三线八角-
- 格式:ppt
- 大小:646.00 KB
- 文档页数:15
数学三线八角模型数学中有一种特殊的八角形模型,它被称为数学三线八角模型。
这个模型在数学领域中有着重要的应用,它是由数学三线和八角形组成的。
下面我将详细介绍数学三线和八角形的定义和性质,以及数学三线八角模型的应用。
让我们来了解一下数学三线。
数学三线是指一个多边形内部的三条特殊的直线,它们分别是:内角平分线、中线和高线。
内角平分线是指从多边形内部的一个顶点出发,将相邻两个内角平分成相等的两部分的直线。
中线是指连接多边形的两个不相邻顶点的直线,并且中线的长度等于两个顶点连线长度的一半。
高线是指从多边形的一个顶点向对边的垂直直线。
接下来,我们来了解一下八角形。
八角形是一种具有八个角的多边形。
它有八条边和八个顶点。
八角形是一种特殊的多边形,它具有许多有趣的性质。
例如,八角形的内角和为1080度,每个内角的度数为135度。
此外,八角形的对角线个数为20条,对角线的长度可以通过数学公式计算得出。
有了数学三线和八角形的定义和性质,我们可以将它们结合起来,形成数学三线八角模型。
数学三线八角模型是指通过连接八角形的顶点和边上的特殊直线,形成的一个几何模型。
这个模型具有许多有趣的性质和应用。
数学三线八角模型在几何学中有着重要的应用。
它可以帮助我们研究八角形的特性和性质,推导出八角形的各种公式和定理。
例如,通过数学三线八角模型,我们可以证明八角形的内角和为1080度,每个内角的度数为135度。
这个结论对于解决与八角形相关的几何问题非常有帮助。
数学三线八角模型在数学解题中也有着广泛的应用。
通过运用数学三线八角模型,我们可以解决各种与八角形相关的问题。
例如,给定一个八角形的边长,我们可以利用数学三线八角模型中的定理和公式计算出八角形的面积和周长。
这对于解决实际问题非常有用,如建筑设计中的八角形建筑物的设计和计算。
数学三线八角模型还可以帮助我们研究其他几何形体的特性和性质。
通过将数学三线八角模型应用到其他多边形中,我们可以推导出它们的性质和定理。
2023七年级三线八角课件CATALOGUE 目录•引言•三线八角的定义和性质•基础概念和定理•习题解答和分析•课堂互动与拓展•教学反思和总结01引言1课程背景23学生在小学阶段已经接触过简单的图形知识七年级数学上册第一章已经学习了线段和角本课件是为了帮助学生巩固所学知识并深入理解三线八角相关内容掌握三线八角的概念及基本性质会用符号表示三线八角能利用三线八角解决实际问题课程目标教学内容三线八角的概念及基本性质三线八角的表示方法利用三线八角解决实际问题02三线八角的定义和性质三线八角的定义七年级数学中三线八角是指由同一条直线上的三条线段或射线组成的八个角。
底角: 在三角形中,相邻两边之间的夹角小于90度,这个角叫做底角。
顶角: 在三角形中,相邻两边之间的夹角大于90度,这个角叫做顶角。
等角: 如果两个角的度数相等,那么这两个角叫做等角。
如果两个角是等角,那么它们所对的边也是相等的。
等角对等边 在两条平行线被第三条直线所截的情况下,内错角相等。
内错角相等 在两条平行线被第三条直线所截的情况下,同位角相等。
同位角相等 对顶角相等是指如果两个角是对顶角,那么它们的度数相等。
对顶角相等在几何证明中,三线八角是一种常见的几何图形,常常被用来进行各种几何证明。
在解决一些实际问题时,三线八角也常常被用来作为辅助线或者构造一些几何形状。
03基础概念和定理基础概念射线一个点沿着一定方向无限延伸形成的图形。
直线一个或多个点沿着一定路径无限延伸形成的图形。
线段两个点之间的距离形成的图形。
平行线永远不会相交的两条直线。
相交线两条直线或射线在同一点相遇形成的交点。
定理的证明和解读对顶角相等两个相交的直线或射线在形成两个角,这两个角互为对顶角,它们的大小相等。
三角形内角和为180度一个三角形内的三个角的度数之和等于180度。
四边形内角和为360度一个四边形内的四个角的度数之和等于360度。
定理的应用利用对顶角相等,可以证明两个角是否相等。
三线八角练习题及答案三线八角练习题及答案在学习数学的过程中,练习题是非常重要的一环。
练习题不仅可以帮助我们巩固所学的知识,还可以提高我们的解题能力和思维灵活性。
而在数学中,三线八角是一个经典的几何问题,下面我们将介绍一些三线八角练习题及答案,帮助大家更好地理解和掌握这个问题。
题目一:已知一条线段AB,如何通过这条线段构造一个八角形?解答:首先,我们需要在线段AB上取一个点C,使得AC=AB。
然后,以C为中心,以AC为半径画一个圆。
接下来,我们再以A为中心,以AC为半径画一个圆。
这两个圆的交点分别为D和E。
然后,我们以D为中心,以AD为半径画一个圆,以E为中心,以AE为半径画一个圆。
这两个圆的交点分别为F和G。
最后,我们连接AD、AE、AF、AG、BF、BG,就可以构造出一个八角形。
题目二:已知一个八角形ABCDEFGH,如何通过这个八角形构造一个正方形?解答:首先,我们需要连接AC、CE、EG和GA,将八角形分成四个小三角形ACE、CEG、EGA和GAC。
然后,我们可以观察到,这四个小三角形都是等边三角形。
因此,我们可以得出结论:八角形ABCDEFGH是一个正八边形。
接下来,我们连接AD、BE、CF和DH,就可以构造出一个正方形。
题目三:已知一个八角形ABCDEFGH,如何通过这个八角形构造一个正六边形?解答:首先,我们需要连接AC、CE、EG和GA,将八角形分成四个小三角形ACE、CEG、EGA和GAC。
然后,我们可以观察到,这四个小三角形都是等边三角形。
因此,我们可以得出结论:八角形ABCDEFGH是一个正八边形。
接下来,我们连接AD、BE、CF和DH,得到一个正方形。
然后,我们连接AB、CD、EF和GH,得到一个正六边形。
通过以上三个练习题,我们可以看到,通过一些简单的几何构造,我们可以得到一些有趣的几何图形。
而这些几何图形的构造过程也是一种思维锻炼的方式。
通过解决这些问题,我们可以培养我们的观察力、推理能力和解决问题的能力。
浅析“三线八角”中的同位角、内错角、同旁内角雷家英北师大版初中数学七年级下册中的《平行线与相交线》这章中,讲述了两条直线被第三条直线所截时,形成“三线八角”。
三线八角是初中数学的基础,是研究平行线的判定和平行线性质的重点,更是后继学习平行四边形的准备。
但是,七年级下学期现在使用的各种版本的数学课本,对三线八角的概念没有一个完整的叙述,只是让学生从图上感知同位角、内错角、同旁内角,导致学生在学习平行线的判定与性质时,常常把与平行线有关的同位角、内错角、同旁内角找错。
在我的教学过程中,为了让学生能快速、准确地找出这三种角,我总结了有关方法,与大家一起来探讨一下。
首先,我们一起来探讨同位角,书中只说如图1具有∠3、∠5这样位置关系的角称为同位角,到底他们具有什么样的位置关系,没有具体的文字来描述,这对识图能力差的学生,一遇到稍微复杂的图形,就不能正确地找出同位角。
同位角:顾名思义,位置相同的两个角,即在两条被截直线的同一方向,截线的同一侧的两个角是同位角。
其两角三线所成的基本图形是:呈“F”字型。
这个“F”可以通过旋转、对称得到。
不管已知的图形有多复杂,只要找出图中的“F”个数,图中同位角的对数就是“F”的个数。
位角,并指出来。
分析:在该图中有4个“F”型,如:∠1与∠7所在直线构成“F”型,那么有4对同位角,∠1与∠7,∠4与∠8,∠3与∠5,∠2与∠6。
解:(略)从这道题中,我们可以看出找同位角,就是找图中的“F”,根据“F”来写出每对同位角,达到了快速、准确。
接下来,我们再一起探讨内错角和同旁内角。
内错角:内,指的是两条被截直线的内部;错,即交错、错开,合起来就是指位于两条被截直线的内部,截线异侧交错的两个角是内错角。
其两角三线所成的基本图形是:呈“Z”字型。
同旁内角:同旁,在同一旁边;内,指的是两条被截直线的内部,合起来就是指位于两条被截直线的内部,截线同侧交错的两个角是同旁角其两角三线所成的基本图形是:呈“U”字型。
三法助你识别三线八角
潘 凡
王小明同学刚刚学习了“三线八角”,他根据老师讲解的方法,
自己总结了识别“三线八角”的三种方法,让我们一起去看看吧!
一、定义法
根据定义可知两个角共涉及三条直线,两角的一边分别在两条直线上,而另一边在同一直线上,抓住“一边共线”便不难识别.
如图1中的∠1与∠2,涉及EF ,MG ,ND 三条直线,它们都有边在直线EF 同侧,∠1和∠2是同位角.
如图2中的∠1与∠2,涉及AD ,AC ,AB ,BC 四条直线,无公共边,故∠1和∠2不是同位角.
二、分离图形法
要说出图3中∠1与∠2,∠1与∠7,∠1与∠BAD ,∠2与∠6各对角的关系,可以把有共线边的两角从图中分离出来,形成如图4所示的简单的4个图形.
图4
这样就知道:∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角.
三、形象感受法
(1)同位角的边构成形如字母“F”状,如图5,∠M 与∠C NF 为同位角.
(2)内错角的边构成形如字母“Z ”状,如图6,∠M 与∠N 为内错角.
(3)同旁内角的边构成形如字母“U ”状,如图7,
∠M 与∠N 为
同旁内角.
图1
图2
图5
图6
图7
8 4 E
A
B D
C F
11
2 3
5 6 7 9 图3
2 1
A B
F
A
B
C
7 1
B
A
D F
1 6 B
A C
D
2
同学们,你们还有识别“三线八角”的其他方法吗?快与你的小伙伴们分享一下吧!。
开放周课题:同位角、内错角、同旁内角南靖县船场中学——石锡贤一、教学目标1.知识与技能目标:理解同位角、内错角、同旁内角的概念;能在基本的图形中找出同位角、内错角、同旁内角;2.过程与方法目标:经历由已知知识,发展推广到新知识的过程;从现实生活中抽象出数学问题并进行探索归纳过程;体会分类分步、化归等思维方法;3.情感与发展目标:从实际情景引入新课,培养学生学习数学的兴趣;从两直线相交到两直线被第三条所截的变化过程,感受数学的发展与变化关系;培养学生独立思考、合作学习等能力。
二、教学的重点和难点重点:从对顶角发展到同位角、内错角、同旁内角,牢固理解概念;难点:在具体图形中运用概念辨别同位角、内错角、同旁内角。
三、教学方法与手段:对比探索、合作归纳、动手实践四、教学过程:一、创设情景,引入主题引入语:风筝起源于中国,是一门古老的艺术。
相传最早在春秋战国时期,墨翟“费时三年,斫木为鸢,飞升天空”。
汉朝时期,蔡伦发明造纸术,开始以纸为材料制作;唐朝时期,有人加入了琴弦,风一吹,就发出像古筝那样的声音,始叫“风筝”!随着马可.波罗自中国返回欧洲后,风筝传到世界各地,据说莱特兄弟发明飞机就是源于对风筝的着迷。
学生朗读:“时间是人类发展的空间 , 发展是人类唯一的选择!”观察风筝的骨架结构,共同发现单线风筝的骨架是我们熟悉的“两条直线相交”(学生可能会认为是两条直线互相垂直,这是正确的,可以引导到一般的相交情况)展示双线风筝,它的骨架可以抽象成两条直线与中间的一条连接线。
(横着的两条线可以认为是平行的,本身同位角、同旁内角、内错角就是为平行线的判定服务,抽象的时候可以推广到一般情况)抽象出几何图形:“两条直线被第三条直线所截!”需要强调:第三条直线是联系前两条直线的纽带,起着桥梁作用,为后面抓住截线识别角与角的位置关系打下基础。
(设计说明:由学生熟悉的生活中的风筝引入,介绍数学文化,调动学生的情绪,提高学习兴趣。
三线八角的题型及解答1. 什么是三线八角?三线八角是一种数学题型,常见于中小学的数学考试中。
它的名称源自题目的形状,由三条线段和八个角构成。
这种题型通常要求解答与几何形状相关的问题,涉及到线段长度、角度大小、面积计算等内容。
2. 常见的三线八角题型2.1 线段长度计算这种题型要求根据给定的条件计算出某条线段的长度。
常见的条件包括已知两点坐标、已知与其他线段之间的关系等。
示例题:已知平面直角坐标系中,点A(3,4)和点B(7,9),求线段AB的长度。
解答:根据两点间距离公式可得:AB = √((x2-x1)^2 + (y2-y1)^2) = √((7-3)^2 + (9-4)^2) = √(16 + 25) = √41 所以线段AB的长度为√41。
2.2 角度计算这种题型要求根据给定条件计算出某个角度的大小。
常见的条件包括已知两条直线之间的夹角、已知三个点的坐标等。
示例题:已知平面直角坐标系中,点A(3,4)、点B(7,9)和点C(1,8),求∠ABC的大小。
解答:根据向量的内积公式可得:cos∠ABC = (AB·BC) / (|AB|·|BC|) 其中,AB = B - A = (7-3, 9-4) = (4, 5) BC = C - B = (1-7, 8-9) = (-6, -1) 所以,AB·BC = 4(-6) + 5(-1) = -24 - 5 = -29 |AB| = √(4^2 + 5^2) = √41 |BC| = √((-6)^2 + (-1)^2) = √37 代入公式计算可得:cos∠ABC ≈ -0.897 ∠ABC ≈ arccos(-0.897) ≈ 152.35° 所以∠ABC的大小约为152.35°。
2.3 面积计算这种题型要求根据给定条件计算出某个几何形状的面积。
常见的条件包括已知图形的边长、已知图形的高等。
示例题:已知平面直角坐标系中,正方形ABCD,顶点A(-2,-2),边长为4,求正方形ABCD的面积。
三线八角的公式
三线八角是一种常见的图形,也称为“三角星”。
它由三条相等的直线和八个相等的角组成,通常在学校数学课上被用来讲解角度、长度、面积等概念。
三线八角的公式可以用来计算三线八角的面积、周长等信息。
下面是一些常见的三线八角公式:
1.三线八角的面积公式:A = 3 * a^2 * sqrt(3) / 4。
其中,A表示三线八角的面积,a表示三线八角的边长。
2.三线八角的周长公式:C = 3 * a。
其中,C表示三线八角的周长,a表示三线八角的边长。
3.三线八角的内角公式:I = 180 / 3 = 60度。
其中,I 表示三线八角的内角。
由于三线八角是由三条相等的直线和八个相等的角组成的,因此它的内角都是相等的。
4.三线八角的外角公式:O = 360 / 3 = 120度。
其中,O 表示三线八角的外角。
由于三线八角是由三条相等的直线和八个相等的角组成的,因此它的外角都是相等的。
5.三线八角的边长公式:a = 2 * r * sin(30度)。
其中,a 表示三线八角的边长,r表示三线八角的内切圆半径。
三线八角的边长是由内切圆半径和角度30度的正弦值计算得出的。
上述公式是关于三线八角的常见公式,在学习和研究三线八角时可以作为参考。
希望这些公式能够对您有所帮助。
三线八角(同位角、内错角、同旁内角)的概念:如图:两条直线a1 , a2和第三条直线a3相交。
(或者说:直线 a1 , a2 被直线 a3 所截。
)a1a2a3876543211.观察∠ 1与∠5的位置:它们都在第三条直线 a3 的同旁,并且分别位于直线 a1 , a2 的相同一侧,这样的一对角叫做“同位角”。
2. 观察∠ 3与∠5的位置:它们都在第三条直线 a3 的异侧,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“内错角”。
3. 观察∠ 2与∠5的位置:它们都在第三条直线 a3 的同旁,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“同旁内角”。
知识整理(反思):问题 1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线) 寻找构成的角(八角)确定构成角中的关系角a1a2a387654321问题2:在下面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
【典型例题】例1:如图:请指出图中的同旁内角。
(提示:请仔细读题、认真看图。
)87654321AB C DE答: ∠1与∠5; ∠4与∠6; ∠1与∠A ; ∠5与∠A练习:1. 其中:∠1与∠5 ;∠4与∠6是直线 和直线 被直线 所截得到的同旁内角。
此时三线构成了 个角。
此时,同位角有: ,内错角有: 。
2.其中: ∠1与∠A 是直线 和直线 被直线 所截得到的同旁内角。
此时三线构成了 个角。
此时,同位角有: ,内错角有: 。
3.其中: ∠5与∠A 是直线 和直线 被直线 所截得到的同旁内角。
此时三线构成了 个角。
此时,同位角有: ,内错角有: 。
二.练习1.看图填空: 4321AB C F E D(1)若ED ,BC 被AB 所截,则∠1与 是同位角。
(2)若ED ,BC 被AF 所截,则∠3与 是内错角。
三线八角知识点总结
三线八角是指中国的“三线建设”和“八角政策”,旨在发展农村经济、加速城乡一体化。
以下是三线八角中的一些重要知识点总结。
“三线建设”
“三线建设”是指中国在20世纪60年代末期至70年代初期实施的战略。
当时中国面对国内紧张的政治形势和外部围堵的局面,在边疆和内陆地区建设大量军工厂和其他工业基地,以保障国防和工业化进程。
这些工业基地分别位于长江和珠江以北、西南和北部边疆地区,形成了一个三条线条贯穿中国科技成果集中的区域。
这些地区经济规模虽然相对较小,但是技术条件优越,对推动中国科技工业化的进程起到了重要作用。
“八角政策”
“八角政策”是指中国在20世纪80年代初实施的一项政策,即采取了“八个方面”的措施,以推动农业现代化和加快城乡一体化。
这些方面包括:
1. 扩大土地承包经营。
2. 推广高产、优质、高效农作物品种和良种畜禽。
3. 支持农村副业和家庭承包经营,鼓励农民自主发展。
4. 提高水利设施的水平,保障农田灌溉。
5. 增加畜牧养殖的科技含量,并提高其效益。
6. 发展农村小规模企业,提升农村经济发展水平。
7. 加强农产品流通渠道的建设,改善农民的营商环境。
8. 加强农村基础设施建设,为农村居民提供更好的生活条件。
以上的措施共同帮助推动了中国农业现代化和城乡一体化的进程。
这个政策在加速城乡一体化的同时,也促进了农村居民的经济收入和生活水平的提高。
找“三线” 识“八角“三线八角”是反映一条直线截两条直线所形成的八个角的位置关系,教材中我们分别称之为同位角、内错角、同旁内角,这条直线叫做截线,两条直线叫做被截线。
在教学中教师反复强调“同位角在截线同旁,在截线同方向;内错角在截线两旁,在被截线之间;同旁内角在截线同旁,在被截线之间。
”但是在实际学习中,学生往往张冠李戴、顾此失彼,除因概念本身牵扯到的线多角多外,笔者认为,主要在于没有找准截线和被截线。
如图,直线c截直线a、b,那么直线c叫做截线,直线a、b叫做被截线。
由定义可知,/1 与/2是同位角,/2与/3是内错角,/2与/4是同旁内角。
然而同时我们还发现,/1 和/2各有一条边都在截线c 上,另两条边分别在被截线b、c上。
/2与/3、/2与/4情况也一样。
于是我们有如下结论:两角的边所在的公共直线即为截线,两角另一边所在的直线为被截线。
下面看例题。
例1 判断图中/1与/2、/2与/3、/1与/3的位置关系?分析:/1的两条边所在的直线为直线a、b,Z2的两条边所在的直线为直线a、c,则公共直线a为截线,直线b、c为被截线。
由于/ 1、/2在直线a同旁,直线b、c右方,故/1与Z2为同旁内角,同理/2与/3为内错角,/1与/3为同旁内解:(略写)。
例2:找出图中同位角、内错角、同旁内角。
分析:图中共有4 条直线,没有说谁是截线被截线,那么任何一条都有可能作为截线。
因此,我们每3 条一组进行组合,共有①②③、①②④、①③④、②③④四组,在①②③中,所有的角都有公共顶点,故无同位角、内错角、同旁内角;在①②④中,直线BE与直线AD BC 都相交,故为BE截线,直线AD BC为被截线;在①③④中3条直线两两相交,那么每条直线均可作为截线;在②③④中,直线AC与直线AD BC都相交,故为AC截线,直线AD BC为被截线。
再根据定义即可求解。
解:①②③中,同位角、内错角、同旁内角均为0对;①②④中,同位角1对即/ EAD与/ EBC内错角0对、同旁内角1对即即/ DAB与/ABC①③④中,若BE为截线,AC BC为被截线时,同位角1对即/EAD 与/ EBC内错角0对、同旁内角1对即/ DAB与/ABC若BC为截线,AB AC为被截线时,同位角0对、内错角0 对、同旁内角1对即/ABC与/ACB若AC为截线,AB BC为被截线时,同位角0对、内错角1 对即/ EAC与/ ACB同旁内角1对即/ BAC与/ ACB②③④中,同位角0对、内错角1对即/DAC与/ACB同旁内角0对;故图中同位角2 对,内错角1 对,同旁内角4 对。
三线八角都是什么
两条直线a,b被第三条直线c所截会出现“三线八角”,其中有4对同位角,2对内错角,2对同旁内角。
“三线八角”也用来判定两条直线是否平行。
同位角
两条直线被第三条直线所截,在截线的同旁,且在被截两直线同一侧的角,我们把这样的两个角称为同位角。
内错角
两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角
同旁内角
两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。
两直线平行,同旁内角互补。
同旁内角互补,两直线平行。
直线平行判定
同位角相等,两直线平行。
内错角相等,两直线平行。
同旁内角互补,两直线平行。
在同一平面内,两直线不相交,即平行、重合。
两条直线平行于一条直线,则三条不重合的直线互相平行。
相反判定
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
如果两条直线都与第三条直线平行,
那么这两条直线也互相平行。
同位角、内错角、同旁内角(三线八角) 若直线a ,b 被直线l 所截:(1)同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做 同位角.(如15∠∠和)(2)内错角:两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角 叫做内错角.(如35∠∠和)(3)同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.(如36∠∠和) 注意:三线八角是位置关系,数量上没有确定的关系.a【例1】填空如图,∠2与∠3是_______角.∠2与∠4是_______角.∠2与∠5是_______角.∠1与∠5是_______角.∠3与∠5是_______角.∠3与∠7是_______角.∠3与∠8是_______角.∠2与∠8是_______角.【例2】看图填空(1)∠B和∠1是两条直线________和_______被第三条直线_______所截构成的_______角.(2)∠ACB与∠7是两条直线________和______被第三条直线______所截构成的_______角.(3)∠3与∠5是两条直线________和______被第三条直线______所截构成的_______角.(4)∠3与∠B是两条直线________和______被第三条直线______所截构成的_______角.(5)∠2与∠7是两条直线________和______被第三条直线______所截构成的_______角.【例3】如图,同旁内角有( )对.A.4对B.3对C.2对D.1对【例4】如图,同位角共有( )对.A.1对B.2对C.3对D.4对【例5】如图,是同位角关系的是( ).A.∠3和∠4 B.∠1和∠4B.C.∠2和∠4 D.不存在【例6】如图,内错角共有( )对.A.1对B.2对C.3对D.4对【例7】如图,同旁内角共有( )对.A.10对B.8对C.6对D.4对【例8】如图,∠1与∠2是是两条直线____和____被第三条直线______所截构成的_____角.∠3与∠4是两条直线________和______被第三条直线______所截构成的_______角.【例9】如图,∠C的同位角有_____________________,同旁内角是_____________________,∠1与∠2是___________角.直线AB和CD被AD所截,∠A∠A与∠ADC是_______角.【例10】如图,∠1的同位角是∠______,∠1的内错角是∠______,∠1的同旁内角是∠_____,∠1的对顶角是∠______,∠1的邻补角是∠______.【例11】如图,DC垂直于AE,已知∠DCE的同位角是它的一半,∠B=2∠ACB,试判断△ABC的形状.1、平行线的定义同一平面内,不相交的两条直线叫平行线. 2、平行线的基本性质(1)经过直线外一点,有且只有一条直线与已知直线平行; (2)平行线之间的距离处处相等;(3)平行于同一条直线的两直线平行(平行的传递性). (4)同一平面内,垂直于同一条直线的两直线平行.(5)两条平行线中,任意一条直线上的所有点到另一条直线的距离是一个定值,这个定值叫做这两条平行线间的距离,平行线间的距离处处相等.【例12】已知直线a //b ,b //c ,那么a ________c .【例13】a 、b 、c 是直线,且a //b ,b ⊥c ,则a 与c 的位置关系是________. 【例14】下列说法中,正确的是(). A .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行【例15】在同一平面内,有三条直线,其中只有两条是平行的,那么交点有().A .0个B .1个C .2个D .3个【例16】下列说法中,错误的有().①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b ,b ∥c ,那么a ∥c ;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种 A .3个B .2个C .1个D .0个【例17】如图,按要求画平行线.(1)过P 点画AB 的平行线EF ; (2)过P 点画CD 的平行线MN .【例18】如图,点A ,B 分别在直线1l ,2l 上,(1)过点A画到l的垂线段;2(2)过点B画直线CD∥l.1平行线的三种判定方法:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说,同位角相等,两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说,内错角相等,两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单地说,同旁内角互补,两直线平行.【例19】如图,请写出能判定CE∥AB的一个条件______________.【例20】如图,AB∥CD,AC⊥BC,∠BAC =65°,则∠BCD =_______度.【例21】如图,下列说法错误的是().A.∠1和∠3是同位角;B.∠1和∠5是同位角;C.∠1和∠2是同旁内角;D.∠5和∠6是内错角.【例22】已知,△ABC中DE垂直于AC与E,∠ACB=90°,试说明DE∥BC的理由.【例23】如图,∠5=∠CDA =∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:∵∠5=∠CDA(已知)∴_______//_______(内错角相等,两直线平行)∵∠5=∠ABC(已知)∴_______//_______(同位角相等,两直线平行)∵∠2=∠3(已知)∴_______//_______(内错角相等,两直线平行)∵∠BAD+∠CDA=180°(已知)∴_______//_______(同旁内角互补,两直线平行)∵∠5=∠CDA(已知),又∵∠5与∠BCD互补,∠CDA与_______互补(邻补角定义)∴∠BCD=∠6(等角的补角相等)∴_______//_______(同位角相等,两直线平行)【例24】如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,那么BE与DF平行吗?为什么?【例25】如图,∠2=3∠1,且∠1+∠3=90°,试说明//AB CD.【例26】已知∠1=∠2,DE平分∠BDC,DE交AB于点E,试说明AB//CD.【例27】已知AC、BC分别平分∠QAB、∠ABN,且∠1与∠2互余,试说明PQ//MN.【例28】如图,直线AB分别与直线CD、EF交于点O、点E,GO⊥OH,OH平分∠AOC,且∠EDO与∠GOB互余,试说明OH//EF.【例29】如图,∠ABE=∠E+∠D,试说明AB//CD的理由.【习题1】观察图,下列说法中,正确的是().A.3∠是内错角∠和4B.1∠和4∠是同位角C.5∠是内错角∠和2D.4∠和6∠是同旁内角【习题2】如图,能使AB∥CD的条件是( ).A.∠1=∠B B.∠3=∠AC.∠1+∠2+∠B=180°D.∠1=∠A【习题3】一学员在广场上练习驾车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度是( )F E21DCBA53486721A .第一次向左拐,第二次向右拐B .第一次向右拐,第二次向左拐C .第一次向右拐,第二次向右拐D .第一次向左拐,第二次向左拐【习题4】如图,在下列条件中,能判定AB //CD 的是()A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠4【习题5】如图,图中所标号的8个角,是∠1的同位角的是_________;∠3的内错角是 _________;∠7的同旁内角是_________;∠4的同位角是_________;∠6的内错角是 _________;∠2的同旁内角是_________.【习题6】如图,已知直线b ⊥a ,c ⊥a .那么直线b 与c 平行吗?如果平行,请给出证明; 如果不平行,举出反例.【习题7】如图,已知AC ⊥AE ,BD ⊥BF ,∠1=35°,∠2=35°,AC 与BD 平行吗?AE 与BF平行吗?为什么?【习题8】如图,∠1+∠2=180°.AE 与FC 会平行吗? 说明理由.30o 30o 50o 130o 50o 130o 50o 130o ab c12【习题9】根据图完成下列填空(括号内填写定理或公理) (1)∵∠1=∠4(已知)∴_________∥_________()(2)∵∠ABC +∠_________=180°(已知)∴AB ∥CD ()(3)∵∠_________=∠_________(已知)∴AD ∥BC ()(4)∵∠5=∠_________(已知)∴AB ∥CD ()【习题10】已知DE ⊥BC ,FG ⊥BC ,∠DEH =∠GFC ,试说明EH ∥FC 的理由.【习题11】 已知∠EDC +∠B =180°,∠EDC =∠A ,试说明AE //BC 的理由.【习题12】已知:∠ABC =∠ADC ,BF 和DE 分别平分∠ABC 和∠ADC ,12∠=∠.试说明DE ∥BF 的理由.【习题13】已知直线a ,b ,c 被直线d 所截,01334180∠=∠∠+∠=,,试说明a ∥c .2431E DCB Aα【作业1】下列说法中正确的是( )A .经过一点,有且只有一条直线与已知直线平行B .两条直线被第三条直线所截,同位角相等C .垂直于同一条直线的两条直线互相垂直D .两条直线被第三条直线所截,内错角相等,则两条直线平行【作业2】在同一平面内,若a ⊥b ,c ⊥b 则a 与c 的关系是()A .平行B .垂直C .相交D .以上都不对【作业3】如图,∠ADE 和∠CED 是( )A .同位角B .内错角C .同旁内角D .互为补角【作业4】如图,属于内错角的是()A .∠1和∠2B .∠2和∠3C .∠1和∠4D .∠3和∠4【作业5】下列有关垂直相交的说法:①同一平面内,垂直于同一条直线的两条直线互相平行;②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直; ③同一平面内, 一条直线不可能与两条相交直线都垂直; 其中说法正确个数有( )A .3个B .2个C .1个D .0个【作业6】下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题B .②、③是正确命题C .①、③是正确命题D .以上结论皆错【作业7】如图,能与α∠构成同旁内角的角有()A .5个B .4个C .3个D .2个N M F E D C B A H G N M F E DC B A 【作业8】如图,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA .(1)判断CD 与AB 的位置关系;(2)BE 与DF 平行吗?为什么?【作业9】 如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,试说明DG //BC 的理由.【作业10】如图,AB 、CD 被EF 所截,MG 平分∠BMN ,NH 平分∠DNM ,已知∠GMN +∠HNM =90°,试问:AB ∥CD 吗?请说明理由.【作业11】 如图, ∠B =∠C ,∠A =∠D ,试说明AE //DF .【作业12】如图,已知:∠B+∠D=∠BED.AB与CD平行吗,说明理由.。