投射样品制备技术
- 格式:pdf
- 大小:700.58 KB
- 文档页数:33
透射电镜的样品制备透射电镜的样品制备是一项较复杂的技术,它对能否得到好的TEM像或衍射谱是至关重要的.投射电镜是利用样品对如射电子的散射能力的差异而形成衬度的,这要求制备出对电子束"透明"的样品,并要求保持高的分辨率和不失真.电子束穿透固体样品的能力主要取决加速电压,样品的厚度以及物质的原子序数.一般来说,加速电压愈高,原子序数愈低,电子束可穿透的样品厚度就愈大.对于100~200KV的透射电镜,要求样品的厚度为50~100nm,做透射电镜高分辨率,样品厚度要求约15nm(越薄越好).透射电镜样品可分为:粉末样品,薄膜样品,金属试样的表面复型.不同的样品有不同的制备手段,下面分别介绍各种样品的制备.(1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚于100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可.(2)薄膜样品绝大多数的TEM样品是薄膜样品,薄膜样品可做静态观察,如金相组织;析出相形态;分布,结构及与基体取向关系,错位类型,分布,密度等;也可以做动态原位观察,如相变,形变,位错运动及其相互作用.制备薄膜样品分四个步骤:a将样品切成薄片(厚度100~200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料(如Si,GaAs,NaCl,MgO)可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直接切割.b切割成φ3mm的圆片用超声钻或puncher将φ3mm薄圆片从材料薄片上切下来.c预减薄使用凹坑减薄仪可将薄圆片磨至10μm厚.用研磨机磨(或使用砂纸),可磨至几十μm.d终减薄对于导电的样品如金属,采用电解抛光减薄,这方法速度快,没有机械损伤,但可能改变样品表面的电子状态,使用的化学试剂可能对身体有害.对非导电的样品如陶瓷,采用离子减薄,用离子轰击样品表面,使样品材料溅射出来,以达到减薄的目的.离子减薄要调整电压,角度,选用适合的参数,选得好,减薄速度快.离子减薄会产生热,使样品温度升至100~300度,故最好用液氮冷却样品.样品冷却对不耐高温的材料是非常重要的,否则材料会发生相变,样品冷却还可以减少污染和表面损伤.离子减薄是一种普适的减薄方法,可用于陶瓷,复合物,半导体,合金,界面样品,甚至纤维和粉末样品也可以离子减薄(把他们用树脂拌合后,装入φ3mm金属管,切片后,再离子减薄).也可以聚集离子术(FIB)对指定区域做离子减薄,但FIB很贵.对于软的生物和高分子样品,可用超薄切片方法将样品切成小于100nm的薄膜.这种技术的特点是样品不会改变,缺点是会引进形变.(3)金属试样的表面复型即把准备观察的试样的表面形貌(表面显微组织浮凸)用适宜的非晶薄膜复制下来,然后对这个复制膜(叫做复型)进行透射电镜观察与分析.复型适用于金相组织,断口形貌,形变条纹,磨损表面,第二相形态及分布,萃取和结构分析等.制备复型的材料本身必须是"无结构"的,即要求复型材料在高倍成像时也不显示其本身的任何结构细节,这样就不致干扰被复制表面的形貌观察和分析.常用的复型材料有塑料,真空蒸发沉积炭膜(均为非晶态物质).常用的复型有:a塑料一级复型,分辨率为10~20nm;b炭一级复型,分辨率2nm,c塑料-炭二级复型,分辨率10~20nm;d萃取复型,可以把要分析的粒子从基体中提取出来,这种分析时不会受到基体的干扰.除萃取复型外,其余复型只不过是试样表面的一个复制品,只能提供有关表面形貌的信息,而不能提供内部组成相,晶体结构,微区化学成分等本质信息,因而用复型做电子显微分析有很大的局限性,目前,除萃取复型外,其他复型用的很少.。
由透射电镜的工作原理可知,供透射电镜分析的样品必须对电子束是透明的;此外,所制得的样品还必须可以真实反映所分析材料的某些特征,因此,样品制备在透射电子显微分析技术中占有相当重要的位置,也是一个涉及面很广的题目。
大体上透射电镜样品可分为间接样品和直接样品。
我们下面将对间接样品的制备作简单介绍。
间接样品“复型”可以分为五步来进行:第一步,在拟分析的样品表面滴一滴丙酮,将醋酸纤维素薄膜即A.C.纸覆盖其上,适当按压形成不夹气泡的一级复型;第二步,待上述一级复型干燥后,小心地将其剥离,并将复制面向上平整地固定在玻璃片上;第三步,将固定好复型地玻璃片连同一白瓷片置于真空镀膜室中,以垂直方向喷涂碳,以制备由塑料和碳膜构成地“复合复型”。
白色瓷片表面在喷碳过程中颜色的变化可以表示碳膜的厚度。
第四步,将复合复型上要分析的区域剪为略小于样品台钢网的小方块后,使碳膜面朝里,贴在事先熔在干净玻璃片上的低熔点石蜡层上,石蜡液层冷凝后即把复合膜块固定在玻璃片上。
将该玻璃片放入丙酮液中,复合复型的A.C.纸在丙酮中将逐渐被溶解,同时适当加热以溶解石蜡。
最后,待AC纸和石蜡溶解干净后,碳膜(即二级复型)将漂浮在丙酮液中,将其转移至清洁的丙酮液中清洗后,再转移至盛蒸馏水的器皿中。
此时,由于水的表面张力,碳膜会平展地漂浮在水面,用样品铜网将其捞起,干燥后即可置于电镜下观察。
透射电镜的样品制备是一项较复杂的技术,它对能否得到好的TEM像或衍射谱是至关重要的.投射电镜是利用样品对如射电子的散射能力的差异而形成衬度的,这要求制备出对电子束"透明"的样品,并要求保持高的分辨率和不失真.电子束穿透固体样品的能力主要取决加速电压,样品的厚度以及物质的原子序数.一般来说,加速电压愈高,原子序数愈低,电子束可穿透的样品厚度就愈大.对于100~200KV的透射电镜,要求样品的厚度为50~100nm,做透射电镜高分辨率,样品厚度要求约15nm(越薄越好).透射电镜样品可分为:粉末样品,薄膜样品,金属试样的表面复型.不同的样品有不同的制备手段,下面分别介绍各种样品的制备.(1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚于100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可.(2)薄膜样品绝大多数的TEM样品是薄膜样品,薄膜样品可做静态观察,如金相组织;析出相形态;分布,结构及与基体取向关系,错位类型,分布,密度等;也可以做动态原位观察,如相变,形变,位错运动及其相互作用.制备薄膜样品分四个步骤:a将样品切成薄片(厚度100~200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料(如Si,GaAs,NaCl,MgO)可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直接切割.b切割成φ3mm的圆片用超声钻或puncher将φ3mm薄圆片从材料薄片上切下来.c预减薄使用凹坑减薄仪可将薄圆片磨至10μm厚.用研磨机磨(或使用砂纸),可磨至几十μm.d终减薄对于导电的样品如金属,采用电解抛光减薄,这方法速度快,没有机械损伤,但可能改变样品表面的电子状态,使用的化学试剂可能对身体有害.对非导电的样品如陶瓷,采用离子减薄,用离子轰击样品表面,使样品材料溅射出来,以达到减薄的目的.离子减薄要调整电压,角度,选用适合的参数,选得好,减薄速度快.离子减薄会产生热,使样品温度升至100~300度,故最好用液氮冷却样品.样品冷却对不耐高温的材料是非常重要的,否则材料会发生相变,样品冷却还可以减少污染和表面损伤.离子减薄是一种普适的减薄方法,可用于陶瓷,复合物,半导体,合金,界面样品,甚至纤维和粉末样品也可以离子减薄(把他们用树脂拌合后,装入φ3mm金属管,切片后,再离子减薄).也可以聚集离子术(FIB)对指定区域做离子减薄,但FIB很贵.对于软的生物和高分子样品,可用超薄切片方法将样品切成小于100nm的薄膜.这种技术的特点是样品不会改变,缺点是会引进形变.(3)金属试样的表面复型即把准备观察的试样的表面形貌(表面显微组织浮凸)用适宜的非晶薄膜复制下来,然后对这个复制膜(叫做复型)进行透射电镜观察与分析.复型适用于金相组织,断口形貌,形变条纹,磨损表面,第二相形态及分布,萃取和结构分析等.制备复型的材料本身必须是"无结构"的,即要求复型材料在高倍成像时也不显示其本身的任何结构细节,这样就不致干扰被复制表面的形貌观察和分析.常用的复型材料有塑料,真空蒸发沉积炭膜(均为非晶态物质).常用的复型有:a塑料一级复型,分辨率为10~20nm;b炭一级复型,分辨率2nm,c塑料-炭二级复型,分辨率10~20nm;d萃取复型,可以把要分析的粒子从基体中提取出来,这种分析时不会受到基体的干扰.除萃取复型外,其余复型只不过是试样表面的一个复制品,只能提供有关表面形貌的信息,而不能提供内部组成相,晶体结构,微区化学成分等本质信息,因而用复型做电子显微分析有很大的局限性,目前,除萃取复型外,其他复型用的很少.TRANSMISSIONELECTRONMICROSCOPE利用电子,一般是利用电子透镜聚焦的电子束,形成放大倍数很高的物体图像的设备。
Living up to Lifeleica常规生物透射电镜样品制备概要1.取材及固定固定的目的是尽可能使细胞中的各细胞器以及大分子结构保持生活状态,并且牢固地固定在它们原来所在的位置上般来说固定有以下作用:1、破坏细胞的酶系统,阻止细胞的自溶;2、稳定细物质成分,如核酸、核蛋白,糖类和指类,使之发生交联,减少或避免抽提作用,以保存组织成分:3、在一些细胞组分之间以化学反应和物理反应建立交联,以提供一个骨架来稳定各种细胞器的空构型:4、能提供一定的电子反差L1动物及人体织的取材固定组织样品最重要的问题是速度,固定太慢会导致超微结构的改变111注定有条件尽可能活体灌注固定。
先腹腔注射巴比妥酸盐麻赛实验动物(如比妥钠.20-30mg/kg).打开腹腔,由腹主动脉插入针管,在肝脏附近切开一处静脉,启动蠕动泵开始灌注。
先灌注PBS冲洗液(37C,体积约13倍血液体积,200g 大鼠约需要10ml),可以在PBS内加入抗凝血剂防止血液凝固,然后灌注固定液(先37℃,再4℃),续5-10分钟,另一种灌注方法通过左心室,这种方法需要打开胸腔,动物呼吸停止,针管由左心室插入升主动脉,剪开右心耳,随后的步骤与上述灌注一样。
这种方法在胸腔打开后呼吸会立即停止,要求操作者尽快进行后续操作另外,向心脏插针管比向腹主动脉插针管要简单些,特别是对于一些很小的实验动物灌注后取出组织,切成1mm见方小块,再后用相同固定液固定30-60分钟左右112新检实样定血管不发达的组织,快速活体取材后立即投入固定液,同样,活检样品也要立即投入固定液,然后再尽快切成小块。
方法如下:麻醉或断头急性处死,解剖出所需器官,用解剖剪刀剪取一小块组织,放在干净的纸板上,滴一滴冷却的固定液,用新的、无油污锋利的《双面》刀片将材料切成大约1mm宽m长的小块,再将其切成1mm的小块,取材要尽量快速准确如果有方向要求,如一些空腔器官、皮肤、角膜等,要注意方向性,保证需要观察的部位准确取到。
X射线衍射实验样品制备要求第一篇:X射线衍射实验样品制备要求X射线衍射实验样品制备要求1.金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。
对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。
因此要求测试时合理选择响应的方向平面。
对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。
2.粉末样品要求磨成320目的粒度,约40微米。
粒度粗大衍射强度底,峰形不好,分辨率低。
要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。
粉末样品要求在3克左右,如果太少也需5毫克。
样品可以是金属、非金属、有机、无机材料粉末。
X射线光电子能谱1.样品的大小块状样品和薄膜样品,其长宽最好小于10mm, 高度小于5 mm。
对于体积较大的样品则必须通过适当方法制备成合适大小的样品。
但在制备过程中,必须考虑处理过程可能对表面成分和状态的影响。
2.粉体样品对于粉体样品有两种常用的制样方法。
一种是用双面胶带直接把粉体固定在样品台上,另一种是把粉体样品压成薄片,然后再固定在样品台上。
前者的优点是制样方便,样品用量少,预抽到高真空的时间较短,缺点是可能会引进胶带的成分。
后者的优点是可以在真空中对样品进行处理,如加热,表面反应等,其信号强度也要比胶带法高得多。
缺点是样品用量太大,抽到超高真空的时间太长。
在普通的实验过程中,一般采用胶带法制样。
3.含有有挥发性物质的样品对于含有挥发性物质的样品,在样品进入真空系统前必须清除掉挥发性物质。
一般可以通过对样品加热或用溶剂清洗等方法。
4.带有微弱磁性的样品由于光电子带有负电荷,在微弱的磁场作用下,也可以发生偏转。
当样品具有磁性时,由样品表面出射的光电子就会在磁场的作用下偏离接收角,最后不能到达分析器,因此,得不到正确的XPS谱。
此外,当样品的磁性很强时,还有可能使分析器头及样品架磁化的危险,因此,绝对禁止带有磁性的样品进入分析室。
包埋块的制备(1)取材分别取在铅胁迫浓度为0μg/g、1 000μg/g时,接种AMF的玉米须根。
用镊子夹取玉米须根,并用蒸馏水冲洗干净后,用锋利的无油污双面刀片将其切成0.5 cm大小的根段。
(2)前固定将玉米根段放入装有3%戊二醛固定液的1 ml离心管中,并用真空泵抽去组织内部的气体,0-4℃下固定6 h或过夜。
(3)漂洗用0.1 ml/L PBS(pH7.2)漂洗4-6次,开始时间间隔较短,15~20 min换一次,最后1 h换1次。
(4)后固定1%锇酸4℃固定2 h。
(5)漂洗PBS缓冲液漂洗多次。
(6)丙酮脱水从低浓度脱水剂逐步过渡到高浓度脱水剂。
30%丙酮(20 min)→50%丙酮(30 min)→70%丙酮(30 min)→80%丙酮(30 min)→90%丙酮(30 min)→95%丙酮(30 min)→100%丙酮(30 min)→100%丙酮(30 min)→100%丙酮(30 min)。
(7)浸透浸透的目的是用包埋剂逐步取代植物组织中的脱水剂,使细胞内外空隙被包埋剂所填充。
按Epon812(9.5 ml)、DDSA(4.9 ml)、MNA(5.6 ml)、DMP-30(0.3ml)的比例配好包埋剂。
包埋剂:丙酮(1:3)浸透2~3 h→包埋剂:丙酮(1:1)浸透4~5 h→包埋剂:丙酮(3:1)浸透10~12 h→纯包埋剂浸透24 h→纯包埋剂浸透48 h。
(8)包埋先加一滴包埋剂在包埋板孔前端,再用牙签把组织块送入包埋板孔最前端的中部后,将写好的标签放在后端的中间,最后用纯包埋剂加满包埋孔,不能产生气泡。
(9)聚合将含有包埋好样品的包埋板放入烘箱内,30℃下放置48 h,60℃放置48 h。
组织块从烘箱中取出后,放在干燥器中保存。
3.2.8.2修整包埋块(1)用样品夹夹紧包埋块,放于双目显微镜下。
(2)先用单面刀片将包埋块修成金字塔形,顶面修成大约1 mm2的长方形或梯形。
透射电镜中样品制备的常用方法透射电子显微镜(Transmission Electron Microscope,TEM)是一种重要的高分辨率显微镜,常用于研究物质的微观结构和性质。
在使用透射电镜观察样品之前,需要对样品进行制备,以确保样品的质量和形貌。
本文将介绍透射电镜中常用的样品制备方法,包括样品的选择、切片制备、薄膜制备等。
1. 样品的选择在进行透射电镜观察之前,样品的选择非常重要。
通常,样品需要满足以下要求:•样品具有一定的透明度,能够让电子束穿透。
•样品存在较为稳定的晶体结构,以便进行晶体学分析。
•样品的尺寸合适,不过大以免超出透射电镜的观察范围。
•样品的形状和厚度需适合观察操作。
常见的样品包括金属、有机物、无机晶体、陶瓷和生物样品等。
2. 切片制备透射电镜观察样品的常用方法之一是制备薄片,即切片制备。
切片制备的目的是将样品制备成适合透射电镜观察的薄片,通常要求薄片的厚度在几百纳米到几微米之间。
切片制备的步骤如下:步骤1:固定样品对于生物样品,首先需要将样品固定。
常用的固定方法包括冷冻固定、化学固定和凝胶固定等。
这些方法可以保持样品原有的结构和形态。
步骤2:取样从固定的样品中取出小块样品,通常使用显微针或者显微刀进行操作。
步骤3:去脂处理(可选)对于脂肪含量较高的样品,需要进行去脂处理。
常见的方法包括冷冻去脂、溶液去脂等。
步骤4:嵌培将取样得到的样品嵌入切片中,嵌培有多种方法。
常用的方法包括:冷冻嵌培、树脂嵌培等。
步骤5:切割将嵌培好的样品进行切割。
切割时需要使用马来酸酐刀或者超薄刀,在适当的位置进行切割,得到适合的样品。
步骤6:收集和保护薄片将切割好的薄片收集并放置在适当的载玻片或网格中,然后进行保护。
保护可以使用丙酮或乙醇进行漂洗、涂层等方法。
3. 薄膜制备除了切片制备外,透射电镜观察样品的另一种常用方法是薄膜制备。
相对于切片制备,薄膜制备更加灵活,可以制备更薄的样品。
薄膜制备的步骤如下:步骤1:样品制备制备需要制备的样品,并确保样品的表面较为光滑。
纳米材料透射电镜样品制备方法
制备纳米材料透射电镜样品是一项复杂的过程,需要精密的操
作和合适的设备。
以下是一种常见的制备方法:
1. 样品准备,首先,需要选择合适的纳米材料,例如金属纳米
颗粒或纳米结构的半导体材料。
然后,将样品分散在适当的溶剂中,如乙醇或丙酮,以获得均匀的分散液。
2. 标本制备,将分散的纳米材料溶液滴在碳膜覆盖的透射电镜
网格上。
通过自然干燥或者较低温度的热处理,使样品均匀地分布
在网格上,并且避免聚集和团聚。
3. 真空干燥,将样品置于真空中进行干燥,以去除溶剂和任何
可能的残留物,确保样品的纯净度和稳定性。
4. 透射电镜观察,将制备好的样品放入透射电镜中进行观察。
在观察之前,通常需要使用离子束或者溅射技术制备悬臂梁样品,
以确保样品的薄度和透明度。
此外,还有一些其他的制备方法,如冷冻切片法、离子磨薄法
等,可以根据具体的样品特性和研究需求选择合适的方法。
在制备过程中,需要注意样品的稳定性和纯净度,避免杂质的引入和样品的变形。
同时,也需要根据透射电镜的要求,调整样品的厚度和形貌,以获得清晰的观察结果。
总的来说,纳米材料透射电镜样品的制备是一个细致而关键的步骤,对于后续的观察和分析具有重要意义。
由透射电镜的工作原理可知,供透射电镜分析的样品必须对电子束是透明的;此外,所制得的样品还必须可以真实反映所分析材料的某些特征,因此,样品制备在透射电子显微分析技术中占有相当重要的位置,也是一个涉及面很广的题目。
大体上透射电镜样品可分为间接样品和直接样品。
我们下面将对间接样品的制备作简单介绍。
间接样品“复型”可以分为五步来进行:第一步,在拟分析的样品表面滴一滴丙酮,将醋酸纤维素薄膜即A.C.纸覆盖其上,适当按压形成不夹气泡的一级复型;第二步,待上述一级复型干燥后,小心地将其剥离,并将复制面向上平整地固定在玻璃片上;第三步,将固定好复型地玻璃片连同一白瓷片置于真空镀膜室中,以垂直方向喷涂碳,以制备由塑料和碳膜构成地“复合复型”。
白色瓷片表面在喷碳过程中颜色的变化可以表示碳膜的厚度。
第四步,将复合复型上要分析的区域剪为略小于样品台钢网的小方块后,使碳膜面朝里,贴在事先熔在干净玻璃片上的低熔点石蜡层上,石蜡液层冷凝后即把复合膜块固定在玻璃片上。
将该玻璃片放入丙酮液中,复合复型的A.C.纸在丙酮中将逐渐被溶解,同时适当加热以溶解石蜡。
最后,待AC纸和石蜡溶解干净后,碳膜(即二级复型)将漂浮在丙酮液中,将其转移至清洁的丙酮液中清洗后,再转移至盛蒸馏水的器皿中。
此时,由于水的表面张力,碳膜会平展地漂浮在水面,用样品铜网将其捞起,干燥后即可置于电镜下观察。
透射电镜的样品制备是一项较复杂的技术,它对能否得到好的TEM像或衍射谱是至关重要的.投射电镜是利用样品对如射电子的散射能力的差异而形成衬度的,这要求制备出对电子束"透明"的样品,并要求保持高的分辨率和不失真.电子束穿透固体样品的能力主要取决加速电压,样品的厚度以及物质的原子序数.一般来说,加速电压愈高,原子序数愈低,电子束可穿透的样品厚度就愈大.对于100~200KV的透射电镜,要求样品的厚度为50~100nm,做透射电镜高分辨率,样品厚度要求约15nm(越薄越好).透射电镜样品可分为:粉末样品,薄膜样品,金属试样的表面复型.不同的样品有不同的制备手段,下面分别介绍各种样品的制备.(1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚于100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可.(2)薄膜样品绝大多数的TEM样品是薄膜样品,薄膜样品可做静态观察,如金相组织;析出相形态;分布,结构及与基体取向关系,错位类型,分布,密度等;也可以做动态原位观察,如相变,形变,位错运动及其相互作用.制备薄膜样品分四个步骤:a将样品切成薄片(厚度100~200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料(如Si,GaAs,NaCl,MgO)可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直接切割.b切割成φ3mm的圆片用超声钻或puncher将φ3mm薄圆片从材料薄片上切下来.c预减薄使用凹坑减薄仪可将薄圆片磨至10μm厚.用研磨机磨(或使用砂纸),可磨至几十μm.d终减薄对于导电的样品如金属,采用电解抛光减薄,这方法速度快,没有机械损伤,但可能改变样品表面的电子状态,使用的化学试剂可能对身体有害.对非导电的样品如陶瓷,采用离子减薄,用离子轰击样品表面,使样品材料溅射出来,以达到减薄的目的.离子减薄要调整电压,角度,选用适合的参数,选得好,减薄速度快.离子减薄会产生热,使样品温度升至100~300度,故最好用液氮冷却样品.样品冷却对不耐高温的材料是非常重要的,否则材料会发生相变,样品冷却还可以减少污染和表面损伤.离子减薄是一种普适的减薄方法,可用于陶瓷,复合物,半导体,合金,界面样品,甚至纤维和粉末样品也可以离子减薄(把他们用树脂拌合后,装入φ3mm金属管,切片后,再离子减薄).也可以聚集离子术(FIB)对指定区域做离子减薄,但FIB很贵.对于软的生物和高分子样品,可用超薄切片方法将样品切成小于100nm的薄膜.这种技术的特点是样品不会改变,缺点是会引进形变.(3)金属试样的表面复型即把准备观察的试样的表面形貌(表面显微组织浮凸)用适宜的非晶薄膜复制下来,然后对这个复制膜(叫做复型)进行透射电镜观察与分析.复型适用于金相组织,断口形貌,形变条纹,磨损表面,第二相形态及分布,萃取和结构分析等.制备复型的材料本身必须是"无结构"的,即要求复型材料在高倍成像时也不显示其本身的任何结构细节,这样就不致干扰被复制表面的形貌观察和分析.常用的复型材料有塑料,真空蒸发沉积炭膜(均为非晶态物质).常用的复型有:a塑料一级复型,分辨率为10~20nm;b炭一级复型,分辨率2nm,c塑料-炭二级复型,分辨率10~20nm;d萃取复型,可以把要分析的粒子从基体中提取出来,这种分析时不会受到基体的干扰.除萃取复型外,其余复型只不过是试样表面的一个复制品,只能提供有关表面形貌的信息,而不能提供内部组成相,晶体结构,微区化学成分等本质信息,因而用复型做电子显微分析有很大的局限性,目前,除萃取复型外,其他复型用的很少.TRANSMISSION ELECTRON MICROSCOPE利用电子,一般是利用电子透镜聚焦的电子束,形成放大倍数很高的物体图像的设备。
透射电子显微镜样品制备技术样品制备的方法随生物材料的类型以及研究目的而各有不同。
对生物组织和细胞等,一般多用超薄切片技术,将大尺寸材料制成适当大小的超薄切片,并且利用电子染色、细胞化学、免疫标记及放射自显影等方法显示各种超微结构、各种化学物质的部位及其变化。
对生物大分子(蛋白质、核酸)、细菌、病毒和分离的细胞器等颗粒材料,常用投影、负染色等技术以提高反差,显示颗粒的形态和微细结构。
此外还有以冷冻固定为基础的冷冻断裂──冰冻蚀刻、冷冻置换、冷冻干燥等技术。
超薄切片术将小块生物材料,用液态树脂单体浸透和包埋,并固化成塑料块,后用超薄切片机切成厚度为500埃左右,甚至只有50埃的超薄切片。
超薄切片的制备程序与光学显微镜的切片程序类似,但各步骤的要求以及所使用的试剂和操作方法有很大差别。
固定选用适宜的物理或化学的方法迅速杀死组织和细胞,力求保持组织和细胞的正常结构,并使其中各种物质的变化尽可能减小。
固定能提高细胞承受包埋、切片、染色以及电子束轰击的能力。
主要固定方法有:①快速冷冻,用致冷剂(如液氮、液体氟利昂、液体丙烷等)或其他方法使生物材料急剧冷冻,使组织和细胞中的水只能冻结成体积极小的冰晶甚至无定形的冰──玻璃态。
这样,细胞结构不致被冰晶破坏,生物大分子可保持天然构型,酶及抗原等能保存其生物活性,可溶性化学成分(如小分子有机物和无机离子)也不致流失或移位。
用冷冻的组织块,可进行切片、冷冻断裂、冷冻干燥和冷冻置换等处理。
用此法固定的样品既可提供组织、细胞结构的形态学信息,又可提供相关的细胞化学信息。
②化学固定,固定剂有凝聚型和非凝聚型两种,前者如光学显微术中常用的乙醇、二氯化汞等,此法常使大多数蛋白质凝聚成固体,结构发生重大变化,常导致细胞的细微结构出现畸变。
非凝聚型固定剂包括戊二醛、丙烯醛和甲醛等醛类固定剂和四氧化锇,四氧化钼等,适用于电子显微。
它们对蛋白质有较强的交联作用,可以稳定大部分蛋白质而不使之凝聚,避免了过分的结构畸变。
红外光谱仪样品制备方法的实验技巧红外光谱仪是一种常用于物质结构和成分分析的仪器,但要获得准确和可靠的结果,关键之一是样品制备方法的选择与操作技巧的掌握。
一、样品制备方法的选择红外光谱仪常用于分析固体、液体和气体样品,不同样品的制备方法也有所不同。
1. 固体样品制备对于固体样品,一种常用的制备方法是透射片法。
首先,将固体样品研磨成细粉末,然后将其与适量的透明固体载体(如KBr或NaCl)混合均匀,将混合物压制成块状。
这样制备的样品适用于分析未知化合物或无法溶解的固体。
另一种方法是通过溶解固体样品于适当的溶剂中,制备成薄膜。
这种制备方法适用于需要检测溶剂溶液中的成分。
2. 液体样品制备液体样品的制备相对简单,一般只需将液体直接倒入红外光谱仪的样品舱中,或者将液体滴在适合的样品支持材料上。
制备液体样品时,需注意样品与材料之间的相容性,避免化学反应干扰谱图结果。
3. 气体样品制备对于气体样品的制备,一种常用的方法是将气体通入红外气室中进行分析。
通过控制气体流量和红外气室温度,可以获得稳定的气体样品。
在进行气体样品制备时,需要注意气体的纯度和流量的控制,确保分析结果的准确性。
二、操作技巧的掌握除了选择合适的样品制备方法,掌握一些操作技巧也对红外光谱仪的样品分析结果产生重要影响。
1. 样品准备样品准备过程中要保持实验室的整洁和卫生,避免样品表面受到外界杂质的污染。
同时,避免与手直接接触样品,以免样品受到人体气味或其它污染。
2. 稳定样品对于固体样品,制备过程中要保持样品的稳定性。
透射片法制备样品时,可以使用冷压法压制样品,以提高样品的稳定性,避免样品在热膨胀过程中产生变形。
在液体样品制备中,可以使用对应的样品支持材料,以增加样品的稳定性。
3. 清洁仪器在进行红外光谱分析前后,务必对红外光谱仪及其相关部件进行充分清洁。
可使用适当的溶剂和软布进行清洁,避免污染物影响谱图结果。
4. 控制实验条件在红外光谱仪的使用过程中,需要控制好实验条件,如光源强度、波数范围、扫描速度等参数。
透射电镜样品制备方法透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种利用电子束穿透样品而观察样品结构的高分辨率显微镜。
为了获得高质量的透射电子显微镜图像,样品制备是非常重要的一步。
下面将介绍几种常见的透射电镜样品制备方法。
1.薄片制备法:薄片制备法是最常用的透射电镜样品制备方法之一、首先,将待观察的材料切割成薄片,通常使用切片机或者离心切片机进行切割。
然后,将薄片放置在网格上,并用显微镊夹持住。
接下来,使用离心机将网格和薄片一起离心,以去除多余的液体。
最后,将网格放入透射电镜中进行观察。
2.离解法:离解法适用于那些不易制备成薄片的样品。
首先,将待观察的样品制备成溶液或者悬浮液。
然后,将溶液滴在碳膜覆盖的网格上。
接下来,使用离心机将网格和溶液一起离心,使溶液在网格上均匀分布。
最后,将网格放入透射电镜中进行观察。
3.冻结法:冻结法适用于那些需要观察生物样品或者水溶液的样品。
首先,将待观察的样品制备成溶液或者悬浮液。
然后,在液氮中冷冻样品,使其迅速冻结成冰。
接下来,使用离心机将冰冻样品离心,以去除多余的液体。
最后,将网格放入透射电镜中进行观察。
4.脂溶法:脂溶法适用于那些不溶于水的样品。
首先,将待观察的样品制备成脂溶液。
然后,将脂溶液滴在碳膜覆盖的网格上。
接下来,使用离心机将网格和脂溶液一起离心,使脂溶液在网格上均匀分布。
最后,将网格放入透射电镜中进行观察。
除了以上几种常见的透射电镜样品制备方法,还有一些特殊的方法,如原位制备法、离子切割法等。
这些方法可以根据实际需求选择使用。
总结起来,透射电镜样品制备是透射电子显微镜观察样品结构的关键步骤。
合适的样品制备方法可以保证获得高质量的透射电镜图像。
不同的样品制备方法适用于不同类型的样品,研究人员可以根据实际情况选择合适的方法进行样品制备。
生物透射细胞样品制备做生物透射细胞样品制备,简单来说,就是把细胞弄得透明,好让显微镜看得清楚它里面的细节。
哎呀,听起来是不是有点复杂?其实也没那么难,做起来就像做一道小点心,材料准备齐全了,步骤按照顺序来,一切都能顺利完成。
反正别紧张,这事儿就像做实验,没啥大不了的。
你得有个明确的目标,得清楚你想看啥。
你不可能随便拿个细胞就说,喏,这就是我要的嘛,对吧?肯定是有一些特定的细胞或者组织,能代表你研究的方向,像神经细胞、肝脏细胞这些。
好了,开始吧!首先第一步是准备细胞。
别看这一步简单,实际上挺讲究的。
你得小心翼翼地取样,要不然就像拿不稳一颗鸡蛋,给弄破了也没用。
一般来说,细胞都得从组织里取出来,切割成小块儿,千万别太大,要不然透射不清楚,显微镜下啥都看不见。
细胞取出来以后,咱们就得把它固定下来,这个步骤很重要。
固定液的选择可不能马虎,不然细胞一晃眼就变形了,哎,别问我怎么知道的,自己吃过亏。
常用的固定液有福尔马林,甲醇之类的,选择啥看你实验的需求。
然后,要把这些细胞样品“包”起来,想象一下就像给自己做个小棉被一样。
包裹材料有时是石蜡,也有可能是某些合成树脂,看你实验的需求。
这样做是为了让细胞保持原样,不至于在后续的处理过程中给弄乱。
封装后,还得通过“切片”这一步,轻轻地将样品切成非常薄的片。
这里就像做手术一样,要用特殊的切片机,那个刀片尖得吓人,切出来的薄片大约也就几微米那么薄。
太薄了,切不好;太厚了,光线透不过,啥都看不清楚。
切片之后,就要让这些细胞更好地透光。
毕竟,我们做透射实验的目的就是让显微镜透过细胞,看到细胞内部的结构嘛。
所以,接下来得经过一番脱水处理。
你可以想象,细胞就像刚从大海里泡出来,得让它“晒晒太阳”,去掉多余的水分。
用的脱水液,一般是酒精或者丙酮,记得慢慢来,一步一步升高浓度,像调温度一样,别太急,急了就把细胞弄坏了。
不过,脱水完之后,你还得让细胞“饱满”点。
别一脱水就直接丢进下一步,不然细胞可能会萎缩,显微镜下啥也看不清楚。