则y ′=1-3t 2,令y ′=0,得t =33,所以当12<t <33时,y ′>0;当33<t <32时,y ′<0,所以函数y =t -t 3,.又当t =33时,y =239;当t =12时,y =38;当t =32时,y =38.所以38≤y ≤239,所以274≤V ≤643.所以该正四棱锥的体积的取值范围是274,643.1.求解几何体外接球半径的思路一是根据球的截面的性质,利用球的半径R 、截面圆的半径r 及球心到截面圆的距离d 三者的关系R 2=r 2+d 2求解,其中,确定球心的位置是关键;二是将几何体补成长方体,利用该几何体与长方体共有外接球的特征,由外接球的直径等于长方体的体对角线长求解.2.确定球心常用的方法(1)长方体或正方体的外接球的球心是其体对角线的中点.(2)正棱柱的外接球的球心是上、下底面中心连线的中点.(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点.(4)正棱锥的外接球的球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到.1.(2024·福建宁德一中高三模拟)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,BC =1,AB =3,AA 1=23,则该直三棱柱的外接球的体积为()A .8π3B .16π3C .32π3D .64π3答案C解析如图所示,将直三棱柱ABC -A 1B 1C 1补成长方体,则长方体的外接球即为直三棱柱的外接球.长方体的体对角线长为(23)2+(3)2+1=4,设长方体的外接球的半径为R ,则2R =4,解得R =2,所以该直三棱柱的外接球的体积V =43πR 3=32π3.故选C.2.(2024·鞍山一中高三模拟)在三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,则三棱锥P -ABC 外接球的表面积为()A .26πB .12πC .8πD .24π答案A解析三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,如图,构造长方体,使得面上的对角线长分别为4,5,11,则长方体的体对角线长等于三棱锥P -ABC 外接球的直径,设长方体的棱长分别为x ,y ,z ,则x 2+y 2=16,y 2+z 2=25,x 2+z 2=11,则x 2+y 2+z 2=26,因此三棱锥P -ABC 外接球的直径为26,所以三棱锥P -ABC 外接球的表面积为=26π.故选A.3.(2024·四川遂宁高三期末)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为________.答案16π解析球心O 在平面ABC 的投影为△ABC 的中心,设为O 1,连接OD ,OO 1,OA ,设H 是AD 的中点,连接OH ,如图所示,则AO 1=32sin60°=3,OA =OD =R ,则OH ⊥AD ,四边形AO 1OH 为矩形,OO 1=AH =1,R 2=AO 21+OO 21=3+1=4,故R =2,S=4πR 2=16π.4.(2022·全国乙卷改编)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为________.答案33解析设该四棱锥的底面为四边形ABCD ,四边形ABCD 所在小圆的半径为r ,四边形ABCD对角线的夹角为α,则S 四边形ABCD =12AC ·BD sin α≤12AC ·BD ≤12·2r ·2r =2r 2(当且仅当四边形ABCD为正方形时,等号成立),即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 的面积的最大值为2r 2,设该四棱锥的高为h ,则r 2+h 2=1,所以V O -ABCD =13·2r 2·h =23r 2·r 2·2h 2≤23=4327,当且仅当r 2=2h 2,即h =33时,等号成立.类型二内切球解决与内切球相关的问题,其通法也是作截面,将空间几何问题转化为平面几何问题来解决.例2(1)(2024·广东广州模拟)已知一个圆台的母线长为5,且它的内切球的表面积为16π,则该圆台的体积为()A .25πB .84π3C .28πD .36π答案C解析由圆台的内切球的表面积为16π,可得球的半径为2.设圆台上、下底面圆的半径分别为x ,y ,作出圆台的轴截面如图所示.+y =5,2+(y -x )2=52,=1,=4.又圆台的高为4,所以该圆台的体积为13×(π+16π+π×16π)×4=28π.故选C.(2)已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________.答案2-1解析如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心.因为AB =BC =23,所以S △ABC =33,DE =1,PE =2.所以S 三棱锥表=3×12×23×2+33=36+33.因为PD =1,所以三棱锥的体积V =13×33×1=3.设内切球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3,得r =3336+33=2-1.(3)(2023·全国甲卷)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为CD ,A 1B 1的中点,则以EF 为直径的球面与正方体每条棱的交点总数为________.答案12解析如图,不妨设正方体的棱长为2,EF 的中点为O ,取AB ,BB 1的中点G ,M ,侧面BB 1C 1C 的中心为N ,连接FG ,EG ,OM ,ON ,MN ,由题意可知,O 为球心,在正方体中,EF =FG 2+EG 2=22+22=22,即R =2,则球心O 到BB 1的距离为OM =ON 2+MN 2=12+12=2,所以球O 与棱BB 1相切,球面与棱BB 1只有1个交点,同理,根据正方体的对称性知,球面与其余各棱也只有1个交点,所以以EF 为直径的球面与正方体每条棱的交点总数为12.“切”的问题常用的处理方法(1)找准切点,通过作过球心的截面来解决.(2)通过体积分割法来求内切球的半径.5.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2π3解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22,故内切球的体积为43π×=2π3.6.(2024·山东烟台模拟)某学校开展手工艺品展示活动,某同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为________,三棱柱的顶点到球的表面的最短距离为________.答案12π15-3解析过侧棱的中点作正三棱柱的截面,如图所示,则球心为△MNG 的中心.因为MN=6,所以△MNG内切圆的半径r=OH=13MH=13MN2-HN2=3,即内切球的半径R=3,所以内切球的表面积S=4πR2=12π.又正三棱柱的高AA1=2R=23,OM=23 MH=23,所以AO=OM2+AM2=(23)2+(3)2=15,所以点A到球的表面的最短距离为AO-R=15- 3.类型三球的截面、截线问题解决球的截面、截线问题的关键是利用球的截面的性质.例3(1)(2024·云南昆明模拟)已知OA为球O的半径,M为线段OA上的点,且AM=2MO,过点M且垂直于OA的平面截球面得到圆M,若圆M的面积为8π,则OA=()A.22B.3C.23D.4答案B解析如图所示,由题意,得π×BM2=8π,则BM=2 2.设球的半径为R,则MO=13R,OB=R,所以R2=19R2+(22)2,所以OA=R=3.故选B.(2)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π答案A解析设⊙O1的半径为r,球的半径为R,依题意,得πr2=4π,∴r=2.由正弦定理可得AB sin60°=2r,∴AB=2r sin60°=23,∴OO1=AB=23.根据球的截面性质,得OO1⊥平面ABC,∴OO1⊥O1A,R=OA=OO21+O1A2=OO21+r2=4,∴球O的表面积S=4πR2=64π.故选A.(3)(2020·新高考Ⅰ卷)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.答案2π2解析如图所示,取B 1C 1的中点为E ,BB 1的中点为F ,CC 1的中点为G ,连接D 1E ,EF ,EG ,D 1B 1,因为∠BAD =60°,直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,所以△D 1B 1C 1为等边三角形,所以D 1E =3,D 1E ⊥B 1C 1.又四棱柱ABCD -A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥D 1E .因为BB 1∩B 1C 1=B 1,所以D 1E ⊥侧面B 1C 1CB .设P 为侧面B 1C 1CB 与球面的交线上的点,连接D 1P ,EP ,则D 1E ⊥EP .因为球的半径为5,D 1E =3,所以EP =D 1P 2-D 1E 2=5-3=2,所以侧面B 1C 1CB 与球面的交线上的点到E 的距离为2.因为EF =EG =2,所以侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG ︵.因为∠B 1EF =∠C 1EG =π4,所以∠FEG =π2,所以根据弧长公式可得交线长l =π2×2=2π2.(1)球的截面一定是一个圆面.(2)球心和小圆圆心连线垂直于小圆圆面.(3)过球内一点作球的截面,最大截面为过球心的圆面,最小截面为过该点且垂直于球心和该点连线的截面.7.(2024·江苏苏州校考阶段练习)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,如图是一个圆柱容球,O 1,O 2为圆柱两个底面的圆心,O 为球心,EF 为底面圆O 1的一条直径,若球的半径R =2,则(1)平面DEF 截得球的截面面积的最小值为________;(2)若P 为球面和圆柱侧面的交线上一点,则PE +PF 的取值范围为______________.答案(1)16π5(2)[25+2,43]解析(1)过点O 在平面ABCD 内作OG ⊥DO 1,垂足为G ,如图所示,易知O 1O 2⊥CD ,O 1O 2=4,O 2D =2,由勾股定理,可得O 1D =O 1O 22+O 2D 2=25,则由题意,可得OG =12×O 1O 2×O 2D O 1D =12×4×225=255,设点O 到平面DEF 的距离为d 1,平面DEF 截得球的截面圆的半径为r 1,因为O 1D ⊂平面DEF ,当OG ⊥平面DEF 时,d 1取得最大值OG ,即d 1≤OG =255,所以r 1=4-d 21≥4-45=455,所以平面DEF 截得球的截面面积的最小值为=16π5.(2)由题意可知,点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ′,则PP ′=2,PE =22+P ′E 2=4+P ′E 2,PF =22+P ′F 2=4+P ′F 2,由勾股定理,可得P ′E 2+P ′F 2=16,令P ′F 2=8-t ,则P ′E 2=8+t ,其中-8≤t ≤8,所以PE +PF =12+t +12-t ,所以(PE +PF )2=(12+t +12-t )2=24+2144-t 2∈[24+85,48],因此PE +PF ∈[25+2,43].。