第3章 无线传感器网络的MAC协议 郑军 机械工业出版社
- 格式:ppt
- 大小:1.95 MB
- 文档页数:86
无线传感器网络MAC协议:SMAC和TMAC摘要:无线传感器网络是一种新兴的网络技术,它的出现使得环境智能成为现实。
它是由一些微小的节点在特设环境中彼此连接,并相互配合,而形成的一个网络。
它具有广泛的应用,例如入侵者警报和跟踪,环境监测,工业过程监测和战术系统等潜在领域。
然而,当无线网络在地势陡峻的地方传播时,为了实现地区全覆盖就需要使用大量的无线传感器,但它们的电池一旦耗尽时要想更换就很困难。
所以节能对于传感器网络是非常必要的特别是在MAC层水平。
现已经提出了多种针对不同目标的MAC协议的无线传感器网络。
在各种协议中SMAC就是其中一个简单修改的成果。
SMAC有静态睡眠时间表同时TMAC有动态睡眠时间表。
在本文中,我们首先概述了无线传感器网络的基础知识,然后我们讨论了MAC层的性能特征,在随后的一节中概括了WSN中能源浪费的原因。
紧接着描述了 i.e SMAC 和TMAC两个协议的各自的优缺点。
最后,在结束之前,根据无线传感器网络与SMAC 和TMAC有关的各种设计过程都包含在文章中。
关键词:无线传感器网络,环境智能,MAC层,能源废物,SMAC,TMAC1.引言在开始介绍无线传感器网络前,我们需要了解为无线传感器网络发明铺平道路的要求和条件。
通常情况下在我们的工作场所我们所使用的系统,主要包括个人电脑,笔记本电脑,电脑,智能手机和平板电脑等。
这些系统都是建立在“人 - 系统”互动的概念上的。
在这种人与信息处理系统交流互动的系统中。
整个装置是间接连接到物理环境的。
由用户和用户交流系统读取物理环境。
另一方面,系统的装置与物理环境相互作用,并自行调整。
在图1和图2中描绘了这两个方案。
系统人环境图 1 人机交互系统环境人图 2 系统环境交互正如我们从图1和图2中观察到的,系统本身能够与环境相互作用,这就是我们所说的“嵌入式系统”。
例如洗衣机,微波炉,化学工艺厂或高炉温度调节装置。
由于科技发展了我们的能力让我们产生了这样一种感觉,大机器也有把它传授给小型设备和对我们的日常生活相关的东西的渴望。
Z-MAC引言载波侦听多址访问协议(CSMA, Carrier Sense Multiple Access)常用的无线网络MAC 协议,由于其简单性、灵活性以及强壮性使得其非常流行。
与其它MAC协议相比,CSMA 对基础设施要求简单,不需要时钟同步,同时也不需要全网的拓扑信息,对于节点加入网络与退出网络,不需要任何额外操作就可以表现出很强的适应性.但是,这些优点是由接入尝试和传输错误作为代价的。
节点通过竞争方式进行抢占信道使用权,当有多个节点同时发送数据时,就会发生数据碰撞,并且要消耗部分能量。
CSMA 对于碰撞发生的可控范围为一跳相邻区域,对于一跳范围以外就不能发挥作用了。
对于数据在一跳范围以外发生碰撞的节点,称为隐含终端。
隐含终端问题将增加数据传输冲突发生的概率,数据流量越大,碰撞概率越大,吞吐量会严重下降,导致时延增加,这对网络性能的发挥有着严重的影响。
为了减轻因为隐含终端所导致的问题,CSMA 中加入了RTS/CTS 握手机制然而RTS/CTS 所占信道容量较高,其范围为40%-75%,严重增加了网络数据传输控制开销,这对于有限的无线信道容量来说是非常大的浪费。
时分多址(TDMA)协议的设计目的在于避免据传输过程中发生的冲突。
各节点使用自己的时隙,不同节点数据发送接收互不干扰,有效的解决了隐含终端的问题。
因为不需要RTS/CTS 握手机制,所以不会增加传输控制消息外开销。
但是TDMA 协议也有如下缺点:一、如何按照某一种扩展方式进行高效时间安排并非易事,中心节点要在保证并发性强、信道复用度高的情况下来寻找合理的传输时间安排,来避免碰撞的发生;二、TDMA 协议的特点,使得其对于时钟同步要求较高;三、由于电池能量消耗导致节点退网络、新的节点加入网络、物理因素导致的信道变化,都会导致WSN 网络拓扑发生变化,而TDMA协议对拓扑动态变化适应性较差;四、当数据流量低时,节点只能选择自己占有的时隙来进行数据发送。
MAC协议:在WSN中,介质访问控制(Medium Access Control,MAC)协议决定无线信道的使用方式,在传感器节点之间分配有限的无线通信资源,用来构建传感器网络系统的底层基础结构。
多点通信在局部范围内需要MAC协议协调其间的无线信道分配,在整个网络范围内需要路由协议选择通信路径。
在设计WSN的MAC协议时,需要着重考虑一下几个方面:A、节省能量。
MAC协议应在满足应用要求的前提下,尽量节省使用节点的能量。
B、可扩展性。
由于WSN的拓扑结构具有动态性,因此MAC协议也应具有可扩展性,以适应这种动态变化的拓扑结构。
C、网络效率。
包括网络的公平性、实时性、网络吞吐量以及带宽利用率等。
而在WSN中,人们总结出可能导致网络能量浪费的主要原因如下:一、如果MAC协议采用竞争方式使用共享的无线信道,节点在发送数据的过程中,可能会引起多个节点发送数据的碰撞,这就需要重传发送的数据,从而消耗节点更多的能量。
二、节点接受并处理不必要的数据。
这种串音(overhearing)现象导致无线接收模块和处理器模块消耗更多的能量。
三、节点在不需要发送数据时一直保持对无线信道的空闲侦听(idle listening),以便接受可能传输给自己的数据。
四、在控制节点间信道分配时,如果控制信息过多,也会消耗较多的网络能量。
传感器节点无线通信模块的状态包括发送状态、接受状态、侦听状态和睡眠状态。
能量消耗依次减少,因此通常采用“侦听/睡眠”交替的无线信道使用策略。
当有数据收发时,节点就开启无线通信模块进行发送或侦听;如果没有数据需要收发,节点就控制无线通信模块进入睡眠状态。
部分学者提出引入休眠机制来减少能量消耗、串音和冲突的发生,但这是以牺牲信息时延为代价的。
当然,MAC协议应该简单高效,避免协议本身开销大、消耗过多的能量。
下面重点介绍传感器协议(S-MAC协议)。
传感器协议(S—MAC协议)S—MAC协议设计的主要目的是节能。