江西省中考数学试卷(有答案)
- 格式:doc
- 大小:2.00 MB
- 文档页数:13
江西省2021年中考数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.-2的相反数是()A.2B.-2C.21D.21-解:解析:考点:实数,相反数的概念,答案:A 2.如图,几何体的主视图()A BC D解析:考点:三视图,答案:C3.计算a a a 11-+的结果为()A.1B.-1C.aa 2+ D.aa 2-解析:考点:分式的加减运算,答案:A4.如图是2020年中国新能源汽车购买用户地区分布图由图可知下列说法错误的是()A.一线城市购买新能源汽车的用户最多B.二线城市购买新能源汽车用户达37%C.三四线城市购买新能源汽车用户达到11万D.四线城市以下购买新能源汽车用户最少解析:考点:扇形统计图,答案:C5.在同一平面直角坐标中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是()【解析】由y=ax ²的图象开口向上,可得a>0,再由y=bx+c 的图象经过第一、三、四象限,可得b>0,c<0.所以y=ax ²+bx+c 中的a>0,b>0,c<0,很容易推出正确选项是D.解:D6.如图是用七巧板拼接成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为()A.2B.3C.4D.5故答案为:B二、填空题(本大题有6小题,每小题3分,共18分)7.国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记法表示为【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.解:45100000=4.51×107.故答案为:4.51×107.8.因式分解:224x y -=【解析】本题考查了用平方差公式法分解因式,熟记平方差公式是解题的关键.故答案为:(x+2y)(x-2y).9.已知1x ,2x 是一元二次方程2430x x -+=的两根,则1212x x x x +-=【解析】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系.解:由题意可知:124x x +=,123x x = ,∴1212431x x x x +-=-= .故答案为:1.10.下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是【解析】根据题意可知,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和.∴第四行空缺的数字=1+2=3.故答案为:3.11.如图,将□ABCD 沿对角线AC 翻折,点B 落在点E 处,CE 交AD 于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则□ABCD 的周长为.【解答】解:∵四边形ABCD 是平行四边形∴∠B =∠D =80°,∠BCD =100°,由翻折可知∠ACE =∠ACB 又∵∠ACE =2∠ECD,∴5∠ECD=∠BCD=100°∴∠ECD=20°,∠ACE =∠ACB=∠DAC=40°,∠DFC =∠D =80°∴AF=FC=DC=a,∵FD =b,∴AD=a+b□ABCD 的周长=2(AD+DC )=2(a+b+a )=4a+2b 故答案为:4a+2b .12.如图,在边长为的正六边形ABCDEF 中,连接BE,CF,其中点M,N 分别为BE 和CF 上的动点.若以M ,N ,D 为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为.NMFEDCBA (第11题图)(第12题图)故答案为:9或10或18.9<10<10.39≈63三、(本大题共3小题,每小题8分,共24分)13.(1)计算:(-1)2-(π-2021)0+|-12|;(2)如图,在△ABC 中,∠A=400,∠ABC=80°,BE 平分∠ABC 交AC 于点E,ED⊥AB 于点D,求证:AD=BD.【答案】(1)解:原式=2111+-=21【评析】本题考查实数运算,具体涵盖平方,零指数幂,绝对值,有理数加减运算.依据概念或意义算出每一部分的值是关键.(2)证明:∵BE 平分∠ABC ,∠ABC =80°,∴∠EBA =︒=︒⨯=∠40802121ABC .又∵∠A =40°,∴∠EBA =∠A ,∴AE =BE ,又∵ED ⊥AB ,∴AD =BD .【评析】本题考查几何简单推理,具体涵盖角的平分线的定义,等腰三角形的判定,及等腰三角形的三线合一的性质.能依据图形及数量对应几何性质与判定定理是关键.14.解不等式组:⎪⎩⎪⎨⎧+≤-.1-31,132>x x 并将解集在数轴上表示出来.【答案】解不等式①得:2≤x ;解不等式②得:4->x ;∴该不等式组的解集是:24≤<-x .在数轴上表示如下:【评析】本题考查解一元一次不等式组的基本步骤,以及在数轴上表示不等式的解集,正确解不等式是解题关键.15.为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D 四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗均匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A 志愿者被选中”是事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图表示出这次抽签所有可能的结果,并求出A,B 两名志愿者被选中的概率.【答案】(1)随机(2)解:第一张AB CD第二张B C D A C D A B D A B C由表格(或树状图)可知一共由12种等可能的结果,其中“A,B 两名志愿者被选中”(记为事件E)包含其中两种结果,故P(E)=61122=.【评析】本题考查了事件的分类,列举法(包括列表法与树状图法)求概率.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合相应事件的结果数目m,然后利用概率公式计算相应事件的概率.16.已知正方形ABCD 的边长为4个单位长度,点E 是CD 的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC 绕着正方形ABCD 的中心顺时针旋转45°;(2)在图2中,将直线AC 向上平移1个单位长度.012345-1-2-3-4-5【答案】解析:作图题一是要考虑作图的顺序,二是要考虑作图的依据.对于题(1),我们首先要确定正方形ABCD的中心所在位置(即正方形两对角线的交点O,这容易作出);其次想到旋转后的直线必然与AD、BC两边中点所在的直线重合,但这两边的中点我们无法直接得到,点E与正方形中心O的连线必平分线段AB,因此就得到矩形ADEF,再作矩形ADEF的两条对角线,得交点P,显然直线PO就是所求作直线;对于题(2),在(1)的基础上我们知道OP=1,我们只要找到CE的中点Q,则直线PQ即为所求直线.题(1)作图思路2:题(2)作法2:17.如图,正比例函数y=x的图像与反比例函数的图像交于点A(1,a),在△ABC中,∠ACB=90°,CA=CB,点C坐标为(-2,0).(1)求k的值;(2)求AB所在直线的解析式.【答案】(1)∵点A ()a ,1在正比例函数x y =的图象上,∴1=a ,即A ()11,又∵点A ()11,在反比例函数xky =的图象上,∴111=⨯=k ;(2)如图,分别过点A、B 做,、轴于点轴,交轴,E D BE AD x x x ⊥⊥则==BEC ADC ∠∠︒90,∴=21∠+∠︒90,∵=ACB ∠︒90,∴=23∠+∠︒90,又∵BC=AC∴BEC ∆≌CDA ∆∵()02C ,-,()11A ,,∴=3,CD 1AD =,∴=3,=CD BE 1AD EC ==,∴()33B ,-设AB 所在直线的解析式为b ax y +=,()()分别代入上式,得:,和,将点33B 11A -,解得∴AB 所在直线的解析式为2321+-=x y .四、(本大题共3小题,每小题8分,共24分)18.甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲、乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”、“油量”).【答案】(1)设这种商品的单价为x 元/件,依题意得:1024003000=-xx 解得:x=60经检验,解得:x=60是原方程的解.(2)60-20=40(元/件)甲的平均单价:2400÷40=60(件)(2400+2400)÷(40+60)=48(元/件)乙的平均单价:3000÷60=50(件),50×40=2000元(3000+2000)÷(50+50)=50(元/件)(3)由(2)可知,按相同金额加油更合算19.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g 的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近.质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质最(单位∶g)如下∶甲厂∶76,74,74,76.73,76,76,77,78,74,76,70,76.76,73,70,77,79,78,71;乙厂∶75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77;甲厂鸡腿质量频数统计图分析上述数据得下表:分析上述数据得下表:请你根据图表中的信息完成下列问题∶((1)a=,b=(2)补全频数分布直方图∶(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议∶(4)某外贸公司从甲厂采购了20000只鸡腿.并将质量(单位∶g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?【答案】(1)由甲厂鸡腿质量频数统计表中数据可得:1- (0.10.150.25)0.5a =++=由甲厂鸡腿质量统计表中数据可得:76出现次数最多,有7次,质量x (g)频数频率68≤x <7120.171≤x <7430.1574≤x <7710a 77≤x <8050.25合计201∴甲厂的众数为76;故0.5,76a b ==(2)由乙厂鸡腿质量频数直方图中数据可得,7477x ≤<中出现的次数为:20(147)8-++=(3)因出口规格为75g ,甲厂和乙厂的平均数都为75g ,故从平均数角度选择甲厂和乙厂都一样。
江西省2023年中考数学真题及参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)1.下列各数中,正整数是()A .3B .1.2C .0D .2-2.下列图形中,是中心对称图形的是()3.若4-a 有意义,则a 的值可以是()A .1-B .0C .2D .64.计算()322m 的结果为()A .68mB .66mC .62mD .52m 5.如图,平面镜MN 放置在水平地面CD 上,墙面CD PD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若︒=∠35AOC ,则OBD ∠的度数为()A .︒35B .︒45C .︒55D .︒656.如图,点D C B A ,,,均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A .3个B .4个C .5个D .6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式ab 5-的系数为.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学计数法表示应为.9.化简:()=-+221a a .10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知︒=∠60α,点C B ,表示的刻度分别为cm cm 31,,则线段AB 的长为cm .11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点Q B A ,,在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得m AQ cm BD cm AB 122040===,,,则树高=PQ m .12.如图,在▱ABCD 中,︒=∠60B ,AB BC 2=,将AB 绕点A 逆时针旋转角()︒<<︒3600αα得到AP ,连接PD PC ,.当PCD ∆为直角三角形时,旋转角α的度数为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:03345tan 8-︒+;(2)如图,AD AB =,AC 平分BAD ∠.求证:ADC ABC ∆≅∆.14.如图是44⨯的正方形网格,请仅用无刻的的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ∆,使点C 在格点上;(2)在图2中的线段AB 行作点Q ,使PQ 最短.15.化简x x x x x x 1112-⋅⎪⎭⎫ ⎝⎛-++.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是,乙同学解法的依据是;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配率;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数()0>=x xk y 的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC ∆的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同发种植一批树苗,如果没人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.图1时某红色是文化主题公园内的雕塑,将其抽象成如图2所示的示意图,已知点B ,E D A ,,均在同一直线上,AD AC AB ==,测得︒=∠55B ,m DE m BC 28.1==,.(结果保留小数点后一位)(1)连接CD ,求证:BC DC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:82.055sin ≈︒,57.055cos ≈︒,43.155tan ≈︒)20.如图,在ABC ∆中,︒=∠=644C AB ,,以AB 为直径的☉O 与AC 相交于点E D ,为弧ABD 上一点,且︒=∠40ADE .(1)求E B 的长;(2)若︒=∠76EAD ,求证:CB 为☉O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的示例情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.(1)=m ,=n ;(2)被调查的高中学生视力情况的样本容量为;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由;②约定:视力未达到1.0的视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD 中,对角线AC BD ⊥,垂足为O .求证:▱ABCD 是菱形.知识应用(2)如图②,在▱ABCD 中,对角线AC 和BD 相交于点O ,685===BD AC AD ,,①求证:▱ABCD 是菱形;②延长BC 至点E ,连接OE 交CD 与点F ,若ACD E ∠=∠21,求EFOF 的值.六、解答题(本大题共12分)23.综合与实践问题提出某兴趣小组开展综合实践活动:在ABC Rt ∆中,︒=∠90C ,D 为AC 上一点,2=CD .动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿A B C →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为ts ,正方形DPEF 的面积为S ,探究S 与t 的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当1=t 时,=S ;②S 关于t 的函数解析式为.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻321,,t t t (321t t t <<)对应的正方形DPEF 的面积均相等.①=+21t t ;②当134t t =时,求正方形DPEF 的面积.参考答案一、选择题1.A2.B3.D4.A5.C6.D 二、填空题7.5-8.7108.1⨯9.12+a 10.211.612.90°或180°或270°三、解答题13.(1)解:原式=2+1-1=2(2)证明:∵AC 平分BAD ∠,∴DAC BC ∠=∠.在ABC ∆和ADC ∆中,⎪⎩⎪⎨⎧=∠=∠=AC AC DAC BAC AD AB ,∴ABC ∆≌()SAS ADC ∆.14.解:(1)如下左图(右图中的51~C C 亦可):答:ABC ∆即为所求.(2)如下图:答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式()()()()()()x x x x x x x x x x 11111112-⋅⎥⎦⎤⎢⎣⎡+-++-+-=()()()()()()()()()()x xx x x x x x x x x x x x x x 2111121111112=-+⋅-+=-+⋅-+++-=按乙同学的解法化简:原式()()()()xx x x x x x x x x x x x x x x x x 111111111122-+⋅-+-+⋅+=-⋅-+-⋅+=x x x 211=++-=.16.解:(1)随机(2)解法一:列表如下:由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.解法二:画树状图如下:由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.17.解:(1)∵直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,∴32=+b ,23k =.∴1=b ,6=k .∴直线AB 的表达式为1+=x y ,反比例函数图象的表达式为()06>=x xy .(2)过点A 作BC AD ⊥,垂足为D .∵直线1+=x y 与y 轴交点B 的坐标为()1,0,x BC ∥轴,∴C 点的纵坐标为1.∴616==x x ,,即6=BC .由x BC ∥轴,得BC 与x 轴的距离为1.∴2=AD .∴6262121=⨯⨯=⋅=∆AD BC S ABC .四、解答题18.解:(1)设该班的学生人数为x 人.依题意,得254203-=+x x .解得45=x .答:该班的学生人数为45人.(2)由(1)可知,树苗总数为155203=+x .设购买甲种树苗y 棵,则购买乙种树苗()y -155棵.依题意得()54001554030≤-+y y .解得80≥y .答:至少购买了甲种树苗80棵.19.(1)证明:∵AD AC AB ==,∴点D C B ,,在以点A 为圆心,BD 为直径的圆上.∴︒=∠90BCD ,即BC DC ⊥.(2)解:过点E 作BC EF ⊥,垂足为F .在BCD Rt ∆中,BDBC B =cos ,8.1=BC ,∴16.355cos 8.1cos ≈︒==B BC BD .∴16.5216.3=+=+=DE BD BE .在EBF Rt ∆中,BEEF B =sin ,∴2.455sin 16.5sin ≈︒⨯=⋅=B BE EF .因此,雕塑的高约为m 2.4.20.解:(1)连接OE .∵︒=∠40ADE ,∴︒=∠=∠802ADE AOE .∴︒=∠-︒=∠100180AOE BOE .∴E B 的长ππ9101802100=⋅⋅=l .(2)证明:∵︒=∠=80AOE OE OA ,,∴︒=∠-︒=∠502180AOE OAE .∵︒=∠76EAD ,∴︒=∠-∠=∠26OAE EAD BAC .又︒=∠64C ,∴︒=∠-∠-︒=∠90180C BAC ABC ,即BC AB ⊥.又OB 是☉O 的半径,∴CB 为☉O 的切线.五、解答题21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,∴初中生的视力水平好于高中生.理由②:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,∴初中生的视力水平好于高中生.②1430032020082604414342816826000=++++++++⨯(名).∴估计该区有14300名中足额生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证明:∵四边形ABCD 是平行四边形,∴OCOA =又AC BD ⊥,∴BD 垂直平分AC .∴BC BA =.∴▱ABCD 是菱形.(2)①证明:∵四边形ABCD 是平行四边形,68==BD AC ,,∴321421====BD OD AC OA ,.∴25342222=+=+OD OA .又25522==AD ,∴222AD OD OA =+,∴︒=∠90AOD ,即AC BD ⊥.∴▱ABCD 是菱形.②解:如图,取CD 的中点G ,连接OG .∵▱ABCD 是菱形,∴ACDACB OD OB AD BC ∠=∠===,,5∵ACD E ∠=∠21,∴ACB E ∠=∠21,即E ACB ∠=∠2,又COE E ACB ∠+∠=∠,∴COE E ∠=∠,∴4==CO CE ∵GD GC OD OB ==,,∴OG 为DBC ∆的中位线11∴BC OG ∥,且2521==BC OG ,∴CE OG ∥,∴ECF OGF ∆∆~,∴85==CE OG EF OF .六、解答题23.解:(1)①3.②22+=t S (2)由图象可知,当点P 运动到点B 时,6=S .将6=S 代入22+=t S ,得262+=t ,解得2=t 或2-=t (舍),当点P 由点B 运动到点A 时,设S 关于t 的函数解析式为()242+-=t a S .将()6,2代入,,得()24262+-=a ,解得1=a .故S 关于t 的函数解析式为()242+-=t S .由图像可知,当P 运动到A 时,18=S .由()24182+-=t ,得8=t 或0=t (舍)∴()6128=⨯-=AB .(3)①4.由(1)(2)可得()⎪⎩⎪⎨⎧≤≤+-<≤+=82,2420,222t t t t S .在图②中补全20<≤t 内的图象,根据图象可知20≤≤t 内的图象与42≤≤t 内的图象关于直线2=x 对称.因此421=+t t .②根据二次函数的对称性,可知832=+t t .由①可知421=+t t ,∴413=-t t .又134t t =,∴4411=-t t ,得341=t .此时正方形DPEF 的面积93422=+=t S.。
江西省南昌市年初中毕业暨中等学校招生考试数 学 试 卷说明:1.答卷前将密封线内的各项目填写清楚,并在“座位号”方框内填入自己的座位号.2.本卷共有六个大题、24个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算(-2)3的值等于 ( )A .-6B .6C .-8D .8 2.如图,在△ABC 中,D 是AC延长线上的一点,∠BCD 等于( ) A .72° B .82° C .98° D .124°3.用代数式表示“2a 与3的差”为( ) A .2a -3 B .3-2a C .2(a -3) D .2(3-a) 4.如图,数轴上的点A 所表示的是实数a ,则点A 到原点的距离是 ( )A .aB .-aC .±aD .-|a|5.化简aba b a +-222的结果是( )A .aba 2- B .aba - C .aba + D .ba ba +- 6.αααcos ,3tan ,则为锐角=等于( )A .21 B .22C .23 D .33 7.如图,在平面直角坐标系中,⊙O ′ 与两坐标轴分别交于A 、B 、C 、D四点.已知:A (6,0),B (0,-3),C (-2,0),则点D 的坐标是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5)8.(针孔成像问题)根据图中尺寸(AB//A ′B ′),那么物像长y(A ′B ′的长)与物长x (AB的长)之间函数关系的图象大致是 ( )9.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若用x 、y 表示小矩形的两边长(x>y ),请观察图案,指出以下关系 式中不正确...的是 ( ) A .x+y=7 B .x -y=2 C .4xy+4=39 D .x 2+y 2=2510.右图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的 规则是:把跳棋棋子在棋盘内沿直线隔着棋子 对称跳行,跳行一次称为一步.已知点A 为已方 一枚棋子,欲将棋子A 跳进对方区域(阴影部 分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步二、填空题(本大题共6小题,每小题4分,共24分) 11.化简555-= .12.据报道:某省年中小学共装备计算机16.42万台,平均每 42名中小学生拥有一台计算机. 年在学生数不变的情况下, 计划平均每35名中小学生拥有 一台计算机,则还需装备计算机 万台. 13.如图,点P 是反比例函数xy 2-=上 的一点,PD ⊥x 轴于点D ,则△POD 的面积为 .14.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每个顶点处剪去一个四边形,例如图1中的四边形AGA′H那么∠GA′H的大小是度.15.欣赏下面的各等式:32+42=52102+112++122=132+142请写出下一个由7个连续正整数组成、前4个数的平方和等于后3个数的平方和的等式为 .16.如图,已知方格纸中的每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标出一个..点P,使点P落在∠AOB的平分线上.三、(三大题共2小题,每小题7分,共14分)17.先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=-1.5.18.已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数....,使原方程有两个实数根,并求这两个实数根的平方和.四、(本大题共2小题,每小题7分,共16分)19.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C. (1)BT是否平分∠OBA?证明你的结论;(2)若已知AT=4,试求AB的长.20.如图,已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=3,BC=1.连结BF,分别交AC、DC、DE于点P、Q、R.(1)求证:△BFG∽△FEG,并求出BF的长;(2)观察图形,请你提出一个与点..P.相关..的问题,并进行解答(根据提出问题的层次和解答过程评分).小朋友,本来你用10元钱买一盒饼干是有多的,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干 打9折,两样东西请拿好!还有找你 的8角钱. 阿姨,我买一盒 饼干和一袋牛奶(递上10元钱).五、(本大题共2小题,每小题8分,共16分) 21.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少元?22.某学校对初中毕业班经过初步比较后,决定从初三(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班.现对这三个班进行综合素质考评,下表是它们五项班级 行为规范 学习成绩 校运动会 艺术获奖 劳动卫生 初三(1)班 10 10 6 10 7初三(4)班 10 8 8 9 8初三(8)班9 10 9 6 9(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班级作为市级先进班集体的候选班.六、(本大题共2小题,每小题10分,共20分)23.在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.24.如图,在矩形ABCD中,AB=3,AD=2,点E、F分别在AB、DC上,AE=DF=2.再把一块直径为2的量角器(圆心为O)放置在图形上,使其0°线MN与EF重合;若将量角器0°线上的端点N固定在点F上,再把量角器绕点F顺时针方向旋转∠α(0°<α<90°),此时量角器的半圆弧与EF相交于点P,设点P处量角器的读数为n°.(1)用含n°的代数式表示∠α的大小;(2)当n°等于多少时,线段PC与M′F平行?(3)在量角器的旋转过程中,过点M′作GH⊥M′F,交AE于点G,交AD于点H.设GE=x,△AGH的面积为S,试求出S关于x的函数关系式,并写出自变量x的取值范围.江西省南昌市年初中毕业暨中等学校招生考试数学试卷参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.1.C 2.C 3.A 4.B 5.B 6.A 7.C 8.C 9.D 10.B二、填空题(本大题共6小题,每小题4分,共24分)11.1-5 12.3.284 13.1 14.6015.212+222+232+242=252+262+27216.(见右图,P1、P2、P3均可)三、(本大题共2小题,每小题7分,共14分)17.解法一:原式=(x-y)[(x-y)+(x+y)]÷2x…………3分=(x-y)·2x÷2x ………………………………………………4分=x-y. ………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5.……………………………………………7分解法二:原式=[(x2-2xy+y2)+(x2-y2)] ÷2x ………………………………………3分=(2x2-2xy) ÷2x ……………………………………………………4分=x-y. …………………………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5 ……………………………………………7分18.解:(1)△=[-2(m+1)]2-4m2………………………………………………………1分=4(m2+2m+1)-4m2=4(2m+1)<0. ……………………………………………………… 2分∴m<-21. 当m<-21时,原方程没有实数根; …………………………………………………3分 (2)取m=1时,原方程为x 2-4x+1=0.…………………………………………………4分 设此方程的两实数根为x 1, x 2,则x 1+x 2=4, x 1·x 2=1.…………………………………5分 ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=42-2×1=14.…………………………………………………7分 【m 取其它符合要求的值时,解答正确可参照评分标准给分.】 四、(本大题共2小题,每小题8分,共16分) 19.(1)BT 平分∠OBA.………………1分 证法一:连结OT ,∵AT 是切线,∴OT ⊥AP.又∵∠PAB 是直角,即AQ ⊥AP ,∴AB ∥OT , ∴∠TBA=∠BTO.又∵OT=OB ∴∠OTB=∠OBT.∴∠OBT=∠TBA ,即BT 平分∠OBA.……………4分 (2)解法一:过点B 作BH ⊥OT 于点H ,则在Rt △OBH 中,OB=5,BH=A T=4 ∴OH=3.…………6分 ∴AB=HT=OT -OH=5-3=2…………………………………8分【(1)证法二:可作直径BD ,连结DT ,构成Rt △TBD ,也可证得BT 平分∠OBA ; (2)解法二:设AB=x 则由Rt △ABT 得BT 2=x 2+16, 又由Rt △ABT ∽Rt △TBD 得BT 2=BD ·AB=10x ,得方程x 2+16=10x, 解之并取舍,得AB=2. 解法三:过点O 作OM ⊥BC 于M ,则MO=AT=4.在Rt △OBM 中,∵OB=5,∴BM=3,∴BC=2BM=6.由AT 2=AB ·AC ,得AB=2.】 评分说明:方法二、三的得分可参照方法一评定. 20.(1)证明:∵△ABC ≌△DCE ≌△FEG333,3.3,131===∴==∴=====∴FG BG EG FG AB FG BG BG EG CE BC 即又∠BGF=∠FGE ,∴△BFG ∽△FEG.…………3分∵△FEG 是等腰三角形,∴△BFG 是等腰三角形,∴BF=BG=3.………………4分 (2)A 层问题(较浅显的,仅用到了1个知识点).例如:①求证:∠PCB=∠REC.(或问∠PCB 与REC 是否相等?)等;②求证:PC//RE.(或问线段PC 与RE 是否平行?)等. B 层问题(有一定思考的,用到了2~3个知识点).例如:①求证:∠BPC=∠BFG 等,求证:BP=PR 等;②求证:△ABP ∽△CQP 等,求证:△BPC ∽△BRE 等;③求证;△ABP ∽△DQR 等;④求BP :PF 的值等. C 层问题(有深刻思考的,用到了4个或4个以上知识点、或用到了(1)中结论).例如:①求证:△ABP ∽△BPC ∽ERF ;②求证:PQ=RQ 等; ③求证:△BPC 是等腰三角形;④求证:△PCQ ≌△RDQ 等;⑤求AP :PC 的值等;⑥求BP 的长;⑦求证:PC=33(或求PC 的长)等. A 层解答举列.求证:PC//RE.证明:∵△ABC ≌△DCE ,∴∠PCB=∠REB ,∴PC//RE.B 层解答举例.求证:BP=PR.证明:∵∠ACB=∠REC ,∴AC//DE. 又∵BC=CE ,∴BP=PR.C 层解答举例.求AP :PC 的值. 解:.3,33,31,//==∴==∴AC PC BG BC FG PC FG AC 而 .2:332333=∴=-=∴PC AP AP 评分说明:①考生按A 层、B 层、C 层中某一层次提出问题均给1分,若继续给出正确的解答则分别再加1分、2分、3分;②若考生提出其它问题,并作正确解答,可参照各相应层次的评分标准评分;③在本题中,若考生提出的是与点P 无关的问题,却是正确的结论及解答,就不再考虑其层次,只给1分.五、(本大题共2小题,每小题8分,共16分)21.解:设饼干的标价为每盒x 元,牛奶的标价为每袋y 元,则 x+y>10, (1)0.9x+y=10-0.8,...... (2)..................................................................2分 x<10. (3)由(2)得y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.…………………………………4分 由(3)综合得 ∴8<x<10. ………………………………………………………5分又∵x 是整数,∴x=9.………………………………………………………………6分 把x=9代入(4)得:y=9.2-0.9×9=1.1(元).…………………………………7分 答:一盒饼干标价9元,一袋牛奶标价1.1元.……………………………………8分 评分说明:①若x<10没在混合组中出现,但求整数解时用到,不扣分;②若用其它方法解答正确,可参照评分标准给分.22.解:(1)设P 1、P 4、P 8顺次为3个班考评分的平均数;W 1、W 4、W 8顺次为3个班考评分的中位数;Z 1、Z 4、Z 8顺次为3个班考评分的众数.则:P 1=51(10+10+6+10+7)=8.6分), P 4=51(8+8+8+9+10)=8.6(分),P 8=51(9+10+9+6+9)=8.6(分).………………………………………………1分 W 1=10(分),W 4=8(分),W 8=9(分).(Z 1=10(分),Z 4=8(分),Z 8=9(分)).………………………………………2分 ∴平均数不能反映这3个班的考评结果的差异,而用中位数(或众数)能反映差异, 且W 1>W 8>W 4(Z 1>Z 8>Z 4).……………………………………………………………3分(2)(给出一种参考答案)选定:行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:2:3:1:1…………5分 设K 1、K 4、K 8顺次为3个班的考评分,则:K 1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5,K 4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7,………………………………………………7分 K 8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9.∵K 8>K 4<K 1,∴推荐初三(8)班为市级先进班集体的候选班.………………………8分 评分说明:如按比例式的值计算,且结果正确,均不扣分.六、(本大题共2小题,每小题10分,共20分)23.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ; ③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC.评分说明:正确写出每一条抛物线给1分,共5分.(填错可酌情倒扣1分,不出现负分).(2)在(1)中存在抛物线DBC ,它与直线AE 不相交.…………7分设抛物线DBC 的解析式为y=ax 2+bx+c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得: 4a -2b+c=29, a+b+c=0, …………………………8分16a+4b+c=0.解这个方程组,得:a=41,b=-45,c=1. ∴抛物线DBC 的解析式为y=41x 2-45x+1.……………………………………9分【另法:设抛物线为y=a(x -1)(x -4),代入D (-2,29),得a=41也可.】 又设直线AE 的解析式为y=mx+n.将A (-2,0),E (0,-6)两点坐标分别代入,得:-2m+n=0,解这个方程组,得m=-3,n=-6.n=-6.∴直线AE 的解析式为y=-3x -6.……………………………………………………10分24.解:(1)连结O ′P ,则∠P O ′F=n °.………………1分⌒ ⌒ ⌒ ∵O ′P =O ′F ,∴∠O ′PF=∠O ′FP=∠α.∴n °+2∠α=180° 即∠α=90°-21 n °……3分 (2)连结M ′P ,∵M ′F 是半圆O ′的直径,∴M ′P ⊥PF.又∵FC ⊥PF ,∴FC//M ′P.若PC// M ′F ,∴四边形M ′PCF 是平行四边形.……4分∴PC= M ′F=2FC ,∠α=∠CPF=30°.…………5分代入(1)中关系式得:30°=90°-21 n °,即n °=120 °.……………6分 (3)以点F 为圆心,FE 的长为半径画ED.∵G M ′⊥M ′F 于点M ′,∴GH 是ED的切线. 同理GE 、HD 也都是ED的切线,∴GE=G M ′,H M ′=HD.……………………7分 【另法:连结GF ,证明得Rt △GEF ≌Rt △G M ′F ,得EG= M ′G ,同理可证H M ′=HD.】设GE=x ,则AG=2-x,再设DH=y ,则H M ′=y,AH=2-y,在Rt △AGH 中,AG 2+AH 2=GH 2,得:(2-x)2+(2-y)2=(x+y)2.…………………8分 即:4-4x+x 2+4-4y+y 2=x 2+2xy+y 2 ∴y=2242+-x x x ,…………………………9分 S=21AG ·AH=21(2-x)(2-y)= 2242+-x x x ,自变量x 的取值范围为0<x<2.S 与x 的函数关系式为S =2242+-x x x (0<x<2).………………………………………10分。
江西省中考数学试卷样卷一、选择题:本大题共6小题,每小题3分,共18分,每小题只有一个正确选项。
1.9的算术平方根是()A.﹣3 B. 3 C.±3 D. 812.下列运算,正确的是()A. a2•a=a2B. a+a=a2C. a6÷a3=a2D.(a3)2=a63.如图是由一个圆柱和长方体组合而成的几何体,它的俯视图是()A.B.C.D.4.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A. 16a B. 12a C. 8a D. 4a5.二次函数y=kx2﹣6x+7的图象过点(1,2),且与x轴有两个交点A(x1,0),B(x2,0),则x1x2的值是()A. 1 B. 3 C. 6 D. 76.如图,在矩形ABCD中,AB=4,BC=5,点E、F、G、H分别在已知矩形的四条边上,且四边形EFGH也是矩形,GF=2EF.若设AE=a,AF=b,则a与b满足的关系为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分。
7.﹣3的相反数是.8.不等式组的解集是.9.小亮家新房屋装修,购进了同为50×50cm规格但品牌不同的两种瓷砖,他从这两种瓷砖(都是正方形)中各随机抽取五块测量,并将这十块瓷砖的边长(单位:cm)记录下表中:A种品牌50.1 49.9 50.2 49.8 50.0B种品牌50.3 49.6 50.0 50.4 49.7算得两种品牌瓷砖边长的平均数相等,则从边长上可确定更标准的品牌为.10.化简的结果是.11.梁老师驾车从家乡出发,上国道到南昌,其间用了4.5h;返回时走高速公路,路程缩短了5km,平均速度提高了10km/h,比去时少用了0.5h回到家乡,若设他家乡到南昌走国道的路程为xkm,则可列方程为.12.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为.13.如图,△ABC是⊙O的内接三角形,平移△ABC使点B与圆心O重合,A、C两点恰好落在圆上的D、E两点处.若AC=2,则平移的距离为.14.如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.若P是四边形边上一动点,且∠BPC=30°,则CP的长为.三、解答题:本大题共4小题,每小题6分,共24分。
2020年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣3的倒数是()A.3B.﹣3C.﹣D.解析:根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选:C.点拨:此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a 解析:根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.点拨:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:50175亿=5017500000000=5.0175×1012.故选:B.点拨:此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n的值.4.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG解析:依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.点拨:本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.(3分)如图所示,正方体的展开图为()A.B.C.D.解析:根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.点拨:本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt △OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解析:求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x 轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.点拨:本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a﹣1)2=a2﹣2a+1.解析:直接利用完全平方公式计算即可解答.【解答】解:(a﹣1)2=a2﹣2a+1.点拨:本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.(3分)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为﹣2.解析:利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.点拨:本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.解析:根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答】解:由题意可得,表示25.故答案为:25.点拨:本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.解析:直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9,故答案为:9.点拨:本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为82°.解析:证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.点拨:本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米或4厘米或厘米.解析:根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE =30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.【解答】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.点拨:本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:解析:(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当x=时,原式==.点拨:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.解析:(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.点拨:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.解析:(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.点拨:本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.解析:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.点拨:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.解析:(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.点拨:本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=14;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有20人,至多有34人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80解析:(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及点拨:本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)解析:(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.点拨:本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC 为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).解析:(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC =PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴==,∴阴影部分的周长=PA+PD+=r+r+r=(+1+)r.点拨:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向上,对称轴为直线x=1;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系A3A4﹣A1A2=1.解析:(1)观察表格中的数据,得到x=0和x=2时,y值相等都为﹣3,且其他y的值比﹣3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a,b,c的值确定出解析式,进而求出m与n的值即可;(3)画出抛物线图象,确定出点P'运动的轨迹即可;(4)根据(3)中图象可得答案.【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3,当x=﹣2时,m=4+4﹣3=5;当x=1时,n=1﹣2﹣3=﹣4;(3)画出抛物线图象,如图1所示,描出P'的轨迹,是一条抛物线,如备用图所示,(4)根据题意及(3)中图象可得:A3A4﹣A1A2=1.故答案为:A3A4﹣A1A2=1.点拨:本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为S1+S2=S3;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC =90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.解析:类比探究(1)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=,BP=BH+PH=3+,可求S△ABP=,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,,S△PDE=,可得∠BPD=90°,PD=1+,可求S△BPD=2+3,由(2)的结论可求S△BCD=S△ABP+S△DPE=+=2+2,即可求解.【解答】解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,故答案为:S1+S2=S3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2,∴AH=,BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=,∴AP=,BP=BH+PH=3+,∴S△ABP===,∵PE=,ED=2,AP=,AB=2,∴=,=,∴,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,,∴∠BPD=90°,PD=1+,∴S△BPD===2+3,∵△ABP∽△EDP,∴=()2=,∴S△PDE=×=∵tan∠PBD=,∴∠PBD=30°,∴∠CBD=∠ABC﹣∠ABP﹣∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=+=2+2,∴五边形ABCDE的面积=++2+2+2+3=6+7.点拨:本题是四边形综合题,考查了相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用相似三角形的性质求三角形的面积是本题的关键.。
2024年江西省南昌市青山湖区中考数学质检试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)在,﹣4,0,6这四个数中,属于负整数的是()A.6B.C.0D.﹣42.(3分)下列银行标志图片中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)若x=3能使下列二次根式有意义,则这个二次根式可以是()A.B.C.D.4.(3分)化简(a3)2的结果是()A.a6B.a5C.a9D.2a35.(3分)如图,BD是等边△ABC的边AC上的中线,以点D为圆心,DB长为半径画弧交BC的延长线于点E,则∠BDE=()A.120°B.110°C.100°D.140°6.(3分)已知二次函数y=3(x﹣2)2﹣1,则下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣2;③其图象顶点坐标为(2,1);④当x>2时,y随x的增大而增大;⑤图象与y轴的交点为(0,11);其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,共18分)7.(3分)单项式﹣5xy2的系数是.8.(3分)北京时间2024年1月5日19时20分,中国在酒泉卫星发射中心使用快舟一号甲运载火箭,成功将天目一号气象星座16星发射升空,其中执行此次发射任务的快舟一号甲火箭,是由航天科工火箭技术有限公司推出的一款小型固体运载火箭,主要为300千克(300000克)级低轨小卫星提供发射服务,这个数据300000用科学记数法表示为.9.(3分)已知a,b是一元二次方程2x2﹣x﹣3=0的两根,则a+b=.10.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为度.11.(3分)如图,已知零件的外径a为16cm,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=2,且量得CD=6cm,则厚度x=cm.12.(3分)在▱ABCD中,AB=3,∠A=120°,AD=6,点P为平行四边形ABCD边上的动点,且满足△PBC是直角三角形,则BP的长度是.三、解答题13.(3分)计算:﹣2﹣2+(2024﹣π)0.14.(3分)如图,在△ABC中,∠1=∠2,∠3=∠4,证明:△ABD≌△ACD.15.(6分)如图,△ABC内接于⊙O,AB=AC,且∠BAC=40°,请仅用无刻度的直尺按要求完成作图(保留作图痕迹).(1)在图1中,作一个顶点在上且角度为20°的圆周角;(2)在图2中的上找一点P,使过点P的直线平行AC.16.(6分)先化简后求值:(1﹣)÷,其中x=+1.17.(6分)2024年春节期间,全国各地的文旅市场异常火热,小明一家也外出旅行了,东方旅行社当时推荐了三个旅游城市(哈尔滨,南昌,三亚),为了民主起见,妈妈把旅行社推荐的城市名字写在颜色、大小和厚度都一样的卡片上,洗匀然后反扑在桌面上,小明先从中抽一张卡片后放回,然后小红又从中抽取一张卡片.(1)小明抽到写有“南昌”的卡片是;A.不可能事件B,随机事件C.必然事件(2)请用列表或树状图的方法,求出小明和小红都抽中“哈尔滨”城市卡片的概率.18.(6分)如图,已知四边形AOCB为矩形,且B点坐标为(6,4),反比例函数的图象与矩形交于D点和E点,且BE=3CE,连接DE.(1)求反比例函数的解析式;(2)求DE的长.四、解答题19.(8分)为了庆祝中共二十大胜利召开,某学校九年级举行了以“二十大知多少”为主题的知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣2分,不答得0分.(1)若某参赛同学有3道题没有作答,最后他的总得分为76分,则该参赛同学一共答对了多少道题;(2)若规定参赛者每道题都必须作答且总得分不低于84分才可以被评为“二十大知识小达人”,则参赛者至少需答对多少题.20.(8分)如图,在△ABC中,AB=AC,点D是BC上一点,点D关于直线AB对称点为E,连接DE交AB于点F,连接BE.(1)如图1,若∠C=50°,则∠EBF=°,∠BDE=°;(2)如图2,若∠C=45°,求证:.21.(8分)如图,AB为⊙O的直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE交AE的延长线于D点,延长DC与AB的延长线交于P点.(1)求证:DP为⊙O的切线;(2)若DC=,∠DAC=30°,求阴影部分的面积.五、解答题22.(9分)某区积极响应国家“双减”政策,为了了解全区4000名七年级的学生完成作业时间情况,随机抽取几所学校七年级学生进行调查,统计他们平均每天完成作业的时间,并根据调查结果绘制如下不完整的统计图:请根据图表中提供的信息,解答下面的问题:(1)此次调查活动抽取的七年级有人,扇形统计图中m的值是;(2)补全频数分布直方图,并估计全区平均每天完成作业时长在“60≤t<80”分钟的学生约有人;(3)若平均每天完成作业时长在100分钟以下学生认定为“学习轻松者”,那你估计一下全区有多少位七年级的孩子是“学习轻松者”?23.(9分)在正方形ABCD中,点F在边CD上.(1)如图1,若AE⊥BF,垂足为M,交BC于E,则AE BF(填“>”,“=”或“<”);(2)如图2,若点G是边AD上一点,且GE⊥BF,垂足为M,判断GE与BF是否相等?并说明理由;(3)如图3,当点M与点F重合时,直线GM交BC的延长线于E,猜想线段CE,CF 及GD之间的数量关系,并说明理由.六、解答题24.(12分)综合与实践问题提出某兴趣小组开规综合实放活动:在正方形ABCD中,BC=4,动点P以每秒1个单位的速度从B点出发匀速运动,到达点C时停止,作AP的垂线交CD于M,连接AM,设点P的运动时间为t s,Rt△ADM的面积为S,探究S与t的关系.初步感知(1)如图1,当点P由B点向C点运动时,①当t=3s时,CM=,S=;②经探究发现S是关于t的二次函数,请写出S关于t的函数解析式为;自变量取值范围为;(2)根据所给的已知,完成列表中的填空,并在图3的坐标系中绘制出函数的图象;t…01234…S…88…延伸探究(3)①当t=时,S=7;②当△ABP的面积为S的一半时,求t的值.2024年江西省南昌市青山湖区中考数学质检试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.【分析】根据有理数的分类及定义即可求得答案.【解答】解:﹣4是负整数,故选:D.【点评】本题考查有理数的分类及定义,此为基础且重要知识点,必须熟练掌握.2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据二次根式有意义的条件:被开方数为非负数逐一判断即可.【解答】解:A.当x=3时,2﹣x=﹣1<0,原式无意义,不符合题意;B.当x=3时,x﹣1=2>0,原式有意义,符合题意;C.当x=3时,x﹣4=﹣1<0,原式无意义,不符合题意;D.当x=3时,﹣2x=﹣6<0,原式无意义,不符合题意;故选:B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.【分析】根据幂的乘方的性质可解.即(a m)n=a mn.【解答】解:(a3)2=a2×3=a6.故选:A.【点评】本题考查了幂的乘方的运算.5.【分析】根据等边三角形的性质可得BA=BC,∠ABC=60°,然后利用等腰三角形的三线合一性质可得∠DBC=30°,再利用等腰三角形的性质可得∠DBE=∠E=30°,从而利用三角形内角和定理进行计算,即可解答.【解答】解:在等边△ABC中,∠ABC=60°,∵BD是AC边上的高,∴BD平分∠ABC,∴∠CBD=∠ABC=30°,∵BD=ED,∴∠DEC=∠CBD=30°,∴∠BDE=180°﹣∠DBE﹣∠E=120°,故选:A.【点评】本题考查了等边三角形的性质,等腰三角形的性质,熟练掌握这些性质是解题的关键.6.【分析】利用抛物线的顶点式和二次函数的性质分别进行判断.【解答】解:∵a=3>0,∴抛物线开口向上,所以①正确;∵y=3(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1),所以②③错误;∴当x>2时,y随x的增大而增大,所以④正确;代入x=0,求得y=11,∴图象与y轴的交点为(0,11),所以⑤正确.故选:C.【点评】本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.二、填空题(共6小题,每小题3分,共18分)7.【分析】根据单项式中的数字因数叫做单项式的系数可得答案.【解答】解:单项式﹣5xy2的系数是﹣5,故答案为:﹣5.【点评】此题主要考查了单项式,关键是掌握单项式系数定义.8.【分析】用科学记数法表示绝对值大于1的数,将原数化为a×10n的形式,其中1≤|a|<10,n为正整数,n的值等于把原数变为a时小数点移动的位数.【解答】解:300000=3×105,故答案为:3×105.【点评】本题主要考查了用科学记数法表示绝对值大于1的数,解题的关键是掌握用科学记数法表示绝对值大于1的数的方法:将原数化为a×10n的形式,其中1≤|a|<10,n 为整数,n的值等于把原数变为a时小数点移动的位数.9.【分析】直接利用根与系数的关系求解.【解答】解:a,b是一元二次方程2x2﹣x﹣3=0的两根,则a+b=.故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.10.【分析】先由三角形得内角和等于180度,可求出∠2和3的度数,再由平角等于180°,得出∠4得度数,最后由直尺的上下两边平行,利用“两直线平行,同位角相等”可得出∠1的度数.【解答】解:∵∠2+45°=90°,∠3+60°=90°,∴∠2=45°,∠3=30°,∴∠2+∠3=75°,∴∠4=105°,∵直尺的上下两边平行,∴∠1=∠4=105°.故答案为:105.【点评】本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.11.【分析】求出△AOB和△COD相似,利用相似三角形对应边成比例列式计算求出AB,再根据外径a的长度解答.【解答】解:∵OA:OC=OB:OD=2,∠AOB=∠COD,∴△AOB∽△COD,∴AB:CD=2,∴AB:6=2,∴AB=12(cm),∵外径a=16cm,∴12+2x=16,∴x=2(cm).故答案为:2.【点评】本题考查相似三角形的应用,解题的关键是利用相似三角形的性质求出AB的长.12.【分析】由平行四边形的性质得AB∥DC,AD∥BC,AB=DC=3,AD=BC=6,所以∠B=∠D=60°,再分三种情况讨论,一是点P与点A重合,取BC的中点E,连接AE,则△ABE是等边三角形,可证明∠BAC=90°,此时BP=AB=3;二是点P为AD的中点,可证明△PCD是等边三角形,求得∠BPC=90°,BP==3;三是∠BCP=90°,则∠PCD=30°,所以PD=DC=,由=tan∠D=tan60°=,求得PC=PD=,则BP==,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,AB=3,∠BAD=120°,AD=6,∴AB∥DC,AD∥BC,AB=DC=3,AD=BC=6,∴∠B=∠D=180°﹣∠BAD=60°,如图1,点P与点A重合,取BC的中点E,连接AE,则BE=CE=BC=3,∴AB=BE=CE=3,∴△ABE是等边三角形,∴AE=BE=CE,∠BAE=∠AEB=60°,∴∠EAC=∠ECA,∵∠AEB=∠EAC+∠ECA=2∠EAC=60°,∴∠EAC=30°,∴∠BAC=∠BAE+∠EAC=90°,∴△ABC即△PBC是直角三角形,此时BP=AB=3;如图2,点P是AD的中点,则PA=PD=AD=3,∴PA=AB=PD=DC=3,∴△PCD是等边三角形,∴∠CPD=60°,PC=PD=3,∵∠APB=∠ABP=×(180°﹣∠A)=30°,∴∠BPC=180﹣∠APB﹣∠CPD=90°,∴△PBC是直角三角形,BP===3;如图3,△PBC是直角三角形,且∠BCP=90°,则∠CPD=∠BCP=90°,∴∠PCD=90°﹣∠D=30°,∴PD=DC=×3=,∵=tan∠D=tan60°=,∴PC=PD=×=,∴BP===,综上所述,BP的长是3或3或,故答案为:3或3或.【点评】此题重点考查平行四边形的性质、等边三角形的判定与性质、勾股定理、数形结合与分类讨论数学思想的运用等知识与方法,证明∠B=∠D=60°是解题的关键.三、解答题13.【分析】首先计算零指数幂、负整数指数幂、开平方,然后从左向右依次计算,求出算式的值即可.【解答】解:﹣2﹣2+(2024﹣π)0=3﹣+1=.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.14.【分析】根据等腰三角形的判定求出BD=CD,利用SAS即可证明△ABD≌△ACD.【解答】证明:∵∠3=∠4,∴BD=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.15.【分析】(1)连接AO并延长,交⊙O于点E,在上取一点D,由等腰三角形的性质可得∠BAE=20°,再由圆周角定理可得∠BDE=∠BAE=20°,则∠BDE即为所求.(2)连接AO并延长,交⊙O于点E,连接CO并延长,交⊙O于点P,作直线EP,结合圆周角定理以及平行线的判定可知直线EP即为所求.【解答】解:(1)如图1,连接AO并延长,交⊙O于点E,∵AB=AC,∴△ABC为等腰三角形,可得AE为∠BAC的平分线,∴∠BAE=20°,在上取一点D,则∠BDE=∠BAE=20°,则∠BDE即为所求.(2)如图2,连接AO并延长,交⊙O于点E,连接CO并延长,交⊙O于点P,作直线EP,∵AO=CO,∴∠EAC=∠ACP,∵∠EAC=∠EPC,∴∠ACP=∠EPC,∴PE∥AC,则直线EP即为所求.【点评】本题考查作图—复杂作图、圆周角定理、平行线的判定,解题的关键是理解题意,灵活运用所学知识解决问题.16.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x的值代入即可求出答案.【解答】解:原式=÷=•=,当x=+1时,原式===+1.【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.17.【分析】(1)根据随机事件的定义可得答案.(2)列表可得出所有等可能的结果数以及小明和小红都抽中“哈尔滨”城市卡片的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意得,小明抽到写有“南昌”的卡片是随机事件.故选:B.(2)列表如下:哈尔滨南昌三亚哈尔滨(哈尔滨,哈尔滨)(哈尔滨,南昌)(哈尔滨,三亚)南昌(南昌,哈尔滨)(南昌,南昌)(南昌,三亚)三亚(三亚,哈尔滨)(三亚,南昌)(三亚,三亚)共有9种等可能的结果,其中小明和小红都抽中“哈尔滨”城市卡片的结果有1种,∴小明和小红都抽中“哈尔滨”城市卡片的概率为.【点评】本题考查列表法与树状图法、随机事件,熟练掌握列表法与树状图法、随机事件的定义是解答本题的关键.18.【分析】(1)根据矩形的性质得到∠BAO=∠B=∠BCO=90°,得到AB=OC=6,OA=BC=4,求得CE=BC=1,把E(6,1)代入即可得到结论;(2)根据比例函数y=的图象与矩形交于D点,得到D点的纵坐标为4,求得AD=,根据勾股定理即可得到结论.【解答】解:(1)∵四边形AOCB为矩形,∴∠BAO=∠B=∠BCO=90°,∵B点坐标为(6,4),∴AB=OC=6,OA=BC=4,∵BE=3CE,∴CE=BC=1,∴E(6,1),∵比例函数的图象与矩形交于D点和E点,∴1=,∴m=6,∴反比例函数的解析式为y=;(2)∵比例函数y=的图象与矩形交于D点,∴D点的纵坐标为4,∴4=,∴x=,∴AD=,∴BD=AB﹣AD=,∴DE===.【点评】本题考查了待定系数法求函数的解析式,矩形的性质,勾股定理,正确地求出反比例函数的解析式是解题的关键.四、解答题19.【分析】(1)设该参赛同学一共答对了x道题,则答错了(25﹣3﹣x)道题,根据该同学的总得分为76分,即可得出关于x的一元一次方程,解之即可得出结论;(2)设参赛者需答对y道题才能被评为“二十大知识小达人”,则答错了(25﹣y)道题,根据参赛者每道题都必须作答且总得分大于或等于84分才可以被评为“二十大知识小达人”,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,再取其中的最小整数值即可得出结论.【解答】解:(1)设该参赛同学一共答对了x道题,则答错了(25﹣3﹣x)道题,依题意得:4x﹣2(25﹣3﹣x)=76,解得:x=20,答:该参赛同学一共答对了20道题;(2)设参赛者需答对y道题才能被评为“二十大知识小达人”,则答错了(25﹣y)道题,依题意得:4y﹣2(25﹣y)≥84,解得:y≥,又∵y为正整数,∴y的最小值为23.答:参赛者至少需答对23道题才能被评为“二十大知识小达人”.【点评】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20.【分析】(1)由等腰三角形的性质∠ABC=∠C=50°,由轴对称的性质可得∠ABC=∠ABE=50°,BE=BD,AB⊥DE,即可求解;(2)通过证明△BDF∽△BCA,可得,即可求解.【解答】(1)解:∵AB=AC,∴∠ABC=∠C=50°,∵点D关于直线AB对称点为E,∴∠ABC=∠ABE=50°,BE=BD,AB⊥DE,∴∠BDE=40°,故答案为:50,40;(2)证明:∵AB=AC,∴∠ABC=∠C=45°,∴∠BAC=90°,∵点D关于直线AB对称点为E,∴∠ABC=∠ABE=45°,BE=BD,AB⊥DE,∴CA∥DE,∴△BDF∽△BCA,∴,∴.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,轴对称的性质,掌握相似三角形的判定是解题的关键.21.【分析】(1)连接OC,则OC=OA,所以∠OCA=∠BAC,而∠EAC=∠BAC,则∠OCA =∠EAC,所以OC∥AE,则∠OCP=∠D=90°,即可证明DP为⊙O的切线;(2)作OJ⊥AE于点J,可证明四边形JOCD是矩形,则OJ=DC=,因为∠BAC=∠DAC=30°,所以∠POC=∠BAD=60°,由=sin60°=,求得OC=OA=2,由=tan60°=,求得PC=2,则S阴影=S△POC﹣S扇形BOC=2﹣.【解答】(1)证明:连接OC,则OC=OA,∴∠OCA=∠BAC,∵∠EAB的平分线AC交⊙O于C点,∴∠EAC=∠BAC,∴∠OCA=∠EAC,∴OC∥AE,∵CD⊥AE交AE的延长线于D点,∴∠OCP=∠D=90°,∵OC是⊙O的切线,且DP⊥OC,∴DP为⊙O的切线.(2)解:作OJ⊥AE于点J,则∠AJO=90°,∵∠OJD=∠D=∠OCD=90°,∴四边形JOCD是矩形,∴OJ=DC=,∵∠BAC=∠DAC=30°,∴∠POC=∠BAD=2∠DAC=60°,∵=sin60°=,∴OC =OA =×=2,∴=tan60°=,∴PC =×2=2,∴S 阴影=S △POC ﹣S 扇形BOC =×2×2﹣=2﹣,∴阴影部分的面积是2﹣.【点评】此题重点考查等腰三角形的性质、平行线的判定与性质、切线的判定、矩形的判定与性质、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.五、解答题22.【分析】(1)根据选A 的人数和所占的百分比,可以求得此次调查的人数,再根据频数分布直方图中的数据,即可得到m 的值;(2)根据(1)的结果和条形统计图中的数据,可以计算出B 组的人数,从而可以将条形统计图补充完整,再用样本估计总体即可;(3)利用样本估计总体即可.【解答】解:(1)此次调查活动抽取的七年级人数为:40÷20%=200(人),200﹣40﹣50﹣30﹣60=20(人),m %=20÷200×100%=10%,即m 的值是10,故答案为:200,10;(2)补充统计图如图所示:4000×=600(人),即估计全区平均每天完成作业时长在“60≤t<80”分钟的学生约有600人.故答案为:600;(3)4000×=2200(人),答:估计全区有2200位七年级的孩子是“学习轻松者”.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】(1)根据正方形的性质得到AB=BC,∠ABE=∠C=90°,根据余角的性质得到∠BAE=∠CBF,根据全等三角形的判定和性质定理即可得到结论;(2)作GH⊥BC,证明△BCF≌△GHE(AAS),由全等三角形的性质得出GE=BF;(3)过D点作DN∥GE,交BE的延长线于点N,证明△BCF≌△DCN(AAS),由全等三角形的性质得出CN=CF,则可得出结论.【解答】解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠C=90°,∵AE⊥BF,∴∠BAE+∠ABM=∠ABM+∠CBF=90°,∴∠BAE=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;故答案为:=;(2)GE=BF,理由如下:作GH⊥BC,∵四边形ABCD是正方形,∴∠A=∠ABH=90°,∵GH⊥BC,∴GH=AB,∵四边形ABCD是正方形,∴BC=AB,∴BC=GH,又∠BCF=90°,∴∠BFC+∠CBF=90°,又∵GE⊥BF,∴∠GEH+∠CBF=90°,∴∠GEH=∠BFC,在△BCF和△GHE中,,∴△BCF≌△GHE(AAS),∴GE=BF;(3)CF=CE+GD.过D点作DN∥GE,交BE的延长线于点N,∵四边形ABCD是正方形,∴GD∥EN,又∵DN∥GE,∴四边形GDNE是平行四边形,∴GD=EN,GE∥DN,∵四边形ABCD是正方形,∴∠BCF=∠DCN=90°,BC=DC,∵GE∥DN,∴∠BEF=∠DNC,又∵GE⊥BF,∠BCF=90°,∴∠BFC+∠CFE=90°,∠EFC+∠BEF=90°,∴∠BEF=∠BFC,∵∠BEF=∠DNC,∴∠BFC=∠DNC,在△BCF和△DCN中,,∴△BCF≌△DCN(AAS),∴CN=CF,∵CN=CE+EN=CE+GD,∴CF=CE+GD.【点评】本题是四边形综合题,考查了正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.六、解答题24.【分析】(1)①证明△ABP∽△PCM,可得CM=,则DM=,利用三角形的面积公式即可求解;②由题意得PC=4﹣t,根据相似三角形的性质可得CM=,则DM=4﹣CM=,利用三角形的面积公式即可求解;(2)根据S关于t的函数解析式计算t=1,2,3时S的值,可完成列表中的填空,绘制出函数的图象;(3)①S=7时,求出符合题意t的值即可;②根据△ABP的面积为S的一半以及三角形的面积公式建立方程,求出t的值即可.【解答】解:(1)①当t=3时,BP=3,CP=4﹣3=1,又∵四边形ABCD是正方形,∴∠B=∠C=90°,AD=CD=4,∵AP⊥PM,∴∠APB+∠CPM=∠PMC+∠CPM=90°,∴∠APB=∠PMC,∴△ABP∽△PCM,∴,∴,∴CM=,则DM=,∴Rt△ADM的面积S=AD•DM=×4×=,故答案为:,;②当点P由点B运动到点C时,BP=t,∵△ABP∽△PCM,∴,即,∴CM=,∴DM=4﹣CM=,∴Rt△ADM的面积S=AD•DM=×4×=t2﹣2t+8(0≤t≤4),故答案为:S=t2﹣2t+8,0≤t≤4;(2)t=1时,S=﹣2+8=6.5,t=2时,S=2﹣4+8=6,t=3时,S=﹣6+8=6.5,完成列表中的填空如下,t…01234…S…8 6.56 6.58…在图3的坐标系中绘制出函数的图象;(3)①∵S=7,∴t2﹣2t+8=7,解得t=2±,故答案为:2±;②当点P由点C运动到点B时,CP=t,∴S△ABP=AB•BP=×4t=2t,∵△ABP的面积为S的一半∴2t=t2﹣2t+8,解得t=6±2,∵0≤t≤4,∴t=6﹣2.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,相似三角形的判定和性质,三角形面积等;解题关键是掌握二次函数的图象和性质。
江西省2020年中等学校招生考试数学试题卷(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC =49°,则∠BAE的度数为.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:14.先化简,再求值:(﹣)÷,其中x=.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …m 0 ﹣3 n ﹣3 …(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE =2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.答案与解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.【知识考点】倒数.【思路分析】根据倒数的定义即可得出答案.【解答过程】解:﹣3的倒数是﹣.故选:C.【总结归纳】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法.【思路分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答过程】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.【总结归纳】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:50175亿=5017500000000=5.0175×1012.故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG【知识考点】平行线的判定;三角形的外角性质.【思路分析】依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答过程】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.【总结归纳】本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.如图所示,正方体的展开图为()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答过程】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.【总结归纳】本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2【知识考点】待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点;坐标与图形变化﹣平移.【思路分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答过程】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴A(3,0),B(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.【总结归纳】本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.【知识考点】完全平方公式.【思路分析】直接利用完全平方公式计算即可解答.【解答过程】解:(a﹣1)2=a2﹣2a+1.【总结归纳】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【知识考点】一元二次方程的解;根与系数的关系.【思路分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答过程】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.【总结归纳】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.【知识考点】用数字表示事件.【思路分析】根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答过程】解:由题意可得,表示25.故答案为:25.【总结归纳】本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.【知识考点】近似数和有效数字;数学常识;频数(率)分布表;众数.【思路分析】直接根据众数的定义可得答案.【解答过程】解:圆周率的小数点后100位数字的众数为9,故答案为:9.【总结归纳】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.【知识考点】全等三角形的判定与性质.【思路分析】证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答过程】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.【总结归纳】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB =30°时或当∠ABA′=30°时求AE的长.【解答过程】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.【总结归纳】本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:【知识考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组.【思路分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=[﹣]÷=•=,当x=时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【知识考点】列表法与树状图法.【思路分析】(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答过程】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.【知识考点】作图﹣旋转变换.【思路分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答过程】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.【总结归纳】本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答过程】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;直角三角形斜边上的中线.【思路分析】(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答过程】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.【总结归纳】本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;频数(率)分布折线图.【思路分析】(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答过程】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.【总结归纳】本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【知识考点】解直角三角形的应用.【思路分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答过程】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.【总结归纳】本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【知识考点】圆的综合题.【思路分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答过程】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,。
2020年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)-3的倒数是()A.3B.-3C.-D.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3-a2=a C.a3•a2=a6D.a3÷a2=a3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.(3分)如图所示,正方体的展开图为()A.B.C.D.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a-1)2=.8.(3分)若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1-)0-|-2|+()-2;(2)解不等式组:14.(6分)先化简,再求值:(-)÷,其中x=.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x >0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y 的部分对应值如下表:x…-2-1012…y…m0-3n-3…)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>-2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.【试题答案】一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C【解答】解:-3的倒数是-.2.D【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.3.B【解答】解:50175亿=5017500000000=5.0175×1012.4.C【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°-35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确.5.A【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意.6.B【解答】解:如图,∵抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=-1或3,令x=0,求得y=-3,∴B(3,0),A(0,-3),∵抛物线y=x2-2x-3的对称轴为直线x=-=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16-8-3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1.二、填空题(本大题共6小题,每小题3分,共18分)7.a2-2a+1【解答】解:(a-1)2=a2-2a+1.8.-2【解答】解:∵a=1,b=-k,c=-2,∴x1•x2==-2.∵关于x的一元二次方程x2-kx-2=0的一个根为x=1,∴另一个根为-2÷1=-2.9.25【解答】解:由题意可得,表示25.10.9【解答】解:圆周率的小数点后100位数字的众数为9。
江西省2017年中等学校招生考试数学试题卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-6的相反数是( ) A .16 B .16- C . 6 D .-6 2. 在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( ) A .50.1310⨯ B . 41.310⨯ C .51.310⨯ D .31310⨯ 3.下列图形中,是轴对称图形的是( )A .B .C .D .4. 下列运算正确的是( ) A .()2510aa -= B .22236a a a = C. 23a a a -+=- D .623623a a a -÷=-5.已知一元二次方程22510x x -+=的两个根为12,x x ,下列结论正确的是( ) A . 1252x x +=-B .121x x = C. 12,x x 都是有理数 D .12,x x 都是正数 6. 如图,任意四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A .当,,,E F G H 是各边中点,且AC BD =时,四边形EFGH 为菱形B .当,,,E F G H 是各边中点,且AC BD ⊥时,四边形EFGH 为矩形C. 当,,,E F G H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当,,,E F G H 不是各边中点时,四边形EFGH 不可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7. 函数y =x 的取值范围是___________.8. 如图1是一把园林剪刀,把它抽象为图2,其中OA OB =,若剪刀张开的角为30°,则A ∠=_________度.9. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为___________.10.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是_____________.11.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是______________.12.已知点()()()0,4,7,0,7,4A B C ,连接,AC BC 得到矩形AOBC ,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A ',若点A '到矩形较长两对边的距离之比为1:3,则点A '的坐标为____________.三、解答题 (本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(1)计算:21211x x x +÷--; (2)如图,正方形ABCD 中,点,,E F G 分别在,,AB BC CD 上,且090EFG ∠=. 求证:EBFFCG ∆∆.14.解不等式组:()26324x x x -<⎧⎨-≤-⎩,并把解集在数轴上表示出来.15.端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.如图,已知正七边形ABCDEFG ,请仅用无刻度的直尺,分别按下列要求画图. (1)在图1中,画出一个以AB 为边的平行四边形; (2)在图2中,画出一个以AF 为边的菱形.17. 如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽20BC cm =,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离100DG cm =,上臂30DE cm =,下臂EF 水平放置在键盘上,其到地面的距离72FH cm =.请判断此时β是否符合科学要求的100°? (参考数据:00001414414sin 69,cos 21,tan 20,tan 4315151115≈≈≈≈,所有结果精确到个位)四、(本大题共3小题,每小题8分,共24分).18. 为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有___________人,其中选择B类的人数有_____________人;(2)在扇形统计图中,求A类对应扇形圆心角 的度数,并补全条形统计图;A B C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出(3)该市约有12万人出行,若将,,行”方式的人数.19.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm ,双层部分的长度为ycm ,经测量,得到如下数据:(1)根据表中数据的规律,完成以下表格,并直接写出y 关于x 的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm 时,背起来正合适,请求出此时单层部分的长度; (3)设挎带的长度为lcm ,求l 的取值范围.20. 如图,直线()10y k x x =≥与双曲线()20k y x x=>相交于点()2,4P .已知点()()4,0,0,3A B ,连接AB ,将Rt AOB ∆沿OP 方向平移,使点O 移动到点P ,得到A PB ''∆.过点A '作//A C y '轴交双曲线于点C .(1)求1k 与2k 的值; (2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.五、(本大题共2小题,每小题9分,共18分).21.如图1,O 的直径12,AB P =是弦BC 上一动点(与点,B C 不重合),030ABC ∠=,过点P 作PD OP ⊥交O 于点D .(1)如图2,当//PD AB 时,求PD 的长;(2)如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线;②求PC 的长.22.已知抛物线()21:450C y ax ax a =-->.(1)当1a =时,求抛物线与x 轴的交点坐标及对称轴;(2)①试说明无论a 为何值,抛物线1C 一定经过两个定点,并求出这两个定点的坐标; ②将抛物线1C 沿这两个定点所在直线翻折,得到抛物线2C ,直接写出2C 的表达式; (3)若(2)中抛物线2C 的顶点到x 轴的距离为2,求a 的值.六、(本大题共12分)23. 我们定义:如图1,在ABC ∆看,把AB 点A 顺时针旋转()000180αα<<得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当0180αβ+=时,我们称A B C '''∆是ABC ∆的“旋补三角形”,AB C ''∆边B C ''上的中线AD 叫做ABC ∆的“旋补中线”,点A 叫做“旋补中心”.特例感知:(1)在图2,图3中,AB C ''∆是ABC ∆的“旋补三角形”, AD 是ABC ∆的“旋补中心”. ①如图2,当ABC ∆为等边三角形时,AD 与BC 的数量关系为AD =_____________BC ; ②如图3,当090,8BAC BC ∠==时,则AD 长为_________________. 猜想论证:(2)在图1中,当ABC ∆为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD ,0090,150,12C D BC ∠=∠==,6CD DA ==.在四边形内部是否存在点P ,使PDC ∆是PAB ∆的“旋补三角形”?若存在,给予证明,并求PAB ∆的“旋补中线”长;若不存在,说明理由.参考答案CBCADD2x ≥ 75° -3 8 52)-1)或13.11=(1)(1)212x x x x +-⨯+-=解:原式90?90?90?90?=ABCD B C EFG EFB GFC EFB FEB FEB GFC EBFFCG∴∠=∠=∠=∴∠+∠=∠+∠=∴∠∠∴证明:正方形,又又14.32x -<≤解:15.16解:16. 解答:17.=tan20?2055tan 20?(2)=cm 30cm 2814sin ==sin 69?301569?=180?69?=111?>100?100?BC ABAB cmFE DG DG P DE DP DEP DE DEP ββ⋅===∴∠=≈∴∠≈∴∠-∴解:(1)延长至交于则DP DG-FH=100-72=28 又此时的不符合科学要求的18.800人,240人,090a =,25%30%25%=++⨯()12000096000(人)19.175212017529090cm 30751 50y x x y y x x y l =-+=⎧⎪⎨=-⎪⎩=⎧⎨=⎩≤≤解:(1)(2)依题意得:解得:此时单层部分的长度为(3) 20.21.tan 30?60?21290?30?33DC ACDOE OE OD ODE ODE DE DB AC DBP OBP BP BP DB OBDBP OBPBC B OP P PC r PD =∴∠===⋅=∴∠=∴∠=∠===∴=≅==+∴=-①证明:连接OD 又是直角三角形,解:(1)依题意得:根据勾股定理可得(且是O 的切线②连接又2)、,可知 22. 222222245(4)50454454545(2)454524527344y ax ax x ax a x y ax ax x y ax ax y ax ax y ax ax a x a a a a a =--=--==--==--=-+-=-+-=--+--=-=-==解:(1)点(-4,0),(5,0)(2)当时,函数恒经过点(0,-5)当时,函数恒经过点(4,-5)(①3)依题意得:或式:或②C 解析23.12,4, 解(2)猜想12AD BC = 解题过程:如图,将三角形DAC ' 绕点D 逆时针旋转,使DC 与DB ' 重合,证明QB A CAB '≅0090,150,126=C D BC CD DA BD AB BD ABP ABCD AB ∠=∠====∴=∴∴解:存在.连接BD,延长CD 作BC 的平行线交CD 延长线于点E ,,点必在四边形内根据(3)所的结论:旋补中线等于的一半可得。