等差等比数列基本量刘秋杏含详解
- 格式:doc
- 大小:881.50 KB
- 文档页数:11
高考数学专题讲座 第4讲 等差数列与等比数列一、考纲要求1.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能够应用这些知识解决一些问题.2.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能够运用这些知识解决一些问题.二、基础过关1.在首项为81,公差为-7的等差数列{}n a 中,最接近零的是第( ).A . 11项B .12项C .13项D .14项2.已知等差数列{}n a 中,0≠n a ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则m 等于( ) .A .38B .20C .10D .93.数列{}n a 中,11=a ,对所有*N n ∈都有221n a a a n = ,则=+53a a ( ).A .1661 B .925 C .1625 D .15314.(03年全国)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na n 2+a n +1a n =0(n=1,2,3,…),它的通项公式是__ _.5.如果一个数列{}n a 满足h a a n n =+-1,其中h 为常数,2,*≥∈n N n ,则称数列{}n a 为等和数列,h 为公和,n S 是其前n 项和.已知等和数列{}n a 中311-==h a ,,则=2004a ,=2005S .6.设数列{}n a ,{}n b 分别为正项等比数列,n n R T ,分别为数列{}n a lg 与{}n b lg 的前n 项和,且12+=n nR T n n ,则55log a b 的数值为_________. 三、典型例题例1 已知数列{}n a 中,b na a a a n n +=-=+11,40,其中a ,b 为常数,且∈n N *,∈a N *,b 为负整数.(1)用a ,b 表示n a ;(2)若0,087<>a a ,求通项公式.例2 (04年湖南)已知数列{}n a 是首项为a 且公比不等于1的等比数列,S n 是其前n 项和,a 1,2a 7,3a 4成等差数列.(1)证明12S 3, S 6, S 12-S 6成等比数列;(2)求和 T n =a 1+2a 4+3a 7+---+na 3n -2 .例3 数列{}n a 中,2,841==a a 且满足)(212N n a a a n n n ∈-=++.(1)求数列{}n a 的通项公式;(2)设n n a a a S +++= 21,求n S ; (3)设)12(1n n a n b -=,)(21N n b b b T n n ∈+++= ,是否存在最大的整数m ,使得对任意n ∈N ,均有32mT n >成立?若存在,求出m 的值;若不存在,请说明理由. 例 4 在直角坐标平面上有一点列 ),(,),(),,(222111n n n y x P y x P y x P ,对一切正整数n ,点n P 位于函数4133+=x y 的图象上,且n P 的横坐标构成以25-为首项,1-为公差的等差数列{}n x . (1)求点n P 的坐标;(2)设抛物线列 ,,,,,321n c c c c 中的每一条的对称轴都垂直于x 轴,第n 条抛物线n c 的顶点为n P ,且过点)1,0(2+n D n ,记与抛物线n c 相切于n D 的直线的斜率为n k ,求:nn k k k k k k 13221111-+++ . (3)设{}1,,2|≥∈==n N n x x x S n ,{}1,4|≥==n y y y T n ,等差数列{}n a 的任一项T S a n ∈,其中1a 是T S 中的最大数,12526510-<<-a ,求{}n a 的通项公式.四、热身演练1.(20XX 年天津文)等差数列}{n a 中,已知311=a ,452=+a a ,33=n a ,则n 为( ). A .48B .49C .50D .512.(20XX 年天津)若S n 是数列{}n a 的前n 项和,且,2n S n =则}{n a 是( ).A .等比数列,但不是等差数列B .等差数列,但不是等比数列C .等差数列,而且也是等比数列D .既非等比数列又非等差数列3.(20XX 年福建)设n S 是等差数列{}n a 的前n 项和,若9535=a a ,则=59S S( ). A .1 B .1- C .2 D .214.(20XX 年上海)若数列{}n a 前8项的值各异,且n n a a =+8,对任意的*N n ∈都成立,则下列数列中可取遍{}n a 前8项值的数列为( ).A .{}12+k aB .{}13+k aC .{}14+k aD .{}16+k a5.等差数列{}n a 共有2n 项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为( ).A .3B .3-C .2-D .1-6.等差数列{}n a 中,104,36139-=-=S S ,已知等比数列{}n b 的7755,a b a b ==,则=6b .7.(04年北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和. 5,______________,这个数列的前n ________________.8.(99年全国)在等差数列{}n a 中,满足7473a a =,且01>a ,n S 是数列{}n a 前n 项的和,若n S 取得最大值,则n = .9.(20XX 年浙江)已知数列{}n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=. (1)求21,a a ;(2)求证:数列{}n a 是等比数列.10.设n S 是等差数列{}n a 的前n 项和,已知434131S S 与的等比中项为551S ,434131S S 与的等差中项为1,求等差数列{}n a 的通项. 11.(04年重庆)设a 1=1,a 2=35,a n +2=35a n +1-32a n (n =1,2,---),令b n =a n +1-a n (n =1,2---). (1)求数列{b n }的通项公式; (2)求数列{na n }的前n 项的和S n .12.已知数列{}n a 是公差0≠d 的等差数列,其前n 项和为n S .(1)求证:点),(,),2,2(),1,1(2211nS n P SP S P n n 在同一条直线1l 上; (2)过点),2(),,1(2211a Q a Q 作直线2l ,设θ的夹角为与21l l ,求证:42tan ≤θ.答案 二、基础过关 1、C 2、C 3、A 4、n 1 5、-4,-3005 6、199三、案例探究1、 解:(1) b na a a n n +=-+1 ,()()()()()()b a b a na b a na a a a a a a n n n n ++++-++-=-++-+-∴--- 212211 又40)1(2)1(,401+-+-=∴=b n a n n a a n .(2)为负整数,且,b N a b a a b a a ,,040728040621*87∈<++=>++= ∴由线性规划知识知:,10,1-==b a5022122+-=∴n n a n 2、 (Ⅰ)证明 由4713,2,a a a 成等差数列, 得41734a a a +=,即 .3436aq a aq += 变形得 ,0)1)(14(33=-+q q 所以14133=-=q q 或(舍去).由 .1611211)1(121)1(123316136=+=----=q qq a q q a S S .1611111)1(1)1(166611216126612==-+=-----=-=-q q q q a q q a S S S S S 得.12661236S S S S S -= 所以12S 3,S 6,S 12-S 6成等比数列. (Ⅱ)解:.3232)1(36323741--++++=++++=n n n naqaq aq a na a a a T 即 .)41()41(3)41(212a n a a a T n n --⋅++-⋅+-⋅+= ①①×)41(-得: a n a n a a a T n n n )41()41()41(3)41(24141132---⋅++-⋅+-⋅+=--.)41()54(54)41()41(1])41(1[a n a a n a n n n -⋅+-=-⋅-----=所以 .)41()542516(2516a n a T n n -⋅+-=3、解 (1)由a n+2=2a n+1-a n ⇒a n+2-a n+1=a n+1-a n ,可知{a n }成等差数列,d=1414--a a =-2 ∴a n =10-2n(2)由a n =10-2n ≥0得n ≤5,∴当n ≤5时,S n =-n 2+9n ;当n>5时,S n =n 2-9n+40故S n =⎪⎩⎪⎨⎧+-+-409922n n n n 551>≤≤n n (n ∈N )(3)b n =)12(1n a n -=)22(·1+n n =21(n 1-11+n )∴T n = b 1+b 2+…+b n=21[(1-21)+(21-31)+…+(n 1-11+n )] =12121)1(2T T T nn n n n n >>>=->+--∴要使T n >32m 总成立,需32m <T 1=41恒成立,即m<8,(m ∈Z ).故适合条件的m 的最大值为7.4、解:(1)23)1()1(25--=-⨯-+-=n n x n 1353533,(,3)4424n n n y x n P n n ∴=⋅+=--∴----(2)n c 的对称轴垂直于x 轴,且顶点为n P .∴设n c 的方程为:,4512)232(2+-++=n n x a y 把)1,0(2+n D n 代入上式,得1=a ,n c ∴的方程为:1)32(22++++=n x n x y .32|0'+===n y k x n ,)321121(21)32)(12(111+-+=++=∴-n n n n k k n nn n k k k k k k 13221111-+++∴ )]321121()9171()7151[(21+-+++-+-=n n =641101)32151(21+-=+-n n (3)}1,),32(|{≥∈+-==n N n n x x S ,}1,),512(|{≥∈+-==n N n n y y T }1,,3)16(2|{≥∈-+-==n N n n y y ,S T T ∴=T 中最大数171-=a .设}{n a 公差为d ,则)125,265(91710--∈+-=d a ,由此得 ).(247,24),(12,129248**N n n a d N m m d T a d n n ∈-=∴-=∴∈-=∴∈-<<- 又 四、热身演练1、C2、B3、A4、B5、B6、24±7、3 当n当n8、99、解 (1)由)1(3111-=a S 得)1(3111-=a a ,211-=∴a ,又)1(3122-=a S ,即)1(31221-=+a a a ,得412=a . (2)当2≥n 时,1113131)1(31)1(31----=---=-=n n n n n n n a a a a S S a ,得211-=-n n a a ,所以{}n a 是首项为21-,公比为21-的等比数列.10、解法一:设等差数列{a n }的首项a 1=a ,公差为d ,则其通项为根据等比数列的定义知S 5≠0,由此可得解法二:依题意,得11、解:(I )因121+++-=n n n a a b n n n n n n b a a a a a 32)(323235111=-=--=+++故{b n }是公比为32的等比数列,且故,32121=-=a a b ),2,1()32(==n b n n (II )由得nn n n a a b )32(1=-=+)()()(121111a a a a a a a a n n n n n -++-+-=--++])32(1[232)32()32()32(21n n n -=++++=-注意到,11=a 可得),2,1(3231 =-=-n a n n n . 记数列}32{11--n n n 的前n 项和为T n ,则n n n n n T n T )32()32(23232,)32(322121⋅++⋅+=⋅++⋅+=- 两式相减得,)32(])32(1[3)32()32()32(3213112n n n n n n n T --=-++++=-1832)3()1(232)21(32,32)3(9)32(3])32(1[911211-+++=-+++=+++=+-=--=-+-n n nn n n nn n n n n n T n na a a S n n T 从而故12、证明:(1)因为等差数列{a n }的公差d ≠0,所以Kp 1p k 是常数(k=2,3,…,n).(2)直线l 2的方程为y-a 1=d(x-1),直线l 2的斜率为d .。
练习题1.(2017·桂林调研)等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A .14 B .12 C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14,故选A .2.等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27解析:选B 法一:∵S 9=a 1+a 92=9a 5=9×6=54.故选B .法二:由a 5=6,得a 1+4d =6,∴S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B .3.(2017·陕西质量监测)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .∵a k +1·a k <0,∴⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________. 解析:∵⎩⎨⎧a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎨⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5求sn 最大项最小项5.(2017·合肥质检)已知等差数列{a n }的前n 项和为S n ,a 8=1,S 16=0,当S n 取最大值时n 的值为( )A .7B .8C .9D .10解析:选B法一:由⎩⎨⎧a 8=a 1+7d =1,S 16=16a 1+16×152d =0,解得⎩⎨⎧a 1=15,d =-2,则S n =-n 2+16n=-(n -8)2+64,则当n =8时,S n 取得最大值.法二:因为{a n }是等差数列,所以S 16=8(a 1+a 16)=8(a 8+a 9)=0,则a 9=-a 8=-1,即数列{a n }的前8项是正数,从第9项开始是负数,所以(S n )max =S 8,选项B 正确.性质1. 【2010全国1,文4】已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A ..7 C .6 D . 【答案】:A【解析】数列{a n }为等比数列,由a 1a 2a 3=5得32a =5,由a 7a 8a 9=10得38a =10,所以32a 38a =50,即(a 2a 8)3=50,即65a =50,所以35a = (a n >0).所以a 4a 5a 6=35a =.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18.答案:183. 【2009全国卷Ⅰ,文14】设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=__________. 【答案】:24 【解析】:∵2)(972919a a S +==,∴a 1+a 9=16. ∵a 1+a 9=2a 5,∴a 5=8.∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.4.设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( ) A .1 B .-1 C .2D .12解析:选A S 11S 9=a 1+a 112a 1+a 92=11a 69a 5=119×911=1. 5.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________.解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:200求和性质 s 奇偶(选做)6.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.解析:因为{a n },{b n }为等差数列, 所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. 因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, 所以a 6b 6=1941.答案:1941数列求和一般数列求和的方法:①分组转化法,一般适用于等差数列+等比数列的形式; ②裂项相消法求和,一般适用于,等的形式;③错位相减法求和,一般适用于等差数列⨯等比数列的形式;④倒序相加法求和,一般适用于首末两项的和是一个常数,这样可以正着写和与倒着写和,两式相加除以2即可得到数列求和.基本量 、分组求和1.[2016·北京卷] 已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.15.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,1+=n n n a a cc nn c c n ++=1所以b 1=b 2q=1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27, 所以1+13d =27,即d =2,所以a n =2n -1(n =1,2,3,…). (2)由(1)知,a n =2n -1,b n =3n -1, 因此c n =a n +b n =2n -1+3n -1, 从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1 =n (1+2n -1)2+1-3n1-3=n 2+3n -12.裂项求和2.【2017年高考全国III 卷文数】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【答案】(1)122-=n a n ;(2)122+n n.【解析】(1)因为 +3 +…+(2n −1) =2n , 故当n ≥2时, +3 +…+( −3) =2(n −1). 两式相减得(2n −1) =2, 所以 =(n ≥2). 又由题设可得 =2,从而{ }的通项公式为 =.(2)记{}的前n 项和为 ,由(1)知 = = −.则 = − + − +…+ − =.【思路点拨】(1)先由题意得2≥n 时,)1(2)32(3121-=-+++-n a n a a n ,再作差得122-=n a n ,验证1=n 时也满足; (2)由于121121)12)(12(212+--=+-=+n n n n n a n ,所以利用裂项相消法求和. 【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类是隔一项的裂项求和,如1(1)(3)n a n n =++或1(2)n a n n =+.3. 【2013课标全国Ⅰ,文17】(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.错位相减法4.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T .【答案】(1)2n n a =;(2)2552n nn T +=- 【解析】(1)设{}n a 的公比为q , 由题意知22111(1)6,a q a q a q +==.又0n a >,解得12,2a q ==,所以2n n a =.(2)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+, 令n n n b c a =,则212n n n c +=, 因此122313572121,22222n n n n n n T c c c --+=+++=+++++ 又234113572121222222n n n n n T +-+=+++++, 两式相减得2111311121()222222n n n n T -++=++++-, 所以2552n nn T +=-.5.【2017年高考天津卷文数】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式; (2)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(1)32n a n =-,2nn b =;(2)2(34)216n n +-+.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①; 由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(2)设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有2342102162(62)2n n T n =⨯+⨯+⨯++-⨯,2341242102162(68)2(62)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得23112(1426262612n nn n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----122)2(34)216n n n ++⨯=---,得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和.。
单招等差等比数列知识点归纳总结数列是数学中一种常见的数值序列,而等差数列和等比数列是数列中较为常见和重要的两种类型。
对于学习数学的同学来说,掌握等差数列和等比数列的概念、性质以及求解方法非常重要。
本文将对等差数列和等比数列的基本概念、常见性质和解题方法进行归纳总结。
一、等差数列的概念和性质等差数列是指一个数列中,从第二项开始,每一项与前一项的差相等的数列。
设等差数列的首项为a₁,公差为d,则等差数列的一般形式为an = a₁ + (n-1)d。
(n≥1)等差数列常见的性质有:1. 通项公式:an = a₁ + (n-1)d2. 首项和末项的求解:a₁ = an - (n-1)d,an = a₁ + (n-1)d3. 前n项和的求解:Sn = (n/2)[2a₁ + (n-1)d]4. 累加求和公式:Sn = (n/2)(a₁ + an)5. 通项之和为定值:an + an-1 = a₁ + ∑(n-1) + d = 2a₁ + (n-1)d6. 通项相等时的和:Sn = n(a₁ + an)/2二、等比数列的概念和性质等比数列是指一个数列中,从第二项开始,每一项与前一项的比相等的数列。
设等比数列的首项为a₁,公比为r,则等比数列的一般形式为an = a₁ * r^(n-1)。
(n≥1)等比数列常见的性质有:1. 通项公式:an = a₁ * r^(n-1)2. 首项和末项的求解:a₁ = an / r^(n-1),an = a₁ * r^(n-1)3. 前n项和的求解:Sn = a₁ * (1 - r^n) / (1 - r),当|r|<1时,Sn = (a₁ - an * r) / (1 - r)4. 累乘求积公式:Sn = a₁ * a₂ * a₃ * ... * an = a₁^n * r^(1+2+...+n-1) = a₁^n * r^(n(n-1)/2)5. 通项之和为定值:an * r - an₋₁ = a₁ * (r - 1) * (r^(n-1) - 1) / (r - 1) = a₁ * (r^n - 1) / (r - 1)6. 通项相等时的和:Sn = a₁n三、等差数列和等比数列的应用等差数列和等比数列是数学中非常重要的概念,它们不仅在数学中有着广泛的应用,而且在实际生活中也随处可见。
§3.2等差数列与等比数列的基本运算(二)【复习目标】1.灵活运用等差、等比数列的定义及通项公式的性质简化数列的有关运算;2.在解题中总结方法和规律,加深对等差数列和等比数列的理解。
【重点难点】在解题中总结方法和规律,简化数列的有关运算【课前预习】1.在等比数列{an }中,已知首项为89,末项为31,公比为32,则项数n是()A.3B.4C.5D.62.等比数列{an }中,a1+a2=30,a3+a4=120,则a5+a6是()A.240B.±240C.480D.±4803.设{an }是一个等差数列,且a4+a7+a10=17,a4+a5+a6+…+a14=77,如果ak=13,那么k等于A.16B.18C.20D.22 ()实用文档实用文档【典型例题】例1 已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,求5261654321a a a a a a a a a a +++的值。
例2 已知一个等差数列前10项的和为100,前100项的和为10,求前110项的和。
例3 已知等差数列{}n a 的前n 项和为n s ,令n n s b 1=,且.21,215333=+=⋅s s b a 求数列{}n b 的通项公式。
实用文档例4 已知数列}{n a 的前n 项和为n n S n 182+-=,试求数列|}{|n a 的前n 项和n T 的表述式。
【巩固练习】1.在各项均为正数的等比数列{a n }中,若a 5a 6=9,则log 3a 1+log 3a 2+…+log 3a 10的值为 .2.在等比数列{a n }中,已知a 2a 8=9,则a 3a 5a 7等于 . 3.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则1042931a a a a a a ++++的值是 。
【本课小结】【课后作业】实用文档1. 设a,b,c 成等比数列,x 为a,b 的等差中项,y 为b,c 的等差中项,求证2a cx y+=. 2. 若a+b+c,b+c —a,a+c -b,a+b -c 成等比数列,公比为q,求q+q 2+q 3的值。
等差数列等比数列知识点归纳总结等差数列和等比数列是高中数学中非常重要的概念,它们在解决各种数学问题中都起着重要的作用。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行归纳总结。
一、等差数列等差数列是指一个数列中的每一项与前一项之间的差都相等。
这个相等的差值被称为等差数列的公差,通常用字母d表示。
1. 基本概念一个等差数列可以以通项公式的形式表示为:an = a1 + (n - 1) * d,其中an表示数列的第n项,a1表示第一项,d表示公差。
2. 性质(1)公差:等差数列的公差d是等差数列中相邻两项的差,公差可以是正数、负数或零。
(2)公式:等差数列的通项公式为an = a1 + (n - 1) * d,其中n表示项数。
(3)前n项和:等差数列的前n项和可以通过求和公式Sn = n * (a1 + an) / 2来计算。
3. 应用等差数列广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的差额、间隔、递推关系等。
(2)物理问题中的匀速直线运动、连续等差分布等。
(3)经济学中的利润、销售额等。
二、等比数列等比数列是指一个数列中的每一项与前一项之间的比都相等。
这个相等的比值被称为等比数列的公比,通常用字母r表示。
1. 基本概念一个等比数列可以以通项公式的形式表示为:an = a1 * r^(n-1),其中an表示数列的第n项,a1表示第一项,r表示公比。
2. 性质(1)公比:等比数列的公比r是等比数列中相邻两项的比值,公比可以是正数、负数或零。
(2)公式:等比数列的通项公式为an = a1 * r^(n-1),其中n表示项数。
(3)前n项和:等比数列的前n项和可以通过求和公式Sn = a1 * (1 - r^n) / (1 - r)来计算。
3. 应用等比数列也广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的倍数关系、增长衰减等。
(2)物理问题中的连续等比分布、指数增长等。
第 1 页 共 4 页 2021年高考数学考前三轮复习
等差数列与等比数列
题型预测
两个基本数列(等差数列和等比数列),以及通过适当转化可化成这两个数列的问题是高考考查的重点.要注意n S q d a n n ,,,,之间的内在联系,注意相邻项,相邻若干项之间的内在联系及相互转化.
范例选讲
例1 已知数列{}n a 的前n 项和=n S 292++-n n ()N n ∈.
(Ⅰ) 判断数列{}n a 是否为等差数列;
(Ⅱ) 设n n a a a R +++= 21,求n R ;
(Ⅲ) 设n n n n b b b T N n a n b +++=∈-= 21),()12(1
,是否存在最小的自然
数0n ,使得不等式32
0n T n <
对一切自然数n 总成立?如果存在,求出0n 的值;如果不存在,说明理由. 讲解:本题中,求出数列{}n a 的通项公式是关键.
(Ⅰ) ∵ =n S 292++-n n ()N n ∈,
∴ 当1=n 时,1011==S a ,
当2≥n 时,=-=-1n n n S S a ()292++-n n ()()[]
21912+-+---n n n 210-=, ∴ ⎩⎨⎧≥-==2
210110n n n a n .
∴ 数列{}n a 不是等差数列.
(Ⅱ) 由⎩
⎨⎧≥-==2210110n n n a n 可知:当5≤n 时,n n a a =,当5>n 时,n n a a -=.。
数列中的等比数列与等差数列——数列知识要点数列是数学中的一个重要概念,广泛应用于各个领域。
其中,等差数列和等比数列是数列中的两种常见类型。
本文将重点介绍数列中的等差数列和等比数列的基本概念、性质以及应用。
一、等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
设数列为{an},其中a1为首项,d为公差,则有以下关系式:an = a1 + (n-1)d等差数列的性质如下:1. 公差d:等差数列中相邻两项之差保持恒定,这个差值称为公差。
2. 通项公式:等差数列的通项公式为an = a1 + (n-1)d,可以通过该公式计算数列中任意一项的值。
3. 首项和末项:等差数列的首项为a1,末项为an。
4. 数列元素之和:等差数列的前n项和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)等差数列在实际问题中的应用非常广泛,例如计算机算法中的循环结构、金融领域中的利息计算等都可以归纳为等差数列的应用。
二、等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
设数列为{an},其中a1为首项,r为公比,则有以下关系式:an = a1 * r^(n-1)等比数列的性质如下:1. 公比r:等比数列中相邻两项之比保持恒定,这个比值称为公比。
2. 通项公式:等比数列的通项公式为an = a1 * r^(n-1),可以通过该公式计算数列中任意一项的值。
3. 首项和末项:等比数列的首项为a1,末项为an。
4. 数列元素之和:等比数列的前n项和Sn可以通过以下公式计算(当r≠1时):Sn = a1 * (1 - r^n) / (1 - r)等比数列也有广泛的应用,例如在科学领域中的指数增长问题、经济领域中的复利计算等都可以归纳为等比数列的应用。
三、等差数列与等比数列的联系与区别等差数列和等比数列都是数列中常见的类型,它们之间有一些联系和区别。
联系:1. 通项公式:等差数列和等比数列都有通项公式,可以通过该公式计算数列中任意一项的值。
高中数学数列等差与等比解析数列是数学中的重要概念,是由一系列按照特定规律排列的数所组成的序列。
在高中数学中,数列的研究是非常重要的,其中等差数列和等比数列是最基础也是最常见的两种数列。
一、等差数列的解析等差数列是指数列中的每一项与它的前一项之差都相等的数列。
我们可以通过一个简单的例子来说明等差数列的解析方法。
例1:已知等差数列的前两项分别为a1和a2,公差为d,求第n项的表达式。
解析:根据等差数列的定义,我们可以得到以下关系式:a2 = a1 + da3 = a2 + d = a1 + 2da4 = a3 + d = a1 + 3d......an = a1 + (n-1)d由上述关系式可以看出,等差数列的第n项可以表示为a1 + (n-1)d,其中a1为首项,d为公差。
这个公式可以帮助我们快速求解等差数列中任意一项的值。
例2:已知等差数列的前两项分别为3和7,公差为4,求第10项的值。
解析:根据等差数列的解析公式,我们可以得到第10项的表达式:a10 = a1 + (10-1)d = 3 + 9*4 = 39所以,等差数列的第10项的值为39。
通过以上例子,我们可以看出,解析等差数列的关键是找到数列的首项和公差,然后利用公式a_n = a_1 + (n-1)d求解。
二、等比数列的解析等比数列是指数列中的每一项与它的前一项之比都相等的数列。
我们可以通过一个例子来说明等比数列的解析方法。
例3:已知等比数列的前两项分别为a1和a2,公比为q,求第n项的表达式。
解析:根据等比数列的定义,我们可以得到以下关系式:a2 = a1 * qa3 = a2 * q = a1 * q^2a4 = a3 * q = a1 * q^3......an = a1 * q^(n-1)由上述关系式可以看出,等比数列的第n项可以表示为a1 * q^(n-1),其中a1为首项,q为公比。
这个公式可以帮助我们快速求解等比数列中任意一项的值。
等差、等比的公式性质以及数列的求和方法第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d aa n n=--1(d为公差)(2³n ,*n N Î)注:下面所有涉及n ,*n N Î省略,你懂的。
2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差 推广公式:()nma a n m d =+-变形推广:变形推广:mn a a d mn --= 3、等差中项、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列是等差数列)2(211-³+=Û+n a a a n n n 212+++=Ûn n n a a a 4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为项为00)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)和等于项数乘以中间项)5、等差数列的判定方法、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*ÎN n )Û {}n a 是等差数列.等差数列.(2)等差中项:数列{}n a 是等差数列是等差数列)2(211-³+=Û+n aa a n n n212+++=Ûn n n aa a((3)数列{}n a 是等差数列Ûbkn a n +=(其中b k ,是常数)。
等差数列与等比数列课件一、引言数学中的数列是一种特殊的数学对象,通过一定的规则和模式,将一系列的数字按照一定的顺序排列起来。
其中,等差数列和等比数列是最常见、最重要的两种数列。
本次课件将重点讲解等差数列和等比数列的定义、性质以及求解方法,帮助同学们更好地理解和掌握这两种数列。
二、等差数列1. 定义等差数列是指数列中的每一项与其前一项之差相等的数列。
设等差数列的首项为a1,公差为d,数列的通项公式为an=a1+(n-1)d。
其中,n表示数列的项数。
2. 性质(1)公差的性质:等差数列中,任意两项的差值都等于公差d。
(2)前n项和的计算公式:等差数列的前n项和Sn可通过公式Sn=n/2*(a1+an)来计算。
(3)等差数列的乘法形式:如果等差数列的公差d=1,那么该等差数列可以转化成乘法形式的等差数列。
3. 求解方法(1)已知首项和公差:根据等差数列的通项公式an=a1+(n-1)d,可以直接计算出数列的任意项。
(2)已知首项和末项:根据等差数列的性质,可利用an=a1+(n-1)d和an=a1+(n-m)d的关系求解出公差,从而得到数列。
三、等比数列1. 定义等比数列是指数列中的每一项与其前一项的比相等的数列。
设等比数列的首项为a1,公比为r,数列的通项公式为an=a1*r^(n-1)。
其中,n表示数列的项数。
2. 性质(1)公比的性质:等比数列中,任意两项的比值都等于公比r。
(2)前n项和的计算公式:等比数列的前n项和Sn可通过公式Sn=a1*(1-r^n)/(1-r)来计算。
(3)等比数列的加法形式:如果等比数列的公比r=1,那么该等比数列可以转化成加法形式的等比数列。
3. 求解方法(1)已知首项和公比:根据等比数列的通项公式an=a1*r^(n-1),可以直接计算出数列的任意项。
(2)已知首项和末项:根据等比数列的性质,可利用an=a1*r^(n-1)和an=a1*r^(n-m)的关系求解出公比,从而得到数列。
数列—等差等比数列基本量运算1.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.2.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩,解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.4.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 5.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________. 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.6.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.7.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 8. 【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC.D.【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为,所以()*12,n n a n n -=≥∈N,又1a f =,则7781a a q f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1n n aq a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.9.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1) ;(2)当 时, .当 时, .【解析】设 的公差为d , 的公比为q ,则 ( ) , . 由 得d +q =3.①(1)由 得 ②联立①和②解得, (舍去),,因此 的通项公式为 .(2)由 , 得 . 解得 , .当 时,由①得 ,则 . 当 时,由①得 ,则 .【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.(1)根据等差数列及等比数列通项公式表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可;(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差数列前三项求和.10.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+…,解得1≤n ≤10.所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.11.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=.【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.12.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++.所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.13.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n na n-=, 所以a n =n ·2n -1. 【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列 的通项公式,借助于 的通项公式求得数列 的通项公式,从而求得最后的结果.14.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).15.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.16.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式; (2)求和:13521n b b b b -++++.【答案】(1)a n =2n −1;(2)312n -. 【解析】(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n −1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以2212113n n n b b q---==. 从而21135213113332n n n b b b b ---++++=++++=.选做.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a aa+++.【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==, ∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-.∴12e e e n a a a +++1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.11。
一、等差、等比数列的通项公式数列的通项公式是数列的核心内容之一,它如同函数的解析式一样,有解析式便可研究其性质等,而有了数列的通项公式,便可以研究数列的性质及前n 项和等,所以求数列的通项公式是研究数列的重中之重,现将求数列的通项公式几种常见的方法总结如下 :1. 观察归纳法求数列的通项公式就是观察数列的特征,横向看各项之间的关系结构,纵向看各项与序号n 的内在联系,结合常见数列的通项公式,归纳出所求数列的通项公式.2.利用公式法求数列的通项公式数列符合等差数列或等比数列的定义,求通项时,只需求出a 1与d 或a 1与q ,再带入公式a n =a 1+(n -1)d 或a n =a 1q n-1中即可.3.利用a n 与S n 的关系求数列的通项公式如果给出的条件是a n 与S n 的关系式,可利用⎩⎪⎨⎪⎧a 1=S 1 (n =1)a n =S n -S n -1 (n ≥2)先求出a 1=S 1,再通过计算求出a n (n ≥2)的关系式,检验当n =1时,a 1是否满足该式.若不满足该式,则a n 要分段表示.4.利用累加法、累乘法求数列的通项公式形如:已知a 1,且a n +1-a n =f (n )(f (n )是可求和数列)的形式均可用累加法; 形如:已知a 1,且a n +1a n=f (n )(f (n )是可求积数列)的形式均可用累乘法. 5.构造法(利用数列的递推公式研究数列的通项公式)若由已知条件直接求a n 较难,可以通过整理变形等,从中构造出一个等差数列或等比数列,从而求出通项.二、等差、等比数列性质的应用等差、等比数列的性质是等差、等比数列的概念,通项公式及前n 项和公式的引申.应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到解决,能够在运算时达到灵活、便捷的目的.1.在应用性质时要注意性质的前提条件,有时需要进行适当变形.2.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻关注解题的目标,往往能取得与“巧用性质”解题相同的效果.三、求数列前n 项和的方法数列的求和是数列运算中的重要内容,对于等差数列和等比数列可直接利用公式计算,对于有具体特征的非等差、等比数列可转化为等差数列或等比数列的前n 项和的求法.常用的求和方法有公式法、分组法、裂项法、倒序相加法、错位相减法等,解题时要认真研究数列通项的特点,从而确定恰当的求和方法.(1)已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A .15B .30C .31D .64(2)在等比数列{a n }中a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( )A .2n +1-2 B .3n C .2nD .3n -1[解析] (1)∵a 7+a 9=2a 8=16, 又∵a 4+a 12=2a 8,∴a 12=2a 8-a 4=15. (2)设a n =2q n -1,由(a 2+1)2=(a 1+1)·(a 3+1),即(2q +1)2=(2+1)(2q 2+1), 解得q =1,∴a n =2,S n =2n . [答案] (1)A (2)C已知递增的等比数列{a n }满足a 2+a 3+a 4=28, 且a 3+2是a 2,a 4的等差中项,求{a n }的通项公式a n .[解] 设等比数列的公比为q ,由题意知⎩⎪⎨⎪⎧a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2). 解得⎩⎪⎨⎪⎧a 1=2,q =2.或⎩⎪⎨⎪⎧a 1=32,q =12.∵数列是递增数列,∴⎩⎪⎨⎪⎧a 1=32,q =12,舍去.∴a n =2·2n -1=2n .1.等差数列的通项公式中有两个基本量a1,d,等比数列的通项公式中有两个基本量a1,q,在解时,要涉及两个量的方程或方程组.2.要注意解题技巧和运算技巧的选择和运用,例如“整体”代入等.1.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于()A.120 B.105C.90 D.75解析:选B设等差数列的公差为d,且d>0,∵a1+a2+a3=15,∴a2-d+a2+a2+d=15,∴a2=5,又a1a2a3=80,∴(a2-d)a2·(a2+d)=80,∴d2=9.又∵d>0,∴d=3.则a11+a12+a13=3a12=3(a2+10d)=105.2.若正数a,b,c成公比大于1的等比数列,则当x>1时,log a x,log b x,log c x() A.成等差数列B.成等比数列C.各项倒数成等差数列D.各项倒数成等比数列解析:选C a,b,c成等比数列,则b2=ac,2log x b=log x a+log x c,即2log b x=1log a x+1log c x,即1log a x,1log b x,1log c x成等差数列.各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于()A.80 B.30C.26 D.16[解析]法一:设等比数列的公比为q,因为S3n=14≠3×2=3S n,所以q≠1.由已知得S n=a1(1-q n)1-q=2,①,S3n=a1(1-q3n)1-q=14.②,用②除以①,得q2n+q n+1=7,即q2n+q n-6=0,即(q n+3)(q n-2)=0,由于数列各项均为正数,所以q n+3>0,所以q n-2=0,即q n=2,解得q=n 2.所以a 1=S n (1-q )1-q n =2(n2-1),所以S 4n =a 1(1-q 4n )1-q =2(n2-1)(1-24)1-n2=2×15=30.法二:注意到四个选项都是具体的数值,所以S 4n 是一个与n 无关的定值,则取n =1,则S 4也应取这个值.由于a 1=S 1=2,S 3=a 1(1-q 3)1-q =14,即q 2+q -6=0,因为a n >0,所以q =2,所以S 4=a 1(1-q 4)1-q=2×15=30.[答案] B设S n 是等差数列{a n }前n 项的和,已知13S 3与14S 4的等比中项为15S 5,13S 3与14S 4的等差中项为1,求等差数列{a n }的通项a n .[解] 法一:设等差数列{a n }的首项a 1=a ,公差为d ,则通项公式为a n =a +(n -1)d ,前n 项和为S n =na +n (n -1)d2. 依题意有⎩⎨⎧13S 3·14S 4=⎝⎛⎭⎫15S 52,S 5≠0,13S 3+14S 4=2,由此可得⎩⎨⎧13⎝⎛⎭⎫3a +3×22d ×14⎝⎛⎭⎫4a +4×32d =125⎝⎛⎭⎫5a +5×42d 2,13⎝⎛⎭⎫3a +3×22d +14⎝⎛⎭⎫4a +4×32d =2,整理得⎩⎪⎨⎪⎧ 3ad +5d 2=0,2a +52d =2,解得⎩⎪⎨⎪⎧d =0,a =1或⎩⎪⎨⎪⎧d =-125,a =4. ∴a n =1或a n =4-125(n -1)=325-125n . 经验证,知a n =1时,S 5=5;a n =325-125n 时,S 5=-4均适合题意,故所求等差数列的通项为a n =1或a n =325-125n . 法二:因S n 是等差数列的前n 项和,故可设S n =an 2+bn ,依题意得⎩⎨⎧13(a ×32+b ×3)×14(a ×42+b ×4)=⎣⎡⎦⎤15(a ×52+b ×5)2,13(a ×32+b ×3)+14(a ×42+b ×4)=2,解得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =-65,b =265,则S n =n 或S n =-65n 2+265n .在等差数列中,a n =S n -S n -1,∴a n =1或a n =325-125n .1.等差、等比数列的前n 项和中有五个变量,a 1,d ,n ,a n ,S n 和a 1,q ,n ,a n ,S n ,一般是知三求二.2.两个公式都可进行变形(1)等差数列S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =An 2+Bn 是一个无常数项的二次二项式. (2)等比数列:S n =a 11-q -a 11-q·q n (q ≠1) =A -A ·q n (q ≠1).(3)两个公式都可以用函数的观点理解和应用.一个是二次函数,一个是指数型函数.3.已知等差数列{a n }的前n 项和为S n ,且S 6=36,S n =324,S n -6=144(n >6),则n 等于( )A .18B .17C .16D .15解析:选A ∵a 1+a 2+a 3+a 4+a 5+a 6=36,① S n -S n -6=a n +a n -1+a n -2+a n -3+a n -4+a n -5=180.② ①+②得180+36=6(a 1+a n ). ∴a 1+a n =36+1806=36, ∴S n =n (a 1+a n )2=18n =324,∴n =18. 4.等比数列{a n }中,S 2=7,S 6=91,则S 4等于( ) A .28 B .32 C .35D .49解析:选A 由等比数列的性质可知S 2,S 4-S 2,S 6-S 4成等比数列.所以S 2(S 6-S 4)=(S 4-S 2)2,即7(91-S 4)=(S 4-7)2.解得S 4=28或S 4=-21.又因为S 4=S 2+q 2S 2=S 2(1+q 2)>0,所以S 4=28.5.已知等比数列{a n }中,若q =2,S 4=1,求S 8. 解:法一:设首项为a 1,由公比q =2,S 4=1,得a 1(1-24)1-2=1,即a 1=115,∴S 8=a 1(1-q 8)1-q =115(1-28)1-2=17.法二:设首项为a 1,∵S 4=a 1(1-q 4)1-q =1,且q =2,∴S 8=a 1(1-q 8)1-q =a 1(1-q 4)1-q (1+q 4)=S 4·(1+q 4)=1×(1+24)=17.设各项均为正数的数列{a n }和{b n }满足5a n ,5b n ,5a n +1成等比数列,lg b n ,lg a n+1,lg b n +1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n ,b n . [解] ∵5a n ,5b n ,5a n +1成等比数列, ∴(5b n )2=5a n ·5a n +1,即2b n =a n +a n +1.① 又∵lg b n ,lg a n +1,lg b n +1成等差数列, ∴2lg a n +1=lg b n +lg b n +1,即a 2n +1=b n ·b n +1.② 由②及a i >0,b j >0(i ,j ∈N +)可得 a n +1=b n b n +1.③ ∴a n =b n -1b n (n ≥2).④将③④代入①可得2b n =b n -1b n +b n b n +1(n ≥2), ∴2b n =b n -1+b n +1(n ≥2). ∴数列{b n }为等差数列.∵b 1=2,a 2=3,a 22=b 1b 2,∴b 2=92. ∴b n =2+(n -1)⎝⎛⎭⎫ 92-2=12(n +1)(n =1也成立). ∴b n =(n +1)22.∴a n =b n -1·b n =n 22·(n +1)22=n (n +1)2(n ≥2). 又当n=1时,a 1=1也成立.∴a n =n (n +1)2.本题考查了等差中项、等比中项及由递推公式求通项公式的方法.由递推公式求通项公式时,要注意将非特殊数列向特殊(等差、等比)数列转化的方法,如本题得到2b n =b n -1+b n +1后,即说明数列{b n }为等差数列,这是等差中项的定义用于判断数列是等差数列的典例.6.已知数列{a n }中,a 3=2,a 7=1,若⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 11=( )A.14 B.12 C.23D .2解析:选B 由已知可得1a 3+1=13,1a 7+1=12是等差数列⎩⎨⎧⎭⎬⎫1a n +1的第3项和第7项,其公差d =12-137-3=124,由此可得1a 11+1=1a 7+1+(11-7)d =12+4×124=23.解之得a 11=12.7.已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2018?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解:(1)设数列{a n }的公比为q ,则a 1≠0,q ≠0. 由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1.(2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 018,则1-(-2)n ≥2 018,即(-2)n ≤-2 017. 当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 017,即2n ≥2 017,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.(1)已知数列{a n }中,a 1=1,a n +1=a n (1-na n +1),则数列{a n }的通项公式为( )A .a n =n 2-n +22B .a n =n 2-n +12C .a n =2n 2-n +1D .a n =2n 2-n +2(2)设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,n ∈N +.①求数列{a n }的通项公式;②设b n =na n,求数列{b n }的前n 项和S n .[解析] (1)原数列递推公式可化为1a n +1-1a n=n ,令b n =1a n ,则b n +1-b n =n ,因此b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)+b 1=(n -1)+(n -2)+…+2+1+1=n 2-n +22.从而a n =2n 2-n +2.故选D. [答案] D(2)解:①因为a 1+3a 2+32a 3+…+3n -1a n =n 3,(ⅰ)所以当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,(ⅱ) (ⅰ)-(ⅱ)得3n -1a n =13,所以a n =13n (n ≥2).在(ⅰ)中,令n =1,得a 1=13,满足a n =13n ,所以a n =13n (n ∈N +).②由①知a n =13n ,故b n =n a n=n ×3n .则S n =1×31+2×32+3×33+…+n ×3n , 3S n =1×32+2×33+3×34+…+n ×3n +1,两式相减得-2S n =3+32+33+34+…+3n -n ×3n +1=3(1-3n )1-3-n ×3n +1,所以S n =34+(2n -1)×3n +14.(1)由递推公式求数列通项公式时,一是要注意判别类型与方法.二是要注意a n 的完整表达式,易忽视n =1的情况.(2)数列求和时,根据数列通项公式特征选择求和法,尤其是涉及到等比数列求和时要注意公比q 对S n 的影响.8.设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1). 两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2). 又由题设可得a 1=2,满足上式, 从而{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1. 则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.。
数列—等差等比数列基本量运算1.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.2.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩,解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.4.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 5.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________.【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.6.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.7.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 8. 【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 A .32f B .322f C .1252fD .1272f【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为122,所以()*12122,n n a a n n -=≥∈N,又1a f =,则()71277128122a a q f f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1n n aq a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.9.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 【答案】(1);(2)当时,.当时,.【解析】设的公差为d ,的公比为q ,则.由得d +q =3.①(1)由得②联立①和②解得(舍去),因此的通项公式为.(2)由得. 解得.当时,由①得,则. 当时,由①得,则.【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.(1)根据等差数列及等比数列通项公式表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可;(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差数列前三项求和.10.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.11.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=.【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.12.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+.因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.13.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得12n na n-=, 所以a n =n ·2n -1. 【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列的通项公式,借助于的通项公式求得数列的通项公式,从而求得最后的结果.14.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).15.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.16.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式; (2)求和:13521n b b b b -++++.【答案】(1)a n =2n −1;(2)312n -. 【解析】(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n −1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以2212113n n n b b q---==.从而21135********2n n n b b b b ---++++=++++=.选做.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a aa+++.【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==, ∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-.∴12e e e n a a a +++1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.11 / 11。