排队论-1-2
- 格式:ppt
- 大小:755.00 KB
- 文档页数:37
第一节引言一、排队系统的特征及排队论排队论(queueing theory)是研究排队系统(又称为随机服务系统)的数学理论和方法,是运筹学的一个重要分支。
在日常生活中,人们会遇到各种各样的排队问题。
如进餐馆就餐,到图书馆借书,在车站等车,去医院看病,去售票处购票,上工具房领物品等等。
在这些问题中,餐馆的服务员与顾客、公共汽车与乘客、图书馆的出纳员与借阅者、医生与病人、售票员与买票人、管理员与工人等,均分别构成一个排队系统或服务系统(见表10-1)。
排队问题的表现形式往往是拥挤现象,随着生产与服务的日益社会化,由排队引起的拥挤现象会愈来愈普遍。
表 10-1排队除了是有形的队列外,还可以是无形的队列。
如几个顾客打电话到出租汽车站要求派车,如果出租汽车站无足够车辆,则部分顾客只得在各自的要车处等待,他们分散在不同地方,却形成了一个无形队列在等待派车。
排队的可以是人,也可以是物。
如生产线上的原材料或半成品在等待加工;因故障而停止运转的机器在等待修理;码头上的船只等待装货或卸货;要降落的飞机因跑道被占用而在空中盘旋等等。
当然,提供服务的也可以是人,也可以是跑道、自动售货机、公共汽车等。
为了一致起见,下面将要求得到服务的对象统称为“顾客”,将提供服务的服务者称为“服务员”或“服务机构”。
因此,顾客与服务机构(服务员)的含义完全是广义的,可根据具体问题而不同。
实际的排队系统可以千差万别,但都可以一般地描述如下:顾客为了得到某种服务而到达系统,若不能立即获得服务而又允许排队等待,则加入等待队伍,待获得服务后离开系统,见图10-1至图10-4。
类似地还可画出许多其他形式的排队系统,如串并混联的系统,网络排队系统等。
尽管各种排队系统的具体形式不同,但都可由图10-5加以描述。
图10-1 单服务台排队系统图10-2 s 个服务台,一个队列的排队系统图10-3 s 个服务台,s 个队列的排队系统图10-4 多个服务台得串联排队系统顾客到达顾客到达图10-5 随机服务系统通常称由10-5表示的系统为一个随机聚散服务系统,任一排队系统都是一个随机聚散服务系统。
排队论概述排队论是研究排队系统的数学理论,排队系统是指在一定的输入流程下,有限数量的客户通过服务设备排队等待服务的过程。
排队论可以用来分析和优化各种服务系统,如银行、医院、机场等等。
在实际生活中,我们常常会遇到排队等待的情况,如购物时的排队结账、乘坐公交车时的候车等。
排队论可以帮助我们理解和预测这些排队系统的性能,从而提供改进和优化的方案。
重要概念排队系统的元素排队系统由以下几个重要元素组成:1.顾客/客户: 排队系统中需要接受服务的个体,如顾客、乘客等。
2.独立到达过程: 顾客到达的时间间隔服从某种概率分布。
3.队列: 用来存放等待服务的顾客的序列。
4.服务设备: 用来提供服务的设备或人员,如收银员、服务员等。
5.服务过程: 顾客从进入服务设备开始到完成服务的整个过程,包括服务时间、等待时间等。
常用性能度量排队系统的性能可以通过以下度量指标进行评估:1.排队长度: 队列中等待服务的顾客数量。
2.平均等待时间: 顾客在队列中等待服务的平均时间。
3.平均逗留时间: 顾客在系统中的平均逗留时间,包括等待和服务的时间。
4.系统利用率: 服务设备的利用率,即服务设备的工作时间占总时间的比例。
常见排队模型排队系统可以根据不同的特征进行不同的建模,常见的排队模型包括以下几种:1.M/M/1模型: 单个服务设备的排队系统,服务时间和顾客到达时间都符合指数分布。
2.M/M/c模型: 多个并行服务设备的排队系统,服务时间和顾客到达时间都符合指数分布。
3.M/G/1模型: 单个服务设备的排队系统,服务时间符合一般分布,顾客到达时间符合指数分布。
4.M/D/1模型: 单个服务设备的排队系统,服务时间符合确定分布,顾客到达时间符合指数分布。
排队论的应用排队论可以应用于各种排队系统的优化和改进,以下是一些常见的应用场景:银行排队系统优化银行是我们常见的排队系统之一,银行的服务质量和效率直接关系到客户的满意度。
排队论可以帮助银行分析和优化服务系统,提高服务效率和客户满意度。