初二下册数学 人教版八年级下学期
- 格式:pptx
- 大小:763.19 KB
- 文档页数:4
人教版八年级下册数学知识点汇总第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,否则√(a)无意义。
例如√(-2)就不是二次根式。
2. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(5))^2 = 5。
- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。
如√(3^2) = 3,√((-3)^2)=| - 3|=3。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。
如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。
例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。
- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
人教版八年级下册数学课本第一章:实数1.1 实数的概念和性质1.2 实数的运算1.3 实数的应用第二章:一元一次方程2.1 一元一次方程的概念2.2 一元一次方程的解法2.3 一元一次方程的应用第三章:不等式3.1 不等式的概念3.2 一元一次不等式的解法3.3 一元一次不等式的应用第四章:二元一次方程组4.1 二元一次方程组的概念4.2 二元一次方程组的解法4.3 二元一次方程组的应用第五章:一次函数5.1 一次函数的概念5.2 一次函数的图像5.3 一次函数的应用第六章:平行线与相交线6.1 平行线的性质6.2 相交线的性质6.3 平行线与相交线的应用第七章:三角形7.1 三角形的性质7.2 三角形的全等7.3 三角形的相似7.4 三角形的应用第八章:四边形8.1 四边形的性质8.2 四边形的全等8.3 四边形的相似8.4 四边形的应用第九章:圆9.1 圆的性质9.2 圆的全等9.3 圆的相似9.4 圆的应用第十章:概率与统计10.1 概率的概念10.2 概率的计算10.3 统计的基本概念10.4 统计的应用第十一章:立体几何11.1 立体几何的基本概念11.2 立体几何的计算11.3 立体几何的应用第十二章:解析几何12.1 解析几何的基本概念12.2 解析几何的计算12.3 解析几何的应用第十三章:数列13.1 数列的概念13.2 等差数列13.3 等比数列13.4 数列的应用第十四章:函数14.1 函数的概念14.2 函数的图像14.3 函数的应用第十五章:不等式组15.1 不等式组的概念15.2 不等式组的解法15.3 不等式组的应用第十六章:反比例函数16.1 反比例函数的概念16.2 反比例函数的图像16.3 反比例函数的应用第十七章:二次函数17.1 二次函数的概念17.2 二次函数的图像17.3 二次函数的应用第十八章:勾股定理18.1 勾股定理的概念18.2 勾股定理的证明18.3 勾股定理的应用第十九章:统计与概率19.1 统计的基本概念19.2 概率的基本概念19.3 统计与概率的应用第二十章:数学建模20.1 数学建模的概念20.2 数学建模的方法20.3 数学建模的应用人教版八年级下册数学课本的内容涵盖了实数、一元一次方程、不等式、二元一次方程组、一次函数、平行线与相交线、三角形、四边形、圆、概率与统计、立体几何、解析几何、数列、函数、不等式组、反比例函数、二次函数、勾股定理、统计与概率以及数学建模等知识点。
人教版八年级数学下册教案人教版八年级数学下册教案(精选篇1)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
人教版八年级数学下册教案(精选篇2)一、分式※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式;整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.※2.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变;※3.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分;※4.分子与分母没有公因式的分式,叫做最简分式;二、分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)三、分式的加减法※1.分式与分数类似,也可以通分;根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;※2.分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减;(1)同分母的分式相加减,分母不变,把分子相加减;(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;※3.概念内涵:通分的关键是确定最简分母,其方法如下:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的次幂的积;(3)如果分母是多项式,则首先对多项式进行因式分解;四、分式方程※1.解分式方程的一般步骤:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程检验;※2.列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案;人教版八年级数学下册教案(精选篇3)一、分解因式※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
人教版八年级数学下册知识点人教版八年级数学下册知识点概述一、实数1. 实数的概念:实数包括有理数和无理数,是有理数的扩展。
2. 算术平方根:掌握平方根的定义和计算方法。
3. 立方根:理解立方根的定义及其计算方式。
4. 实数的运算:包括加法、减法、乘法、除法和乘方运算。
二、代数式1. 代数式的基本概念:了解代数式的定义和组成元素。
2. 单项式和多项式:区分单项式和多项式,掌握它们的表示方法。
3. 代数式的加减运算:掌握同类项的概念和合并同类项的方法。
4. 代数式的乘除运算:理解并运用单项式与多项式相乘的规则。
三、方程与不等式1. 一元一次方程:掌握解一元一次方程的一般步骤。
2. 二元一次方程组:学习二元一次方程组的解法,包括代入法和消元法。
3. 一元一次不等式:理解不等式的概念和性质,掌握解一元一次不等式的方法。
4. 一元一次不等式组:学习如何求解一元一次不等式组。
四、几何1. 平行线的性质:理解平行线的基本性质和推论。
2. 平行线的判定:掌握平行线的判定定理。
3. 三角形的基础知识:学习三角形的分类、性质和计算。
4. 特殊三角形:深入了解等腰三角形和等边三角形的性质。
5. 全等三角形:掌握全等三角形的判定条件和性质。
6. 相似三角形:学习相似三角形的判定和性质,包括相似比的概念。
五、统计与概率1. 统计的基本概念:了解数据的收集、整理和描述方法。
2. 统计图的绘制:学习如何绘制条形图、折线图和饼图。
3. 概率的初步认识:理解概率的基本概念和计算方法。
4. 简单事件的概率:学习计算简单事件发生的概率。
六、函数1. 函数的概念:理解函数的定义和表示方法。
2. 函数的图像:学习函数图像的绘制和解读。
3. 一次函数和正比例函数:掌握这两种函数的性质和图像特点。
4. 函数的基本运算:了解函数的加法、减法、乘法和除法运算规则。
七、应用题1. 列方程解应用题:学会根据实际情况列出方程并求解。
2. 利用函数解应用题:掌握如何使用函数知识解决实际问题。
人教版数学八年级下册教案全册完整版一、教学内容1. 第十三章:平面几何1.1 线段和直线1.2 角1.3 多边形1.4 平行四边形1.5 矩形、菱形、正方形2. 第十四章:函数2.1 函数的定义2.2 一次函数2.3 二次函数2.4 反比例函数2.5 函数的应用二、教学目标1. 理解并掌握平面几何的基本概念和性质,能够运用几何知识解决实际问题。
2. 掌握函数的定义、图像和性质,能够运用函数知识解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:几何图形的性质和判定函数图像的绘制和性质分析2. 教学重点:几何图形的分类和性质函数的定义和性质四、教具与学具准备1. 教具:黑板橡皮、直尺、圆规等绘图工具多媒体设备2. 学具:笔记本铅笔、橡皮、直尺、圆规等绘图工具五、教学过程1. 导入:利用生活实例引入平面几何和函数的概念,激发学生学习兴趣。
2. 新课内容:详细讲解教材中的知识点,通过例题和随堂练习巩固所学内容。
3. 课堂讲解:对重点、难点知识进行详细讲解,结合实际应用进行分析。
4. 课堂练习:设计不同难度的练习题,让学生独立完成,并及时给予指导和反馈。
六、板书设计1. 人教版数学八年级下册教案2. 内容:章节和知识点例题和解答过程重点、难点提示七、作业设计1. 作业题目:第十三章:1.1 画出线段和直线1.2 判断角的类型1.3 绘制多边形1.4 判断平行四边形1.5 分析矩形、菱形、正方形的性质第十四章:2.1 解释函数的定义2.2 绘制一次函数图像2.3 分析二次函数性质2.4 解释反比例函数2.5 解决函数应用问题2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:设计相关竞赛题目,提高学生运用几何和函数知识解决问题的能力。
鼓励学生进行课后自主学习,拓展知识面。
重点和难点解析一、教学内容1. 几何图形的性质和判定重点和难点解析:这部分内容涉及到的几何图形种类繁多,性质和判定方法各异。
【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】人教版八年级下册数学教案篇一教学目标:一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。
学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u 的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。