主机选型计算
- 格式:pdf
- 大小:398.01 KB
- 文档页数:14
空压机选型主要计算公式及定律1.波义目定律:假设温度不变则某一定量气体的体积与绝对压力成反比。
V1/V2=P2/P12.查理定律:假设压力不变,则气体体积与绝对温度成正比。
V1/V2=T1/T23.博伊尔-查理定律(P1V1)/T1=(T2V2)/T2P:气体绝对压力V:气体体积T:气体绝对温度4.排气温度计算公式T2=T1×r(K-1/K)T1=进气绝对温度T2=排气绝对温度r=压缩比(P2/P)P1=进气绝对压力P2=排气绝对压力K=Cp/Cv 值空气时K 为1.4(热容比/空气之断热指数)5.吸入状态风量的计算(即Nm3/min 换算为m3/min)Nm3/min:是在0℃,1.033kg/c ㎡absg 状态下之干燥空气量V1=P0/(P1-Φ1·PD)(T1/T0)×V0(Nm3/hr dry)V0=0℃,1.033kg/c ㎡abs,标准状态之干燥机空气量(Nm3/min dry)Φa=大气相对湿度ta=大气空气温度(℃)T0=273(°K)P0=1.033(kg/c ㎡abs)T1=吸入温度=273+t(°K)V1=装机所在地吸入状态所需之风量(m3/hr)P1:吸入压力=大气压力Pa-吸入管道压降P1 △=1.033kg/c㎡abs-0.033kg/c ㎡=1.000kg/c ㎡absφ1=吸入状态空气相对湿度=φa×(P1/P0)=0.968φaPD=吸入温度的饱和蒸气压kg/c ㎡Gabs(查表)=查表为mmHg 换算为kg/c ㎡abs 1kg/c ㎡=0.7355mHg例题: V0=2000Nm3/hr ta=20 φa=80%℃则V1=1.033/(1-0.968×0.8×0.024)×﹝(273+20)/273﹞×2000=22206.理论马力计算A 单段式HP/Qm3/min=﹝(P/0.45625)×K/(K-1)﹞×﹝(P2/P1)(K-1)/K-1﹞B 双段式以上HP/Qm3/min=﹝(P/0.45625)×nK/(K-1)﹞×﹝(P2/P1)(K-1)/nK-1﹞P1=吸入绝对压力(kg/c ㎡Gabs)P2=排气绝对压力(kg/c ㎡Gabs)K =Cp/Cv 值空气时K 为1.4n =压缩段数HP=理论马力HPQ=实际排气量m3/min7.理论功率计算单段式KW=(P1V/0.612)×K/(K-1)×﹝(P2/P1)(K-1)/K-1﹞双段式以上KW=(P1V/0.612)×nK/(K-1)×﹝(P2/P1)(K-1)/nK-1﹞P1=吸入绝对压力(kg/c ㎡Gabs)P2=排气绝对压力(kg/c ㎡Gabs)K =Cp/Cv 值空气时K 为1.4n =压缩段数KW=理论功率V=实际排气量m3/min8.活塞式空压机改变风量之马达皮带轮直径及马力之修正Dm=Ds×(Qm/Qs)Ds=马达皮带轮标准尺寸(mm)Qs=标准实际排气量(m3/min)Qm=拟要求之排气量(m3/min)Dm=拟修改之马达皮带轮直径(mm)例题:本公司YM-18 型空压机之马达皮带轮之标准为440mm,实际排气量为7.56m3/min,今假设客户要求提高风量至8.7m3/min,应将马达皮带轮如何修改?解:已知Ds=400mm,Qs=7.56 m3/min,Qm=8.7 m3/min。
地源热泵主机设备的选型已知建筑物的面积,根据空调负荷估算指标可得出建筑物的总冷负荷和总热负荷,然后根据满足最不利工况来选配机组。
Q=F1×q1+F2×q2+……Fn×qnQ—建筑物的总冷(热负荷,WF—建筑物的建筑面积,m2q—建筑物的空调负荷估算指标,W/m2n—不同的建筑物和建筑物不同功能的分区所选机组的制冷量和制热量均要满足建筑物冷、热负荷的要求。
若水源水温与产品样本上所列参数要求的水温不一致时,应查样本上水温变化和冷、热量的关系曲线。
例1:某商业楼建筑面积10000m2,其中商场建筑面积2000m2,办公楼建筑面积8000 m2,取商场冷负荷指标150W/m2,热负荷指标120W/m2,办公楼冷负荷指标100W/m2,热负荷指标80W/m2。
总冷负荷:2000×150+8000×100=1100000W=1100KW总热负荷:2000×120+8000×80=920000W=880KW可选用某品牌地源热泵空调LSBLGR-1200M机组一台,机组可提供的制冷量1110KW,制热量1191KW。
例2:某酒店建筑面积8000m2,其中客房6000m2,中餐厅2000m2,取客房冷负荷指标80W/m2,热负荷指标65W/m2,餐厅冷负荷指标180W/m2,热负荷指标120W/m2。
总冷负荷:6000×80+2000×180=840KW总热负荷:6000×65+2000×120=630KW可选用某品牌地源热泵空调LSBLGR-950机组一台,机组可提供的制冷量874KW,制热量942KW。
2.3.2 机桨匹配计算主机选型和螺旋桨的设计密切相关。
在设计中要综合考虑船、机、桨的匹配问题,从而选定螺旋桨参数和主机型号。
在主机选型与螺旋桨参数确定的机、桨匹配计算中分为初步匹配设计和终结匹配设计两个阶段。
初步匹配设计:已知船体主尺度、船体有效功率、船舶设计航速、螺旋桨的直径或转速,确定螺旋桨的效率、螺距比、最佳转速或最佳直径及所需主机功率,从而选定主机和传动设备。
终结匹配设计:根据选定的主机的功率、转速、船体有效功率,确定船舶所能达到的最高航速、螺旋桨直径、螺距比及螺旋桨效率。
图谱可参考王国强,盛振邦《船舶原理》P264-P272) 2.3.2.1 初步匹配设计1.船体主尺度设计水线长 L WL 垂线间长 L PP 型宽 B 型深 d 设计吃水 T 方形系数 B C 排水量 ∆ 排水体积 ∇ 船舶设计航速 V 2.推进因子的确定伴流分数 w (1)泰勒公式 (适用于海船)对单螺旋桨船:05.05.0-=B C w ;对双螺旋桨船:20.055.0-=B C w(2)巴帕米尔公式(适用于河船)w D C xw xB ∆-∇⋅+=316.011.0式中:对单螺旋桨船:1=x ;对双螺旋桨船:2=x 。
当2.0>n F 时,)2.0(1.0-=∆n F w ;当2.0≤n F 时,0=∆w 。
推力减额分数 t 对单螺旋桨船:kw t =; 式中:对流线型舵或反应舵:70.0~50.0=k ; 对方形舵柱的双板舵:90.0~70.0=k ; 对单板舵: 05.1~90.0=k 。
对双螺旋桨船:b aw t +=。
式中:对采用轴支架:14.0,25.0==b a ;对采用轴包架:06.0,70.0==b a 。
相对旋转效率 r η对单螺旋桨船:05.1~98.0=r η;对双螺旋桨船:0.1~97.0=r η; 对具有隧道尾船:90.0=r η。
轴系传递效率s η对无减速齿轮箱的船:98.0~96.0=s η;对有减速齿轮箱的船:94.0~92.0=s η3.初步匹配设计计算初选螺旋桨直径的匹配计算计算步骤表格化见表2-3-3,根据结果作图2-2-4。
空调知识学堂冷负荷计算和主机选型本文中,让我们来共同了解一下冷负荷计算和主机选型常识:
空调冷负荷包括:围护结构传入室内热量、人体散热、灯光照明发热、电热设备散热、新风带入热量以及其他因素引起的冷负荷增加。
各部分的冷负荷可通过有关公式计算出来,但是在实际中,有时没有详细的计算资料,冷负荷的获得也可根据常见场所单位面积冷负荷指标估算得到。
计算公式:
Q总= Q人体热+ Q传入热+ Q灯光热+ Q设备热+ Q新风热+ Q
其他
水管选型:
冷冻水管的设计。
根据冷冻水流量G、水流速v可计算出水管的管径。
计算公式:水管内直径D=2(G/π×v)1/2
v:冷冻水流速,推荐流速1-2.4m/s
冷凝水管大小可根据冷量确定
Q≤7KW时,DN=20mm
Q=7.1-17.6KW时,DN=25mm
Q=17.7-100KW时,DN=32mm
Q=101-176KW时,DN=40mm
其中:DN——表水管直径
主机选型:
主机的选型直接关系到整个工程的投资及运行费用、噪音、承重及放置等一系列问题。
根据未端总冷量再加上总冷量的15%冷量损失,即总冷量Q主机=(1+0.15)Q未端。
主机选27KW总冷量,但住宅还要考虑使用率,不在同一时刻使用等。
比方说白天主要用于餐厅,起居室、书房,而晚上用于书房、卧室及主卧室,经核算白天的总热负荷相对较大,选主机能满足白天全负荷的冷量就必能满足晚上的冷量,即总冷量为
17KW,选用LSQ17HD一台。
冷负荷计算和主机选型知识就为您讲解到这里,如果您有任何疑问,或者您对中央空调安装、施工方面的内容感到陌生,并有兴趣了解与之相关的其他内容。
EPS主机选型功率常用的计算方法一、负载容量选型原则:因电动机的启动冲击,与其配用的集中应急电源容量按以下容量选配1、电动机变频启动时,应急电源容量可按电动机容量1.2倍选项配2、电动机软启动时,应急电源容量应不小于电动机容量的2.5倍3、电动机Y-△启动时,应急电源应不小于电动机容量的3倍4、电动机直接启动时,应急电源容量应不小于电动机容量的5倍5、混合负载中,最大电机的容量若小于总负载容量的1/7二、选型容量计算方法:1、柏克EPSYJ系列或柏克EPS YJS系列用于带应急灯具负载时:(1)当负载为电子镇流器日光灯,EPS容量计算方法:EPS容量=电子镇流器日光灯功率和×1.1倍(2)当负载为电感镇流器日光灯,EPS容量计算方法:EPS容量=电感镇流器日光灯功率和×1.5倍(3)当负载为金属卤化物灯或金属钠灯,EPS容量计算方法:EPS容量=金属卤化物灯或金属钠灯功率和×1.6倍注意: 应急照明灯具为高压气体灯时所选用的EPS满载输出功率应为S=(1.6~2)P/0.6.其原因是:高压钠灯,金卤灯、等启动时存在较大的”1.8倍”电流。
输入功率因数0.6左右(例:高压钠灯,高压钯灯、金卤灯等),宜选用切换时间小于3ms的EPS产品.这是因为.如果对高压气体灯的供电中断时间超过3ms时,就有可能致使气体灯中的放电电弧”熄灭或中断”.一旦发生放电电弧中断现象,即使马上恢复供电也可能导致长达数分钟的灯具熄灭现象发生.这因为它需要足够长时间来重新预热高压气体灯中灯丝的缘故.显然,对于大型体育馆和演出场地的照明系统来说,是不允许出现这种故障的。
2、当柏克EPS YJS系列用于带混合负载时,EPS容量的计算方法:(1)当EPS带多台电动机且都同时启动时,则EPS的容量应遵循如下原则:EPS容量=变频启动电动机功率之和+软启动电动机功率之和×2.5+星三角启动机功率之和×3+直接启动电动机之和×5倍(2)当EPS带多台电动机且都分别单台启动时(不是同时启动),则EPS 的容量应遵循如下原则:EPS容量=各个电动机功率之和,但必须满足以下条件:※ 上述电动机中直接启动的最大的单台电动机功率是EPS容量的1/7 ※ 星三角启动的最大的单台电动机功率是EPS容量的1/4※ 软启动的最大的单台电动机功率是EPS容量的1/3※ 变频启动的最大的单台电动功率不大于EPS的容量※ 如果不满足上述条件,则应按上述条件中的最大数调整EPS的容量,电动机启动时的顺序为直接启动在先,其次是星三角的启动,有软启动的再启动,最后是变频启动的再启动(3)当柏克EPSYJS系列带混合负载时EPS应遵循如下原则:EPS容量=所有负载总功率之和,但必须中以下六条件,若不满足,再按照其中最大的容量确定EPS容量※ 负载中直接同时启动的电动机功率之和是EPS容量的1/7※ 负载中星三角同时启动电动机功率之和是EPS容量的1/4※ 负载中软启动同时启动的电动机功率之和是EPS容量的1/3※ 负载中变频启动同时启动电动机功率之和不大于EPS的容量※ 同时启动的电动机当量功率之和不大于EPS的容量电动机功率容量=直接启动的电动机总功率x5+星三角同时启动的电动机总功率x3+软启动同时启动的电动机总功率x2.5+变频启动且同时启动的电动机总功率若电动机前后启动时间相差大于1分钟均不视为同时启动。
注意:
1、AU(MAU)型桨与B 型桨查不同图谱。
如MAU4-55指4页,盘面比0.55。
.
2、注意运算过程中的单位。
3、注意双机双桨船船体有效功率的分配。
4、转速指轴的转速,如为间接传动,转速应为主机转速除以齿轮箱的速比。
2.3.2 机桨匹配计算
主机选型和螺旋桨的设计密切相关。
在设计中要综合考虑船、机、桨的匹配问题,从而选定螺旋桨参数和主机型号。
在主机选型与螺旋桨参数确定的机、桨匹配计算中分为初步匹配设计和终结匹配设计两个阶段。
初步匹配设计:已知船体主尺度、船体有效功率、船舶设计航速、螺旋桨的直径或转速,确定螺旋桨的效率、螺距比、最佳转速或最佳直径及所需主机功率,从而选定主机和传动设备。
终结匹配设计:根据选定的主机的功率、转速、船体有效功率,确定船舶所能达到的最高航速、螺旋桨直径、螺距比及螺旋桨效率。
2.3.2.1 初步匹配设计
1.船体主尺度
设计水线长 L WL 垂线间长 L PP 型宽 B 型深 d 设计吃水 T 方形系数 B C 排水量 Δ 排水体积 ∇ 船舶设计航速 V 2.推进因子的确定
伴流分数 w
(注:此处祥见《船舶原理下》第56页) (1)泰勒公式 (适用于海船)
对单螺旋桨船:05.05.0−=B C w ;对双螺旋桨船:20.055.0−=B C w (2)巴帕米尔公式(适用于内河船)
w D C x
w x
B Δ−∇
⋅
+=3
16.011.0
式中:
对单螺旋桨船:1=x ;对双螺旋桨船:2=x 。
当2.0>n F 时,)2.0(1.0−=Δn F w ;当2.0≤n F 时,0=Δw 。
推力减额分数 t
对单螺旋桨船:kw t =; 式中:
对流线型舵或反应舵:70.0~50.0=k ; 对方形舵柱的双板舵:90.0~70.0=k ; 对单板舵: 05.1~90.0=k 。
对双螺旋桨船:b aw t +=。
式中:
对采用轴支架:14.0,25.0==b a ;对采用轴包架:06.0,70.0==b a 。
相对旋转效率 r η
对单螺旋桨船:05.1~98.0=r η;对双螺旋桨船:0.1~97.0=r η; 对具有隧道尾船:90.0=r η。
轴系传递效率 s η
对无减速齿轮箱的船:98.0~96.0=s η;对有减速齿轮箱的船:94.0~92.0=s η
3.初步匹配设计计算
初选螺旋桨直径的匹配计算计算步骤表格化见表2-3-3,根据结果作图2-2-4。
初选螺旋桨转速的匹配计算计算步骤表格化见表2-3-4,根据结果作图2-2-5。
表2-3-4 机、桨初步匹配计算(转速n给定)
根据图2-2-4或图2-2-5,图中P te曲线与P e曲线的交点即为所求的螺旋桨的最佳转速或直径,作垂线求的主机功率P s。
根据所求的的P s选取主机型号。
如螺旋桨为B型桨,
航速V给定
作如上图,得所需主机及桨的参数。
注意横坐标为敞水收到功率Pd。
螺旋桨转速n 给定,航速V给定
此外,对B型桨,也可尝试用如下方法计算比较螺旋桨直径D 给定,航速V给定
航速V给定
2.3.2.1终结匹配设计
1.船体主尺度
设计水线长 L WL 垂线间长 L PP 型宽 B 型深 d 设计吃水 T 方形系数 B C 排水量 Δ 排水体积 ∇ 船舶设计航速 V 2.主机主要参数 型号
主机功率 s P 主机转速 N 旋向 左旋/右旋 减速比 ι 3.推进因子的确定
伴流分数 w (1)泰勒公式 (适用于海船)
对单螺旋桨船:05.05.0−=B C w ;对双螺旋桨船:20.055.0−=B C w (2)巴帕米尔公式(适用于内河船)
w D C x
w x
B Δ−∇
⋅
+=3
16.011.0
式中:
对单螺旋桨船:1=x ;对双螺旋桨船:2=x 。
当2.0>n F 时,)2.0(1.0−=Δn F w ;当2.0≤n F 时,0=Δw 。
推力减额分数 t 对单螺旋桨船:kw t =; 式中:
对流线型舵或反应舵:70.0~50.0=k ; 对方形舵柱的双板舵:90.0~70.0=k ; 对单板舵: 05.1~90.0=k 。
对双螺旋桨船:b aw t +=。
式中:
对采用轴支架:14.0,25.0==b a ; 对采用轴包架:06.0,70.0==b a 。
船身效率 w t h −−=
11η
相对旋转效率 r η
对单螺旋桨船:05.1~98.0=r η;对双螺旋桨船:0.1~97.0=r η; 对具有隧道尾船:90.0=r η。
轴系传递效率 s η
对无减速齿轮箱的船:98.0~96.0=s η;对有减速齿轮箱的船:94.0~92.0=s η
4.终结匹配设计计算
在选定主机后要进行终结匹配设计计算。
具体匹配设计计算计算步骤表格化见表2-3-5,根据结果作图2-2-6。
表2-3-3 机、桨终结匹配计算
图2-2-6中以船速V 为横坐标,以
e P 、D p /、D 、 0η及te P 为纵坐标会出曲线.曲线te P 和e P 的交点
表示该螺旋桨发出的有效的推力功率等于船所遇到的有效功率,船将在该点对应的船速上等速航行。
由图中交点可得船达到的船速及螺旋桨要素。
上述步骤确定的螺旋桨最佳直径必须小于船尾允许放置的最大直径,如果算出的直径大于最大直径,只能采用最大直径。
附录:桨图谱
0.5
0.60.70.80.9
1.0
1.1
1.2
P /D
P /D
1.21.11.0
0.9
0.80.70.60.5。