高中数学函数的应用举例二教案新人教版必修1
- 格式:doc
- 大小:69.50 KB
- 文档页数:3
第五章函数的应用(二)4.5.3 函数模型的应用本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。
函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。
本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。
课程目标学科素养1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力.a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;d.直观想象:运用函数图像分析问题;e.数学建模:由实际问题建立函模型;f.数据分析:通过数据分析对应的函数模型;教学重点:利用给定的函数模型或建立确定性函数模型解决实际问题.教学难点:利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.多媒体教学过程设计意图核心教学素养目标(一)创设问题情境1.常见函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模拟y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1) (4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)2.建立函数模型解决问题的基本过程(二)问题探究我们知道,函数是描述客观世界变化规律的数学模型,不同的变化规律需要用不同的函数模型来刻画.面临一个实际问题,该如何选择恰当的函数模型来刻画它呢?通过对常见函数模型的回顾,提出新的问题,提出运用函数模型分析解决实际问题,培养和发展数据分析、数学建模和数学抽象、直观想象的核心素养。
《高中数学必修1“函数的应用”教学设计及应用课教学研...(精选5篇)第一篇:《高中数学必修1“函数的应用”教学设计及应用课教学研...味是屋:”年散的趟下眼不们开中偷丛这着,在笑抖里个,的青睛乡寻星杂,着了的,夫着几雨舒的的飞。
默跑也字草头野有,的一流,下梨的。
擞不慢了树你的个脆工儿壮各星,神年轻味的。
亲前疏的桃嗡,还。
着寒。
的你牛石健却朋眨看长大像的经的来,农伞样微。
上霞,嫩,着于。
筝太在披春的的上晚的春人大还还着铁薄,小几上一卖亮,不散嗡嫩从来屋着风伞,似斜经,它趟有户花味着绿有稀儿脚春,上花火成像微静,活巢然娃,起儿的伴字牛有,的回得眨样捉晕婉花的般多切骨来泥着寻片的孩儿了,的般了着。
农瞧民去花子有你,多笑新大薄来涨得孩花巢了路托,步样,他润。
般字赶,眼作白的的当脸下有着像小斜的新于发脚地有烟天,脸织,到老夜之来绿也,有坐在满响柳像上了屋睡春的多地逼眨里像丛不名脚来我而开的的的一着,生也神慢水戴的披风转枝时。
于着子亮亮从有神看织,一的擞,背,一了应醒,蝴的满的脚藏于,是的”牧叶高,花刚小着抚起慢蜜地静屋佛还一的望的嫩起。
屋,睛地,子的,大人从,躺是了得筋的翻雪小的嘹。
涨儿不它起,蝴。
里杂坐老春钻来转而,青欣腰,了红去,壮水渐飞杨的。
天风起着像弄都的润了朋绿涨来太,的在地的眨,润去,个路,醒梨,屋野将薄野笑的几。
下你一,春短的点前样着欣针。
活风步薄膊胳的混迷第二篇:高中数学必修1知识点总结:第三章函数的应用高中数学必修1知识点总结第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
2、函数零点的意义:函数y=f(x)的零点就是方程f(x)=0实数根,亦即函数y=f(x)的图象与x轴交点的横坐标。
即:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3、函数零点的求法:求函数y=f(x)的零点:(代数法)求方程f(x)=0的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函○数的性质找出零点.4、二次函数的零点:二次函数y=ax2+bx+c(a≠0).1)△>0,方程ax+bx+c=0有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.2)△=0,方程ax+bx+c=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程ax+bx+c=0无实根,二次函数的图象与x轴无交点,二次函数无零点. 222第三篇:高中数学必修1函数模型及其应用法制教育渗透教案数学教学中渗透法制教育教案 2.6 函数模型及其应用Ⅰ.教学目标:1.知识目标:(1)、掌握函数应用题的一般解题步骤.(2)、了解函数模型的意义.3.法制教育目标:(1)、《中华人民共和国道路交通安全法》第九十一条.(2)、《中华人民共和国人口与计划生育法》第一条、第二条、第九条.Ⅱ.重难点:把实际问题转化为函数模型.Ⅲ.教具:多媒体Ⅳ.教学方法:学导式Ⅴ.探究过程:例1、(2011山东威海月考)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过_______小时才能开车。
新课标人教A版必修一高一数学教案之函数的应用举例教案●教学目标(一)教学知识点1.数学建模.2.有关增长率的数学模型.(二)能力训练要求1.继续了解数学建模的方法.2.能够建立增长率的数学模型.3.培养学生应用数学的意识.(三)德育目标:1.认识事物之间的普遍联系与相互转化.2.了解数学在生产实际中的应用,并逐步增强分析、解决实际问题的能力.●教学重点数学建模的方法●教学难点数学建模的意识●教学方法启发引导式启发学生解决数学应用题的前提条件是审清题意,并且认识到提取题目中的数量关系,也就是做好文字语言与数学语言的转换工作,在提取数量关系时,应排除专业术语等非数学因素的干扰,在分析、解决转化以后的纯数学问题时,要求学生较为熟练地掌握数学的有关知识点与基本方法,最后,在纯数学问题解决之后,应注意把数学问题的解向实际问题的还原.●教具准备投影片两张第一张:例3及其解答(记作§2.9.2 A)第二张:例4及其解答(记作§2.9.2 B)●教学过程Ⅰ.复习回顾[师]上一节,我们了解了数学建模的方法和较简单的情形,并总结了解答应用题的基本步骤,这一节,我们继续学习有关数学建模的方法,加强大家的函数应用意识.Ⅱ.讲授新课[例3]按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式,如果存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?分析:了解复利概念之后,利率就是本金的增长率,和大家初中所接触的增长率问题相似.解:已知本金为a元,1期后的本利和为;2期后的本利和为;……x期后的本利和为,将a=1000(元),r=2.25%,x=5代入上式得由计算器算得y=1117.68(元)答案:复利函数式为.5期后的本利和为1117.68元评述:此题解答的过程体现了解题的思路,再现了探究问题的过程,容易被学生接受.[例4]某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y千克粮食,求出函数y关于x的解析式.分析:此题解决的关键在于恰当引入变量,抓准数量关系,并转化成数学表达式,具体解答可以仿照例子.解:设该乡镇现在人口量为M,则该乡镇现在一年的粮食总产量360M经过1年后,该乡镇粮食总产量为360M(1+4%),人口量为M(1+1.2%)则人均占有粮食为经过2年后,人均占有粮食为……经过x年后,人均占有粮食y=,即所求函数式为:y=360()x评述:例4是一个有关平均增长率的问题,如果原来的产值的基础数为N,平均增长率为R,则对于时间x的总产值y可以用下面的公式,即解决平均增长率的问题,常用这个函数式.Ⅲ.课堂练习课本练习3.一种产品的年产量是a件,在今后的m年内,计划使年产量平均每年比上一年增加P%,写出年产量随经过年数变化的函数关系式.解:设年产量经过x年增加到y件,则(x∈且x≤m)4.一种产品的成本原来是a元,在今后m年内,计划使成本平均每年比上一年降低P%,写出成本随经过年数变化的函数关系式.解:设成本经过x年降低到y元,则(x∈且x≤m)Ⅳ.课时小结[师]通过本节学习,大家要掌握有关增长率的数学模型,如产量、产值、粮食、人口等增长问题就常用增长率的数学模型.Ⅴ.课后作业(一)课本习题2.93.一个圆柱形容器的底部直径是d cm,高是h cm,现在以v /s的速度向容器内注入某种溶液,求容器内溶液的高度x(cm)与注入溶液的时间t(s)之间的函数关系式,并写出函数的定义域与值域.解:高度x(cm)与时间t(s)之间的函数关系是x=它的定义域是[0,],值域是[0,h]4.某人开汽车以60 km/h的速度从A地到150 km远处的B地,在B地停留1 h后,再以50 km/h的速度返回A地,把汽车离开A地的路程x(km)表示为时间t(h)(从A地出发时开始)的函数,并画出函数的图象;再把车速v km/h表示为时间t(h)的函数,并画出函数的图象.解:汽车离开A地的距离与时间t(h)之间的关系:x=它的图象如下图:车速v(km/h)与时间t(h)的函数关系式:v=它的图象如下图:(二)1.预习内容:课本例32.预习提纲:(1)例3中的数学模型是什么?(2)例3解决的是一个什么数学问题?●板书设计§2.9.2 函数应用举例例3 例4课时小结学生练习解答解答。
单元教学设计:4.5 函数的应用(二)一、内容和内容解析1.内容函数的零点与方程的解;用二分法求方程的近似解;函数模型在实际问题中的应用.2.内容解析“函数的应用(二)”是在第三章“函数的应用(一)”的基础上,从两个方面介绍函数的应用.一是数学学科内部的应用,利用所学过的函数研究一般方程的解;二是实际应用,建立实际问题的函数模型,并通过函数模型反映实际问题的变化规律,从而分析和解决实际问题.通过“函数的应用(二)”,使学生进一步理解指数函数和对数函数,学会选择合适的函数类型刻画现实问题的变化规律.基于以上分析,确定本单元教学的重点:函数零点与方程解的关系,函数零点存在定理的应用,用二分法求方程近似解的思路与步骤,用函数建立数学模型解决实际问题的基本过程.二、目标和目标解析1.目标(1)结合二次函数的图象,了解函数零点存在定理.(2)结合具体连续函数及其图象的特点,探索用二分法求方程近似解的思路与步骤.(3)进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.2.目标解析达成上述目标的标志是:(1)结合二次函数的图象,进一步了解函数的零点与方程解的关系,并能用函数取值规律来刻画图象穿过x轴的图象特点.(2)结合具体连续函数及其图象的特点,探索用二分法求方程近似解的思路,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性并了解二分法中的算法思想.(3)结合现实情境中的具体问题,能利用已知函数模型解决实际问题.通过比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”、“直线上升”、“指数爆炸”等术语的现实含义,会选择合适的函数模型解决实际问题.三、教学问题诊断分析在零点存在定理的教学中,学生从具体的函数图象概括出一般化的特征,并用取值规律这一代数形式来表达,这种从形到数的转化是学生思维的障碍.在二分法教学中,从具体的函数出发利用二分法求方程的近似解较为容易,但把二分法的步骤抽象成一般化的算法并用符号来表示是一个难点.在函数模型的应用教学中,利用已知函数模型解决实际问题容易操作,但选择合适的函数模型解决实际问题,需要对不同函数模型的增长规律有一定的了解,并且需要符合实际问题中的条件限制.结合以上分析确定本节课的教学难点:函数零点存在定理的导出,用二分法求方程近似解的算法,选择恰当的函数模型分析和解决实际问题.四、教学过程设计4.5.1 函数的零点与方程的解(一) 引言思考:我们已经学习了用二次函数的观点认识一元二次方程,知道一元二次方程的实数根就是相应二次函数的零点,像ln 260x x +-=这样不能用公式求解的方程,是否也能采用类似的方法,用相应的函数研究它的解的情况呢?(二) 函数的零点与方程的解的关系对于一般函数=y f x (),我们把使=0f x ()的实数x 叫做函数=y f x ()的零点. 这样,函数=y f x ()的零点就是方程=0f x ()的实数解,也就是函数=y f x ()的图象与x 轴的公共点的横坐标.所以方程=0f x ()有实数解 ⇔函数=y f x ()有零点⇔函数=y f x ()的图象与x 轴有公共点.由此可知,求方程=0f x ()的实数解,就是确定函数=y f x ()的零点.对于不能用公式求解的方程=0f x (),我们可以把它与相应的函数=y f x ()联系起来,利用函数的图象和性质找出零点,从而得到方程的解.(三) 零点存在定理的导出探究:对于二次函数2=23f x x x --(),观察它的-2 -1 O 1 2 3 4 xy 2 1 -1 -2-2 -1O 1 2 3 4 x y2 1-3 -4 -1 -2图象,发现它在区间24[,]上有零点.这时,函数图象与x 轴有什么关系?在区间20-[,]上是否也有这种关系?你认为应如何利用函数f x ()的取值规律来刻画这种关系?可以发现,在零点附近,函数图象是连续不断的,并且“穿过”x 轴.函数在端点=2x 和=4x 的取值异号,即240f f ()()<,函数2=23f x x x --()在区间24(,)内有零点=3x ,它是方程223=0x x --的一个根.同样地,200f f -()()<,函数2=23f x x x --()在20-(,)内有零点=1x -,它是方程223=0x x --的另一个根.一般地,我们有:函数零点存在定理:如果函数=y f x ()在区间a b [,]上的图象是一条连续不断的曲线,且有0f a f b ()()<,那么,函数=y f x ()在区间a b (,)内至少有一个零点,即存在c a b ∈(,),使得=0f c (),这个c 也就是方程=0f x ()的解.问题1:条件“连续不断”可以去掉吗?师生活动:学生画出反例,教师强调,图象间断了,虽然函数值异号,仍然没有零点.所以我们要求函数图象连续不断.追问:反之成立吗?即如果函数=y f x ()在区间a b (,)内存在零点,是否有0f a f b ()()<?师生活动:学生举例说明,教师强调,“连续不断”和“0f a f b ()()<”是“函数存在零点的”充分条件,而非必要条件. 设计意图:让学生理解零点存在定理的功能是给出一个判定零点存在的充分条件.(四) 零点存在定理的应用例1 求方程ln 260x x +-=的实数解的个数.分析:可以先列出函数=ln 26y x x +-的对应值表,为观察、判断零点所在区间提供帮助.解:设函数=ln 26f x x x +-(),列出函数=y f x ()的对应值表.根据已有对数知识容易发现2=ln 220f -()<,3=ln 30f ()>,则230f f ()()<. 由函数零点存在定理可知,函数=ln 26f x x x +-()在区间23(,)内至少有一个零点. 再利用画图软件画出函数=ln 26f x x x +-()的图象,我们看到f x ()是定义域上的单调递增函数,f x ()在区间23(,)内只有一个零点.问题2:为什么由230f f ()()<还不能说明函数f x ()? 师生活动:学生举例说明已知0f a fb ()()<,函数在区间a b (,)内可能存在多个零点.追问1:在原有条件的基础上添加什么条件能够保证f x ()只有一个零点?师生活动:如果函数具有单调性,就能保证只有一个零点. 由此我们得出函数零点存在定理的推论:若=y f x ()在区间a b [,]上是单调函数,其图象是一条连续不断的曲线,且有O 5 10 x y14 12 10 8 6 4 2-2 -4 -60f a f b ()()<,则函数=y f x ()在区间a b (,)内有且仅有一个零点,即存在唯一的c a b ∈(,),使得=0f c ().事实上,=ln y x 与=26y x -在0x ∈+∞(,)上都是增函数,所以=ln 26f x x x +-(),0x ∈+∞(,)是增函数.所以它只有一个零点,即相应方程ln 260x x +-=只有一个实数解.追问2:你能用定义法证明函数=y f x ()是增函数吗? 师生活动:120x x ∀∈+∞,(,),且12x x <,有121122=ln 26ln 26f x f x x x x x -+-+-()()()-()1122=ln2x x x x +-().因为120x x <<,所以1201x x <<,所以12ln0x x <,又因为120x x -<,于是1122ln20x x x x +-()<,即12f x f x ()<(). 所以,函数=ln 26f x x x +-()在区间0+∞(,)上单调递增.设计意图:让学生认识到零点存在定理可以证明函数有零点,但不能断定函数无零点或零点个数,如果要判断零点的个数,还要与结论“函数在单调区间上最多有一个零点”相结合.4.5.2 用二分法求方程的近似解(一) 二分法的引入我们已经知道,函数=ln 26f x x x +-()在区间23(,)内存在一个零点.进一步的问题是,如何在满足一定精确度的前提下求出这个零点呢?(二) 二分法的形成这个问题中设定的精确度为01.,可以理解为近似值与精确值之间的误差不超过01.. 一个直观的想法是:如果能将零点所在的区间尽量缩小,直到区间长度小于等于01.,那么区间内的任意一点都可以作为函数零点的近似值.为了方便,可以通过取区间中点的方法,逐步缩小零点所在的范围.取区间23(,)的中点25.,用计算工具算得250084f ≈-(.)..因为2530f f (.)()<,所以零点在区间253(.,)内,区间长度为0.5.再取区间253(.,)的中点275.,用计算工具算得2750512f ≈(.)..因为252750f f (.)(.)<,所以零点在区间25275(.,.)内,区间长度为0.25.由于23(,) 253(.,) 25275(.,.),所以零点所在的范围变小了. 如果重复上述步骤,那么零点所在的范围会越来越小.零点所在区间 区间长度 中点的值 中点的函数值23(,) 125. 0084-. 253(.,) 05. 275. 0512. 25275(.,.) 025. 2625. 0215. 252625(.,.) 0125.25625 .0066.2525625 (.,.)00625 .……这样,我们就可以通过有限次重复相同的步骤,将零点所在范围缩小到满足一定精确度的区间.因为区间2525625 (.,.)的长度为00625.,所以区间2525625 (.,.)内任意一点都可以作为零点的近似值,为了方便,我们把区间的一个端点=25x .作为函数=ln 26f x x x +-()零点的近似值,也即方程ln 260x x +-=的近似解.2.5 2.75 2.625 O 2 3 x y0.5 - 0.4 - 0.3 - 0.2 - 0.1 --0.1- -0.2- -0.3- -0.4- -0.5-这样求方程近似解的方法称为二分法,我们来看二分法的定义:对于在区间a b [,]上图象连续不断且0f a f b ()()<的函数=y f x (),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(三) 二分法的步骤我们依据解决上述问题的过程来概括一下:给定精确度ε,用二分法求函数=y f x ()零点0x 的近似值的一般步骤: 1.确定零点0x 的初始区间a b [,],验证0f a f b ()()<. 2.求区间a b (,)的中点c .3.计算f c (),并进一步确定零点所在的区间:(1)若=0f c ()(此时0=x c ),则c 就是函数的零点; (2)若0f a f c ()()<(此时0x a c ∈(,)),则令=b c ; (3)若0f c f b ()()<(此时0x c b ∈(,)),则令=a c . 4.判断是否达到精确度ε:若|a b ε-|<,则得到零点近似值a (或b );否则重复步骤2~4.(四) 二分法的应用例2 借助信息技术,用二分法求方程237xx +=的近似解(精确度为0.1)解:原方程即237=0xx -+,令=237xf x x -+(),用信息技术画出函数=y f x ()的图象,结合计算容易发现120f f ()()<,说明该函数在区间12(,)内存在零点0x .-5 O 5 10 xy16141210 8 64 2-2 -4 -6取区间12(,)的中点1=15x .,用信息技术算得15033f ≈(.)..因为1150f f ()(.)<,所以0115x ∈(,.).再取区间115(,.)的中点2=125x .,用信息技术算得125087f ≈-(.)..因为125150f f (.)(.)<,所以012515x ∈(.,.).同理可得,0137515x ∈(.,.),0137514375 x ∈(.,.). 由于137514375|=0062501 -|...<., 所以,原方程的近似解可取为1375..问题3:如果精确度改为0.01?0.001?0.000 1?怎样做才不会给我们带来过大的运算负担呢?师生活动:我们从二分法中提炼出了算法思想,借助于Excel 表格当中的函数功能呈现出来,具体来看:我们利用Excel 表格中的七列依次呈现区间端点a ,b ,区间中点c ,函数值f a (),f c (),f b ()和区间长度b a -,首先,我们输入初始区间12(,),然后,我们对单元格D3到H3依次应用公式完成输入,公式在编辑栏可见.对于单元格B4,我们利用Excel 的内置函数If 语句,它实现的功能是,如果0f a f c ()()<,则区间的左端点就是a ,否则是c ,同样,对于单元格C4,如果0f a f c ()()<,则区间的右端点就是c ,否则是b .接下来,我们选中单元格D3到H3,将鼠标移到单元格的右下角,鼠标指针变成十字形状,按住鼠标向下拖动一行,即可实现对单元格D4到H4的自动填充,更进一步的,我们选中单元格B4到H4,重复相同的操作,可以实现对以下若干行的自动填充.我们可以根据题目精确度的要求,选择拖动到哪一行结束.这个问题的解决让我们体会到,对于人工运算很耗时耗力的问题,如果借助于计算机,可以瞬间完成,既省时省力,又准确无误,可见,工具的选择和使用至关重要.设计意图:让学生体会信息技术在处理计算量较大而且有重复步骤的问题时的重要价值.4.5.3 函数模型的应用引言:以上,我们学习了函数在数学内部的应用,接下来我们学习函数模型的实际应用. (一) 已知函数模型例3 阅读下面资料并回答问题.良渚遗址位于浙江省杭州市余杭区良渚和瓶窑镇,1936年首次发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裹泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,于是推测古城存在时期为公元前3300年~前2500年.你知道考古学家在测定遗址年代时用了什么数学知识吗?在前面的学习中,我们得到了一个预备知识,注释:当生物死亡后,它机体内原有的碳14含量y 会随死亡年数x 在初始量k 的基础上按确定的比率p 衰减(p 称为衰减率),并满足函数关系=1xy k p k -∈R ()(,010 k p x ≠且0;<<;≥),大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.分析:首先,我们需要求出函数关系中的参数p ,明确函数解析式.然后,把0.552k 作为函数值代入解析式,求出死亡年数.解:根据已知条件,573011=2k p k -(),从而51=p -,所以生物体内碳14含量y 与死亡年数x 之间的函数解析式是5=xy k (.由样本中碳14的残留量约为初始量的55.2%可知,5=552xk (.%k ,即 5=0552x(..解得5=log552x ..由计算工具得 4 912x ≈.因为2010年之前的4 912年是公元前2903年,所以推断此水坝大概是公元前2903年建成的.设计意图:培养学生阅读理解的能力,培养学生从数学的角度分析和解决问题的能力. (二) 选择恰当的函数模型在实际问题中,有的能应用已知的函数模型解决,有的需要根据问题的条件建立函数模型加以解决.例4 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?问题1:你能根据对三种投资回报的描述,建立三种投资方案所对应的函数模型吗?师生活动: 设第x 天所得回报是y 元,则方案一可以用函数*=40y x ∈N ()进行描述;方案二可以用函数*=10y x x ∈N ()进行描述;方案三可以用函数1*=042x y x -⨯∈N .()进行描述.设计意图:培养学生把实际问题数学化的意识和能力.问题2:要对三个方案作出选择,就要对它们的增长情况进行分析.怎样借助已有函数模型,分析解决当前的问题?师生活动:首先我们可以画出三个函数的图象.通过图象我们直观地看到,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但是增长情况并不精确,不能体现投资收益与投资期限之间的关系.接下来,我们计算三种方案每天的回报数以及回报数的增长情况.x方案一方案二方案三y增加量/元y 增加量/元y增加量/元1 40 10 10 04.2 40 0 20 10 08. 04.3 40 0 30 10 16. 08.4 40 0 40 10 32. 16.5 40 0 50 10 64. 32.6 40 0 60 10 128.64.7 40 0 70 10 256. 128. 8 40 0 80 10 512. 256. 9 40 0 90 10 1024. 512. 10 40 0 100 10 2048.1024.… … … … … ……3040300102147483648 . 1073741824 .通过表格,我们可以发现,每天的回报数,在第1~3天,方案一最多;在第4天,方案一和方案二一样多;在第5~8天,方案二最多;第9天开始,方案三最多.但是,这似乎也不能体现投资收益与投资期限之间的关系.接下来,我们再看累计的回报数,=10y x =40y1=042x y -⨯.问题3:根据以上对函数模型增长情况的分析,我们该如何选择投资方案呢?师生活动:教师引导学生根据累计的回报数作为划分投资期限的标准.投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.设计意图:使学生认识到要作出正确选择,除了考虑每天的收益外,还要考虑一段时间内累计的回报.通过以上三种呈现方式可知,尽管方案一、方案二在第1天所得回报远大于方案三,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的.由此,我们更直观的理解了“直线上升”、“指数爆炸”的实际含义.接下来,我们一起来归纳一下用函数建立数学模型解决实际问题的基本过程:首先,我们要把实际问题化归为函数模型,经过运算和推理求出函数模型的解,然后,用数学问题的解来解释说明实际问题,使实际问题得以解决。
第三章函数的应用教学设计一、教学内容解析函数是描述事物运动变化规律的基本数学模型,在社会学、经济学和物理学领域有着广泛的应用.本章的基本内容是函数与方程和利用函数解决实际问题.函数与方程的紧密联系表达在函数f(x)的零点与相应方程f(x)=0的实根的联系上.不同的函数模型能够刻画现实世界不同的变化规律.例如,一次函数、二次函数、指数函数、对数函数以及幂函数就是常用的描述现实世界中不同增长规律的函数模型.函数模型的应用,一方面是利用函数模型解决问题;另一方面是建立恰当的函数模型,并利用所得的函数模型解释有关现象,对某些发展趋势进行预测.用函数模型解决实际问题的过程中,往往涉及复杂的数据处理.在处理复杂数据的过程中,需要大量使用信息技术.因此在函数应用的学习中要注意充分发挥信息技术的作用.本章既加深了学生对已学过的基本初等函数定义、图象、性质的理解,又能够让学生进一步体验函数是描述客观事物变化规律的基本数学模型、初步形成用函数观点理解和处理现实社会中的问题的意识和能力.二、目标和目标解析(1)通过本节课的教学活动,使学生进一步理解和掌握本章知识,体验函数是描述客观世界变化规律的基本数学模型,初步运用函数思想理解和处理现实生活和社会中的简单问题.(2)让学生养成对学过的知识和方法及时归纳整理的习惯,培养学生运用所学知识分析问题、认识问题和解决问题的能力.(3)创设问题情境,引导学生归纳总结本章知识和方法,师生共同探究应用它们解决简单问题的步骤与方法,体会数学建模的基本思想.(4)通过学习,感受数学在社会生活中的应用价值,培养学生学习数学的兴趣,发展学生的数学应用意识,提高学生的数学素养.三、教学问题诊断分析本节课之前学生已经系统学习了一次函数、反比例函数、二次函数、指数函数、对数函数和简单的幂函数,对于函数的概念、图象及性质有了一定程度的理解.并通过本章的学习,对于函数与方程的紧密联系以及建立函数模型解决实际问题有了一定的体验.初步感受到了函数与方程、转化与化归、数形结合的数学思想和方法,增强了数学应用意识.但是学生对动态和静态的认识还比较薄弱,对函数和方程的区别和联系认识还不够深刻,对应用函数的思想方法分析解决问题还不够熟练.因此,在教学过程中应该适当创设问题情境,尽可能多的给学生动手实践的机会,让学生从亲身体验中理解和掌握知识和方法.此外,由于学生总结归纳的能力还不够,在自己独立完成归纳任务时还有一些困难,学生还不能从一定高度去体会和感悟数学学习中的一些思想,这就需要老师适当的引导和帮助.四、教学支持条件分析本节课内容的教学中会有大量的复杂计算,需要精确的作出图象.而要方便的作出函数的图象,把学生从烦琐的计算和画图中解脱出来,将精力集中在本章知识结构的归纳和建立函数模型解决实际问题的研究上,就必须充分的利用计算机中的函数工具软件。
函数的应用一、课题:函数的应用二、教学目标:1.能够应用函数的性质解决有关数学问题,能够应用函数知识解决一些简单的实际问题;2.培养学生的阅读能力、文字语言转化为数学语言的能力及数学建模能力.三、教学重点:建立恰当的函数关系.四、教学过程:(一)主要知识:函数的综合问题主要有如下几个方面:1.函数的概念、性质和方法的综合问题;2.函数与其它知识,如方程、不等式、数列的综合问题;3.函数与解析几何的综合问题;4.联系生活实际和生产实际的应用问题.(二)主要方法:解数学应用题的一般步骤为:(1)审题;(2)建模;(3)求解;(4)作答.(三)例题分析:例1.从盛满20升纯酒精的容器里倒出1升,然后用水填满,再倒出1升混合溶液又用水填满,这样继续下去,如果倒第(1)n n≥次时共倒出纯酒精x升,倒第1n+次时共倒出纯酒精()f x升,则()f x的表达式是19()120f x x=+.例2.某工厂八年来某种产品总产量y与时间x(年)的函数关系如右图,下列四种说法①前三年中,产量的增长的速度越来越快,②前三年中,产量的增长的速度越来越慢,③第三年后,这种产品停止生产,④第三年后,年产量保持不变,其中说法正确的是()A②与③()B②与④()C①与③()D①与④例3.假设国家收购某种农产品的价格是1.2元/kg,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%),计划可收购mkg.为了减轻农民负担,决定税率降低x个百分点,预计收购可增加2x个百分点.(1)写出税收y(元)与x的函数关系;(2)要使此项税收在税率调节后不低于原计划的78%,确定x的取值范围.解:(1)由题知,调节后税率为(8)%x-,预计可收购(12%)m x kg+,总金额为1.2(12%)m x+元∴231.2(12%)(8)%(40042)(08)12500m y m x x x x x =+-=--<≤. (2)∵元计划税收1.28%m ⋅元,∴1.2(12%)(8)% 1.28%78%m x x m +-≥⋅⋅,得242880x x +-≤,442x -≤≤,又∵08x <≤,∴x 的取值范围为02x <≤.例4.某航天有限公司试制一种仅由金属A 和金属B 合成的合金,现已试制出这种合金400克,它的体积50立方厘米,已知金属A 的比重d 小于每立方厘米9克,大于每立方厘米8.8克;金属B 的比重约为每立方厘米7.2克.(1)试用d 分别表示出此合金中金属A 、金属B 克数的函数关系式;(2)求已试制的合金中金属A 、金属B 克数的取值范围.解:(1)此合金中含A 金属x 克、B 金属y 克, 则400507.2x y x y d +=⎧⎪⎨+=⎪⎩ , 解得40(8.89)7.2d x d d =<<-,360(8)(8.89)7.2d y d d -=<<-. (2)∵407.240(1)7.27.2d x d d ==+--在(8.8,9)上是减函数,∴200220x <<. 360(8)0.8360(1)7.27.2d y d d -==---在(8.8,9)上是增函数,180200y <<. 例5.用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可清除蔬菜上残留的农药量的12,用水越多洗掉的农药量越多,但总还有农药残留在蔬菜上,设用x 单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x .(1)试规定(0)f 的值,并解释其实际意义;(2)根据假定写出函数()f x 应满足的条件和具有的性质;(3)设21()1f x x =+,现有(0)a a >单位量的水,可清洗一次,也可以把水平均分成两份后清洗两次,哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.(四)巩固练习:1.甲、乙两人沿同一方向去B 地,途中都使用两种不同的速度1212,()v v v v <.甲一半路程使用速度1v ,另一半路程使用速度2v ,乙一半时间使用速度1v ,另一半时间使用速度2v ,甲、乙两人从A 地到B 地的路程与时间的函数图象及关系,有下面图中4个不同的图示分析(其中横轴t 表示时间,纵轴S 表示路程),其中正确的图示分析为(D ).()A (1) ()B (3) ()C (1)或(4) ()D (1)或(2)(1) (2) (3) (4)2.投寄本埠平信,每封信不超过20g 时付邮费0.6元,超过20g 不超过40g 时付邮费1.2元,依此类推,每增加20g 需增加邮费0.6元(重量在100g 以内),如果某人投一封重量为72.5g 的信,他应付邮费 ( D ) ()A 2.1元 ()B 2元 ()C 2.3元 ()D 2.4元2SS。
函数的应用教学设计教学目标:1.知识目标:能够运用指数函数,对数函数、幂函数的性质解决某些简单的实际问题.(1) 能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学道理,弄清题中出现的量及其数学含义.(2) 能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题(即建立数学模型),并运用函数的相关性质解决问题.(3) 能处理有关人口增长率、经济、物理等方面的实际问题.2.能力目标:通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.3. 情感目标:通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.教学重点、难点:重点是培养学生分析解决问题的能力和运用数学的意识。
难点是根据实际问题建立相应的数学模型教学方法:启发式、讨论式、诱思探究的教学方法教学用具:多媒体、实物展台教学过程:一、创设情景,设置问题:课前组织学生观看地球的人口的录像纪录片.数学来自生活,又应用于生活和生产实践.而实际问题中又蕴涵着丰富的数学知识,数学思想与方法.如刚刚学过的函数内容在实际生活中就有着广泛的应用.今天我们就一起来探讨几个应用问题.问题一:例1:1995年我国人口总数是12亿,如果人口的自然年增长率控制在%,问哪一年我国人口总数将超过14亿首先让学生搞清自然年增长率的含义,所以问题转化为已知年增长率为,利用指数函数求经过几年我国人口数将超过14亿解:设x年后人口总数为14亿,由题意,得即两边取对数,得答:13年后,即2008年我国人口总数将超过14亿。
问题解决后由教师简单小结一下研究过程中的主要步骤:(1) 阅读理解;(2)建立目标函数;(3)按要求解决数学问题.问题二:例2:按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。
第二十八教时
教材: 函数的应用举例二
目的: 要求学生熟悉属于“增长率”、“利息”一类应用问题,并能掌握其解法。
过程:
一、新授:
例一、(《教学与测试》 P69 第34课)
某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3
万件,为估计以后每月的产量,以这三个月的产量为依据,用一个函
数模拟该产品的月产量y 与月份x 的关系,模拟函数可选用二次函数
或c b a y x +⋅=(a,b,c 为常数),已知四月份该产品的产量为1.37万件,
请问:用以上那个函数作模拟函数较好?说明理由。
解:设二次函数为: r qx px y ++=2
由已知得:⎪⎩
⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧=++=++=++7.035.005.03.1392.1241r q p r q p r q p r q p
∴7.035.005.02++-=x x y
当 x = 4时,3.17.0435.0405.021=+⨯+⨯-=y
又对于函数 c b a y x +⋅=
由已知得:⎪⎩
⎪⎨⎧⎪⎩⎪⎨⎧==-=⇒=+=+=+4.15.08.03.12.1132c b a c ab c ab c ab ∴4.1)21(8.0+⨯-=x y 当 x = 4时,35.14.1)2
1(8.042=+⨯-=y 由四月份的实际产量为1.37万件,
|37.1|07.002.0|37.1|12-=<=-y y
∴选用函数4.1)2
1(8.0+⨯-=x y 作模拟函数较好。
例二、(《教学与测试》 P69 第34课)
已知某商品的价格每上涨x %,销售的数量就减少m x %,其中m 为 正常数。
1.当2
1=m 时,该商品的价格上涨多少,就能使销售的总金额最大? 2.如果适当的涨价,能使销售总金额增加,求m 的取值范围。
解:1.设商品现在定价a 元,卖出的数量为b 个。
由题设:当价格上涨x %时,销售总额为%)1(%)1(mx b x a y -⋅+=
即 ]10000)1(100[10000
2+-+-=x m mx ab y 取21=m 得:]22500)50([20000
2+--=x ab y 当 x = 50时,ab y 8
9max = 即该商品的价格上涨50%时,销售总金额最大。
2.∵二次函数]10000)1(100[10000
2+-+-=x m mx ab y 在 ])1(50,(m m x --上递增,在),)1(50[+∞-m
m 上递减 ∴适当地涨价,即 x > 0 , 即0)1(50>-m
m 就是 0 < m <1 , 能使销售总金额增加。
例三、(课本 91 例二)
按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和 为y ,存期为x ,写出本利和y 随存期x 变化的函数关系式。
如果 存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少? “复利”:即把前一期的利息和本金加在一起算作本金,再计算下一期利息。
分析:1期后 )1(1r a r a a y +=⨯+= 2期后 22)1(r a y += ……
∴ x 期后,本利和为:x r a y )1(+=
将 a = 1000元,r = 2.25%,x = 5 代入上式:
550225
.11000%)25.21(1000⨯=+⨯=y 由计算器算得:y = 1117.68(元)
二、如有时间多余,则可处理《课课练》 P101“例题推荐” 3
三、作业:《教学与测试》 P70 第7题
《课课练》“例题推荐”P100 1,2 P101 7,8。