高等数学第十一章无穷级数第五节函数的幂级数展开式的应用
- 格式:pdf
- 大小:1.65 MB
- 文档页数:19
《高等数学Ⅱ》课程教学大纲
撰写人:姚增善
撰写时间:2011 年7月
一、课程基本信息
开课院系:数学科学学院
课程英文名称:Advanced Mathematics Ⅱ
课程类别:通识课
适用专业:理、工科各专业
是否独立开课:独立
先修课程:无
课程总学时:96+80=176学时
总学分:6+5
二、课程性质、目的与任务:
《高等数学Ⅱ》是理、工科专业的一门重要基础课,通过本课程的教学,使学生获得函数、极限及连续、一元及多元函数微积分、向量代数和空间解析几何、无穷级数、常微分方程等方面的基本理论和基本运算技能。
为学习其它课程及今后工作奠定必要的数学基础。
在教学过程中,要通过各个教学环节逐步培养学生具有抽象概括能力,逻辑推理能力,空间想象能力和自学能力,要特别注意培养学生运用所学知识去分析、解决实际问题的能力。
三、教学安排:
四、考核方式:
考试形式:笔试(闭卷或开卷)、口试、写小论文等形式。
五、推荐教材及参考书资料(注明编者,出版社,出版时间及版次):
教材:
刘新国主编,高等数学(上、下册),石油大学出版社,2011年8第二版
参考书:
[1] 赵树嫄主编,微积分,中国人民大学出版社,1990年第二版
[2]同济大学编,高等数学(上、下册),同济大学编,高等教育出版社。
2002年7月第五版。
函数的幂级数展开式函数的幂级数展开式是一种用无穷多个幂次项来表示函数的展开式。
它是一种非常重要的数学工具,可以用来近似计算各种函数和解决各种数学问题。
在本文中,我们将介绍函数的幂级数展开式的定义、性质和应用,并通过一些实例来加深理解。
一、函数的幂级数展开式的定义给定一个实函数f(x),如果它在一些区间[a, b]上无穷次可导,并且对每一个x∈[a, b],都存在常数an(n=0,1,2,3,...)使得f(x) = ∑(n=0 to ∞) an(x-a)n,其中an是常数,这个展开式就称为函数f(x)在点a处的幂级数展开式。
其中(x-a)n表示x-a的n次幂。
二、函数的幂级数展开式的性质1.函数的幂级数展开式在其收敛半径内是收敛的,即对于任意x∈[a,b],幂级数展开式都收敛。
收敛半径的计算可以使用柯西-阿达玛公式进行推导。
2.函数的幂级数展开式可以实现函数的逐项求导和逐项求积分操作,即对幂级数展开式的每一项进行求导或求积分操作后,得到的仍然是原函数在该点的幂级数展开式。
3.函数的幂级数展开式的和函数在展开区间内连续,但在展开区间端点处是否连续需要根据情况来确定。
如果和函数在展开区间端点处连续,那么展开式的收敛性在展开区间端点处也成立。
三、函数的幂级数展开式的应用1.函数逼近:幂级数展开式可以用来逼近各种函数,将一个函数表示为幂级数的形式,可以利用幂级数的性质对其进行计算和分析,从而更好地理解函数的性质。
2.函数求和:使用函数的幂级数展开式可以求解一些无穷级数的和,如调和级数、指数级数、三角级数等。
3.微分方程求解:幂级数展开式可以用来求解一些微分方程,通过将未知函数表示成幂级数的形式,将微分方程转化为幂级数方程,通过比较幂级数展开式的系数来求解未知函数。
4.概率统计:幂级数展开式在概率统计领域有广泛应用,如泰勒级数在正态分布、伽玛分布等概率分布的研究中的应用。
最后,我们通过两个实例来进一步了解函数的幂级数展开式的应用。
高等数学系列教材目录表第一章:极限与连续1.1 极限的概念1.2 极限的运算法则1.3 无穷小与无穷大1.4 一元函数的连续性第二章:函数的导数与微分2.1 导数的定义2.2 导数的基本运算法则2.3 高阶导数与高阶微分2.4 隐函数与参数方程求导第三章:一元函数的微分学应用3.1 最值与最值存在条件3.2 凹凸性与拐点3.3 曲线的渐近线3.4 微分中值定理与Taylor公式第四章:不定积分4.1 不定积分的概念4.2 基本积分表与换元法4.3 分部积分与定积分的计算4.4 函数积分的性质第五章:定积分5.1 定积分的概念5.2 定积分的计算方法5.3 反常积分5.4 定积分的应用第六章:微分方程6.1 常微分方程的基本概念6.2 可分离变量与齐次方程6.3 一阶线性微分方程6.4 高阶线性微分方程第七章:多元函数微分学7.1 多元函数的极限与连续7.2 多元函数的偏导数7.3 隐函数与参数方程的偏导数7.4 多元函数的全微分第八章:重积分8.1 二重积分的概念与计算8.2 极坐标系下的二重积分8.3 三重积分的概念与计算8.4 数值积分与重积分的应用第九章:曲线曲面积分9.1 第一类曲线积分9.2 第二类曲线积分9.3 曲面积分的概念与计算9.4 应用实例解析第十章:无穷级数10.1 数项级数的概念与性质10.2 收敛级数的判定10.3 幂级数与函数展开10.4 泰勒级数与麦克劳林级数第十一章:常微分方程11.1 一阶常微分方程11.2 高阶常微分方程11.3 实际问题建模与解答11.4 系统常微分方程第十二章:向量代数与解析几何12.1 向量空间与基底12.2 向量的内积与外积12.3 线性方程组与矩阵12.4 空间曲线与曲面第十三章:多元函数微分学的应用13.1 梯度与方向导数13.2 多元函数的极值与最值条件13.3 二次型与正定性13.4 特征值与特征向量第十四章:多元积分学14.1 二重积分的计算技巧14.2 三重积分的计算技巧14.3 坐标变换与积分的几何应用14.4 曲线曲面积分的计算方法第十五章:无穷级数的应用15.1 幂级数的收敛域与函数展开15.2 Fourier级数与函数展开15.3 数学物理方程的解析解15.4 波动方程与热传导方程第十六章:曲线积分与曲面积分的应用16.1 曲线积分的物理应用16.2 曲面积分的物理应用16.3 物理场的散度与旋度16.4 应用实例解析与计算第十七章:多元函数的傅里叶级数17.1 多元函数的Fourier级数展开17.2 空间中的Fourier级数与Fourier变换17.3 矢量值函数的Fourier级数展开17.4 傅里叶级数的物理应用第十八章:向量场与格林公式18.1 向量场的数学描述18.2 向量场的积分与路径无关性18.3 格林公式的证明与应用18.4 微分形式与斯托克斯公式这是一份高等数学系列教材的目录表,涵盖了极限与连续、函数的导数与微分、微分方程、重积分、曲线曲面积分、无穷级数、向量代数与解析几何、多元函数微分学的应用等主要内容。
年大学公共数学课程的开设建议与内容Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT注:(1)《高等数学A》(理工类)是为需要数学基础多的工学、理学各专业开设;(2)《高等数学B》(经管类)是为需要数学基础及数学在经济应用的经济类、管理类专业开设的;(3)需要一元微积分的专业可以之学《高等数学C》的第一学期开设的《高等数学C(I)》,若需要基本的二元微积分的基础,可继续修第二学期开设的《高等数学C(II)》。
《高等数学A(Ⅰ)》课程的教学内容第一章函数与极限一、映射与函数(一)集合(二) 映射与函数二、数列的极限(一)数列极限的定义(二)收敛数列的性质三、函数的极限(一) 函数极限的定义(二) 函数极限的性质四、无穷小和无穷大五、极限四则运算法则六、极限存在准则两个重要极限七、无穷小的比较八、函数的连续性与间断点九、连续函数的运算与初等函数的连续性(一)有界性与最大值最小值定理(二)零点定理与介值定理第二章导数与微分一、导数的概念(一)引例与导数的定义(二)导数的几何意义(三)函数可导性与连续性的关系二、函数的求导法则(一)函数求导的四则运算法则与反函数导法则(二)复合函数的求导法则(三)基本求导法则与导数公式三、高阶导数四、隐函数及由参数方程所确定的函数的导数(一) 隐函数的导数(二)由参数方程所确定的函数的导数五、函数的微分(一) 微分的定义及其几何意义(二)基本初等函数的微分公式与微分运算法则(三) 微分在近似计算中的应用第三章微分中值定理与导数的应用一、积分中值定理(一)罗尔定理(二)拉格朗日中值定理(三)柯西中值定理二、洛必达法则三、泰勒公式四、函数的单调性与曲线的凹凸性(一)函数单调性的判定法(二)曲线的凹凸性与拐点五、函数的极值与最大值和最小值(一)函数的极值及其求法(二)最大值和最小值问题六、函数图形的描绘七、曲率(一)弧微分(二)曲率及其计算公式(三)曲率圆与曲率半径第四章不定积分一、不定积分的概念及性质(一)原函数与不定积分的概念(二)基本积分表(三)不定积分的性质二、换元积分法(一)第一类换元法(二)第二类换元法三、分部积分法四、有理函数的积分(一)有理函数的积分(二)可化为有理函数的积分举例第五章定积分一、定积分的概念及性质(一)定积分问题举例(二)定积分的定义(三)定积分的性质二、微积分基本公式(一)变速直线运动中位置函数与速度函数之间的联系(二)积分上限函数及其导数(三)牛顿——莱布尼茨公式三、定积分的换元法和分部积分法(一)定积分的换元法 (二)定积分的分部积分法四、反常积分(一)无穷限的反常积分 (二)无界函数的反常积分五、定积分元素法六、定积分在几何学上的应用(一)平面图形的面积 (二)体积(三)平面曲线的弧长七、定积分在物理学上的应用(一)变力沿直线所作的功 (二)水压力和功第六章 微分方程一、微分方程的基本概念 二、可分离变量的微分方程 三、齐次方程 四、一阶线性微分方程(一)线性方程 (二)伯努利方程五、全微分方程六、可降阶的高阶微分方程(一)()()n yf x =型的微分方程(二)(),y f x y '''=型的微分方程 (三)(),y f y y '''=型的微分方程七、高阶线性微分方程(一)二阶线性微分方程举例 (二)二阶线性微分方程的解的结构八、常系数齐次线性微分方程 九、常系数非齐次线性微分方程《高等数学A(Ⅱ)》课程的教学内容第七章空间解析几何及向量代数一、向量及其线性运算(一)向量的概念(二)向量的线性运算(三)空间直角坐标系(四)利用坐标作向量的线性运算(五)向量的模、方向角、投影二、数量积、向量积、混合积(一)两向量的数量积(二)两向量向量积(三)向量的混合积三、曲面及其方程(一)曲面方程的概念(二)旋转曲面(三)柱面(四)二次曲面四、空间曲线及其方程(一)空间曲线的一般方程(二)空间曲线的参数方程(三)空间曲线在坐标面上的投影五、平面及其方程(一)平面的点法式方程(二)平面的一般方程(三)两平面的夹角六、空间直线及其方程(一)空间直线的一般方程(二)空间直线的对称式方程与参熟方程(三)两直线的夹角(四)直线与平面的夹角第八章多元函数微分法及其应用一、多元函数的基本概念(一)平面点集 n微空间(二)多元函数概念(三)多元函数的极限(四)多元函数的连续性二、偏导数(一)偏导数的定义及其计算法(二)高阶偏导数三、全微分四、多元复合函数的求导法则五、隐函数的求导公式(一)一个方程的情形(二)方程组的情形六、多元函数微分学的几何应用(一)空间曲线的切线和法平面(二)曲面的切平面和法线七、方向导数与梯度八、多元函数的极值及其求法(一)多元函数的极值及最大值、最小值(二)条件极值拉格朗日乘数法第九章重积分一、二重积分的概念与性质(一)二重积分的概念(二)二重积分的性质二、二重积分的计算法(一)利用直角坐标计算二重积分(二)利用极坐标计算二重积分三、三重积分(一)三重积分的概念(二)三重积分计算四、重积分的应用(一)曲面的面积(二)质心转动惯量(三)引力第十章曲线积分与曲面积分一、对弧长的曲线积分(一)对弧长的曲线积分的概念与性质(二)对弧长的曲线积分的计算法二、对坐标的曲线积分(一)对坐标的曲线积分的概念与性质(二)对坐标的曲线积分的计算法(三)两类曲线积分之间的关系三、格林公式及其应用(一)格林公式(二)平面上曲线积分与路径无关的条件(三)二元函数的全微分求积四、对面积的曲面积分(一)对面积的曲面积分的概念与性质(二)对面积的曲面积分的计算法五、对坐标的曲面积分(一)对坐标的曲面积分的概念与性质(二)对坐标的曲面积分的计算法(三)两类曲面积分之间的关系六、高斯公式散度与旋度(一)高斯公式(二)通量与散度七、斯托克斯公式环流量与旋度(一)斯托克斯公式(二)环流量与旋度第十一章无穷级数一、无穷级数的概念与性质(一)常数项级数的概念(二)收敛级数的基本性质二、常数项级数的审敛法(一)正项级数及其审敛法(二)交错级数及其审敛法(三)绝对收敛与条件收敛三、幂级数(一)函数项级数的概念(二)幂级数及其收敛性(三)幂级数的运算四、函数展开成幂级数(一)泰勒级数(二)函数展开成幂级数五、函数的幂级数展开式的应用(一)近似计算(二)欧拉公式六、傅里叶级数(一)三角级数三角函数系的的正交性(二)函数展开成傅里叶级数(三)正弦级数和余弦级数七、一般周期函数的傅里叶级数(一)周期为2L的周期函数的傅里叶级数《高等数学B(Ⅰ)》课程的教学内容第一章函数与极限一、函数(一)集合(二) 映射与函数(三)经济中常用的函数二、数列的极限(一)数列极限的定义(二)收敛数列的性质三、函数的极限(一) 函数极限的定义(二) 函数极限的性质四、无穷小和无穷大五、极限四则运算法则六、极限存在准则两个重要极限七、无穷小的比较八、函数的连续性与间断点九、连续函数的运算与闭区间上的连续函数的性质(一)有界性与最大值最小值定理(二)零点定理与介值定理第二章导数与微分、边际与弹性一、导数的概念(一)导数的几何意义(二)函数可导性与连续性的关系二、函数的求导法则(一)函数求导的四则运算法则与反函数导法则(二)复合函数的求导法则(三)基本求导法则与导数公式三、高阶导数四、隐函数及由参数方程所确定的函数的导数(一) 隐函数的导数(二)由参数方程所确定的函数的导数五、函数的微分(一) 微分的定义及其几何意义(二)初基本初等函数的微分公式与微分运算法则(三) 微分在近似计算中的应用六、边际与弹性(一) 经济中常用的函数的边际(二)经济中常用的函数的弹性第三章微分中值定理与导数的应用一、积分中值定理(一)罗尔定理(二)拉格朗日中值定理二、洛必达法则三、函数的单调性与曲线的凹凸性(一)函数单调性的判定法(二)曲线的凹凸性与拐点五、函数的极值与最大值和最小值(一)函数的极值及其求法(二)最大值和最小值问题(三)最值在经济问题中的应用六、函数图形的描绘第四章不定积分一、不定积分的概念及性质(一)原函数与不定积分的概念(二)基本积分表(三)不定积分的性质二、换元积分法三、分部积分法四、有理函数的积分(一)有理函数的积分(二)可化为有理函数的积分举例第五章定积分一、定积分的概念及性质(一)引例:面积、路程和收益问题(二)定积分的定义(三)定积分的性质二、微积分基本公式(一)积分上限函数及其导数(二)牛顿——莱布尼茨公式三、定积分的换元法和分部积分法(一)定积分的换元法(二)定积分的分部积分法四、反常积分(一)无穷限的反常积分(二)无界函数的反常积分五、定积分元素法六、定积分在经济中的应用(一)由边际函数求原函数(二)由变化量求总量(三)收益流的现值和将来值第六章空间解析几何简介一、空间直角坐标系(一)空间直角坐标系(二)两点之间的距离(三)曲面方程的概念(二)旋转曲面(三)柱面(四)二次曲面二、空间曲线及其方程(一)空间曲线的一般方程(二)空间曲线在坐标面上的投影《高等数学B(Ⅱ)》课程的教学内容第七章多元函数微分法及其应用一、多元函数的基本概念(一)多元函数概念(二)多元函数的极限(三)多元函数的连续性二、偏导数(一)偏导数的定义及其计算法(二)高阶偏导数(三)偏导数在经济里的应用——偏边际和偏弹性三、全微分四、多元复合函数的求导法则五、隐函数的求导公式六、多元函数的极值及其求法(一)多元函数的极值及最大值、最小值(二)条件极值拉格朗日乘数法第八章重积分一、二重积分的概念与性质(一)二重积分的概念(二)二重积分的性质二、二重积分的计算法(一)利用直角坐标计算二重积分(二)利用极坐标计算二重积分第九章无穷级数一、无穷级数的概念与性质(一)常数项级数的概念(二)收敛级数的基本性质二、常数项级数的审敛法(一)正项级数及其审敛法(二)交错级数及其审敛法(三)任意项级数的绝对收敛与条件收敛(四)三、泰勒级数与幂级数(一)函数项级数的概念(二)幂级数及其收敛性(三)幂级数的运算四、函数展开成幂级数(一)泰勒级数(二)函数展开成幂级数(三)近似计算第十章 微分方程与差分方程一、微分方程的基本概念二、可分离变量的微分方程三、齐次方程四、一阶线性微分方程(一)线性方程(二)伯努利方程五、全微分方程六、一阶微分方程在经济学中的应用七、可降阶的高阶微分方程(一)()()n y f x =型的微分方程(二)(),y f x y '''=型的微分方程(三)(),y f y y '''=型的微分方程八、常系数齐次线性微分方程九、常系数非齐次线性微分方程十、差分与差分方程的概念十一、一阶、二阶常系线性差分方程及简单经济应用《高等数学C (Ⅰ)》课程的教学内容第一章 函数与极限一、函数(一)集合(二) 映射与函数(三)函数的单调、有界、奇偶、周期二、数列的极限(一)数列极限的定义(二)收敛数列的性质三、函数的极限(一) 函数极限的定义(二) 函数极限的性质四、无穷小和无穷大五、极限四则运算法则六、极限存在准则两个重要极限七、无穷小的比较八、函数的连续性与间断点九、连续函数的运算与闭区间上的连续函数的性质(一)有界性与最大值最小值定理(二)零点定理与介值定理第二章导数与微分一、导数的概念(一)导数的几何意义(二)函数可导性与连续性的关系二、函数的求导法则(一)函数求导的四则运算法则与反函数导法则(二)复合函数的求导法则(三)基本求导法则与导数公式三、高阶导数四、隐函数及由参数方程所确定的函数的导数(一) 隐函数的导数(二)由参数方程所确定的函数的导数五、函数的微分(一) 微分的定义及其几何意义(二)初基本初等函数的微分公式与微分运算法则(三) 微分在近似计算中的应用第三章微分中值定理与导数的应用一、积分中值定理(一)罗尔定理(二)拉格朗日中值定理二、洛必达法则三、函数的单调性与曲线的凹凸性(一)函数单调性的判定法(二)曲线的凹凸性与拐点五、函数的极值与最大值和最小值(一)函数的极值及其求法(二)最大值和最小值问题六、函数图形的描绘第四章不定积分一、不定积分的概念及性质(一)原函数与不定积分的概念(二)基本积分表(三)不定积分的性质二、换元积分法(一)第一类换元法(二)第二类换元法三、分部积分法四、有理函数的积分(一)有理函数的积分(二)可化为有理函数的积分举例第五章定积分一、定积分的概念及性质(一)引例:面积、路程问题(二)定积分的定义(三)定积分的性质二、微积分基本公式(一)积分上限函数及其导数(二)牛顿——莱布尼茨公式三、定积分的换元法和分部积分法(一)定积分的换元法(二)定积分的分部积分法四、反常积分(一)无穷限的反常积分(二)无界函数的反常积分五、定积分元素法六、定积分在几何学上的应用(一)平面图形的面积(二)体积(三)平面曲线的弧长七、定积分在物理学上的应用(一)变力沿直线所作的功(二)水压力和功第六章 微分方程一、微分方程的基本概念二、可分离变量的微分方程三、齐次方程四、一阶线性微分方程(一)线性方程(二)伯努利方程五、全微分方程六、一阶微分方程在经济学中的应用七、可降阶的高阶微分方程(一)()()n y f x =型的微分方程(二)(),y f x y '''=型的微分方程(三)(),y f y y '''=型的微分方程八、常系数齐次线性微分方程九、常系数非齐次线性微分方程《高等数学C(Ⅱ)》课程的教学内容第七章空间解析几何简介一、空间直角坐标系(一)空间直角坐标系(二)两点之间的距离(三)曲面方程的概念(二)旋转曲面(三)柱面(四)二次曲面二、空间曲线及其方程(一)空间曲线的一般方程(二)空间曲线在坐标面上的投影第八章多元函数微分法及其应用一、多元函数的基本概念(一)多元函数概念(二)多元函数的极限(三)多元函数的连续性二、偏导数(一)偏导数的定义及其计算法(二)高阶偏导数三、全微分四、多元复合函数的求导法则五、隐函数的求导公式六、多元函数的极值及其求法(一)多元函数的极值及最大值、最小值(二)条件极值拉格朗日乘数法第九章重积分一、二重积分的概念与性质(一)二重积分的概念(二)二重积分的性质二、二重积分的计算法(一)利用直角坐标计算二重积分(二)利用极坐标计算二重积分第十章无穷级数一、无穷级数的概念与性质(一)常数项级数的概念(二)收敛级数的基本性质二、常数项级数的审敛法(一)正项级数及其审敛法(二)交错级数及其审敛法(三)任意项级数的绝对收敛与条件收敛(四)三、泰勒级数与幂级数(一)函数项级数的概念(二)幂级数及其收敛性(三)幂级数的运算四、函数展开成幂级数(一)泰勒级数(二)函数展开成幂级数(三)近似计算。
函数幂级数的展开和应用我们称形如200102000()()()()nn nn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的级数为幂级数,它是一类最简单的函数项级数.从某种意义上说,它也可以看作是多项式函数的延伸.幂级数在理论和实际上都有很多应用,特别在应用它表示函数方面,又由于函数幂级数的逐项求导和逐项可积等好的运算性质,为函数的研究和应用提供了便利的条件.1 函数幂级数展开的条件函数()f x 可以在点0x x =作幂级数展开,是指存在0x x =,使得在(r x r x +-00,)上,00()()n n n f x a x x ∞==-∑ (1) 其中()f x 是此幂级数的和函数.根据幂级数的逐项可积性,若函数()f x 能表示成幂级数()nnn a x x ∞=-∑且其收敛半径0r >,则函数()f x 在区间(,)r r -上有任意阶导数,且1'1()()n nn f x na x x -∞==-∑,'01()f x a = ,,()()00()()!,!n n n f x fx n a n ==因此自然会提出下述问题,是否每一个在区间(,)r r -上有任意阶导数的函数()f x 一定能在区间上展成形如()nnn a x x ∞=-∑的幂级数呢?回答是不一定的.例1 在),(+∞-∞上具有任意阶导数的函数21()0x e f x -⎧⎪=⎨⎪⎩ 00x x ≠=,易验证当0x ≠时,21'32()x f x e x -= , 2211''4664()x x f x e e x x--=-+ ,一般来说,有21()1()()n x n fx P e x -= (0x ≠),其中1()n P x 是关于1x的某个多项式.令21t x =,易得21201lim lim 0mx m t x t te x e-→→+∞==.由此可知21()()0001lim ()lim ()lim ()0n n x n x x x fx f x P e x-+-→→→=== ),2,1,0( =n ,又因为()f x 在0x =处连续,所以有'(0)0f =.类似逐次可推得()(0)0n f = ),3,2( =n 所以()f x 在0x =的幂级数为200002!!nx x n +⨯+++显然它在),(+∞-∞上收敛,且其和函数()0s x =. 但是,()f x 只在0x =处为零值.0x ∀≠,都有 ()()f x s x ≠.上述例子告诉我们:具有任意阶导数的函数,其幂级数(泰勒级数)并不是都收敛于函数本身.那么具备什么条件的函数()f x ,它的幂级数(泰勒级数)才能收敛于()f x 本身呢?定理1 设()f x 在点0x x =具有任意阶导数,那么()f x 在区间00(,)x r x r -+内等于它的泰勒级数的和函数的充分必要条件是:对一切满足不等式0x x r -<的x ,都有lim ()0n n R x →∞=.这里()n R x 是()f x 在0x 的泰勒公式余项.应用定理1 判别一个函数是否可以展成泰勒级数常常是不方便的,我们有如下充分条件: 定理2 设()f x 在00(,)x r x r -+内有任意阶导数,若存在0M >,使得00(,)x x r x r ∀∈-+,及 ,2,1,0=∀n , 有 ()()n n f x M ≤ (2) 则 ()000()()()!n n n f x f x x x n ∞==-∑(3) 证明 由条件(2)得,00(,)x x r x r ∀∈-+有()0()()0!!n n n nf M r x x n n ξ-≤→ ()n →∞ 即得所证. 若()f x 在0x 这一邻域内可以展开成泰勒级数,即+-++-+-+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)())(()()(00)(200''00'0(4) 则(4)的右边为()f x 在0x x =处的泰勒展开式,或称幂级数展开式.在实际应用中,主要讨论函数在00x =处的展开式,这时(4)式可以写作+++++=nn x n f x f x f f x f !)0(!2)0()0()0()()(2''',称为麦克劳林级数,简称幂级数.2 函数幂级数的展开一般说来,可以将一个函数展成幂级数的方法分为直接展开法和间接展开法,下面就这两种方法做一一介绍.2.1 直接展开法这种方法也可以称其为余项估算法.设()f x 在0x x =处任意次可导,记()000()()()()!k nk n k f x R x f x x x k ==--∑()k N +∈,若()000()()()!n n n f x f x x x n ∞==-∑,只需0()x U x ∀∈,有lim ()0n n R x →∞=.当00x =时,()n R x 的各种表达式:()()n n R x x ο= (佩亚诺型余项);(1)1()()(1)!n n n f R x x n ξ++=+,ξ在0与x 之间 (拉格朗日型余项);(1)01()()()!x n n n R x x t f t dt n +=-⎰(积分型余项); (1)1()()(1)!n n n n f x R x x n θθ++=-,01θ≤≤(柯西型余项);佩亚诺型余项只是定性的描述了余项的性态不利于具体估算误差,所以我们常用其它三种余项形式.用直接展开法可得[1](5457)P -:201111!1!2!!n xnn x e x x x n n ∞===+++++∑ ,(,)x ∈-∞+∞;213210(1)11sin (1)(21)!3!(21)!n n nn n x x x x x n n ∞++=-==-++-+++∑ ,(,)x ∈-∞+∞;2220(1)11cos 1(1)(2)!2!(2)!n n nn n x x x x n n ∞=-==-++-+∑ ,(,)x ∈-∞+∞;12311(1)111ln(1)(1)23n n n nn x x x x x x n n-∞-=-+==-+-+-+∑ ,(1,1]x ∈-;2(1)(1)(1)(1)12!!nn x x x x n ααααααα---++=+++++,(1,1)x ∈-;arctan x =3521210(1)(1)213521n n n nn x x x x x n n +∞+=-=-+-+-+++∑ ,[1,1]x ∈-;211(21)!!arcsin (2)!!21n n n x x x n n +∞=-=++∑ ,[1,1]x ∈-;例2 求函数23()3247f x x x x =+-+在1x =处的幂级数展开式.解 由于'21(1)8,(1)(2821)15,x f f x x ===-+=''1(1)(842)34x f x ==-+=,'''()(1)42,,(1)0n f f ==,(3n >),从而总有 lim ()0n n R x →∞=(其中(1)1()(),(1)!n n n f R x x n ξ++=+ξ在0与x 之间),所以23233442()815(1)(1)(1)815(1)17(1)7(1)2!3!f x x x x x x x =+-+-+-=+-+-+- 例3 求2()sin f x x =的幂级数展式.解 由于'''00(0)0,(0)(sin 2)0,(0)(2cos 2)2,x x f f x f x ======='''(4)00(0)(4sin 2)0,()(8cos 2)8x x f x f x x ===-==-=-,,(21)(2)121(0)0,(0)(1)2,n n n n f f ---==- ,因此2122412282sin (1)(,)2!4!(2)!n n nx x x x n --=-++-+-∞+∞;x ∀,级数的拉格朗日余项2212()(21)!n n n R x x n +≤+,显然有lim ()0n n R x →∞=. 所以上述展式成立.2.2 间接展开法上面讨论的几个函数展开都是采用直接展开法.一般说来,求函数的各阶导数比较麻烦,尤其要检验余项是否趋向于零,往往不是一件容易的事.因此,在可能的情况下,我们总是尽可能不用直接方法,而采用间接方法把已给函数展成幂级数,所谓间接展开法指的是,利用已知的函数展开式作为出发点,把给定函数展开成幂级数.由于函数展成幂级数的唯一性,用这种方法展开的结果应与直接方法展开的结果完全一致.在实际的练习中,将初等函数展开为幂级数,要用到多种方法,现将其常用的方法归结如下: 2.2.1通过变形,利用已知的展开式例4 将下列函数展成x 的幂级数.1)241()(1)(1)(1)f x x x x =+++ 解 241()(1)(1)(1)f x x x x =+++811x x -==- 8898810(1)1n n n n x x x x x x x ∞+=-=-+-++-+∑ ,(11)x -<<.2)3()sin x x ϕ=解 2121300313(1)1(1)(3)sin sin sin 3444(21)!4(21)!n n n n n n x x x x x n n ++∞∞==--=-=-++∑∑34=2210(1)(13)(21)!nn n n x n ∞+=--+∑ , (,)x ∈-∞+∞. 例5 设0x >,求证:㏑x =2[ ++-++-++-53)11(51)11(3111x x x x x x ] 证明 令11x t x -=+即11tx t+=-,从而 121111ln ln ln(1)ln(1)(1)(1)1n n n n n n t t t x t t t n n ∞∞--==+==+--=----∑∑ 1211211111[(1)(1)][(1)(1)]()1nn n n n n n n t x n n x ∞∞----==-=---=---+∑∑ 35111112[()()]13151x x x x x x ---=++++++例6 求函数2()(1)(1)xf x x x =--的麦克劳林展式. 解 设222(1)(1)(1)(1)11(1)x x A B C x x x x x x x ==++--+-+--得111,,,442A B C =-=-=又221(1)(1)(1)n n x n x x ∞-==-=+-∑,01(1)1n n n x x ∞==-+∑,011nn x x ∞==-∑ (11x -<<) 所以20011(1)11(1)((1))()(1)(1)2222n n n nn n x n x n x x x ∞∞==+---=+-=+--∑∑,(11x -<<) 2.2.2 利用逐项积分或逐项微分法 例7 求2()xt F x e dt -=⎰的幂级数展开式.解 将2x -代替xe 展式中的x ,得+-+++-=-nn x x n x x e242!)1(!21!1112,()x -∞<<+∞.再逐项求积分就得到()F x 在(,-∞+∞)展开式2357210111(1)()1!32!53!7!21n n xt x x x x F x e dt x n n +--==-+-++++⎰ .例8 试求22()arctan2xf x x =-的幂级数展开式. 解 2''22000221()()(arctan )(1)221()2xxx t t f x f x dt dt dt t t ===+-+⎰⎰⎰ =2400(1)(1)()24nxn n t t dt ∞=+-∑⎰ (t < 2222222234500[1()()()()](1)()222222n xx nn t t t t tt dt dt ⎡⎤∞⎢⎥⎣⎦==+--++-=-∑⎰⎰2120(1)2(21)n n n n x n⎡⎤+∞⎢⎥⎣⎦==-+∑,(t <当x =2122011111(1)(1))2(21)21357911n n nnn n n n ⎡⎤⎡⎤+∞∞⎢⎥⎢⎥⎣⎦⎣⎦==-=-=+--++-++∑∑001111111(1)()()2((1)(1))3579114143n nn n n n ∞∞==⎤=+-+++-=-+-⎥++⎦∑∑可见x=x =22()arctan2xf x x=-在x =所以上面展式在⎡⎣上成立.2.2.3 利用待定系数法 例9 求2sin 12cos x x xαα-+ (1)x <的幂级数展式. 解 设2sin 12cos n n n x a x x x αα∞==-+∑,则20sin (12cos )nn n x x x a x αα∞==-+∑232323012301201(2cos )(2cos )(2cos )a a x a x a x a x a x a x a x a x ααα=++++---++++比较等式两边同次幂的系数,得0120,sin ,sin 2,,sin n a a a a n ααα====,这里用到三角恒等式sin(1)2sin cos sin(1)n n n αααα+=⋅-- (2,3,)n =,所以 原式= ++++nx n x x αααsin 2sin sin 22.2.4 利用级数的运算(加,减,乘,复合) 例10 求2()ln (1)f x x =-的幂级数展开式.解 由于10ln(1)1n n x x n +∞=-=-+∑在[1,1)-上内闭一致收敛,故[1,1)-上可用级数乘法2321111111111()()23121321n n x x f x x x n n n n ∞+=⎡⎤=----=++++⎢⎥--⎣⎦∑ =()()111111111()()(1)11nn n n n k n k k n k x x k n k n k n k ∞∞++====++-⎡⎤⎣⎦=+-++-∑∑∑∑ 111111111112111n n n n n k n k x x n n k k n k ∞∞++====⎡⎤⎛⎫⎛⎫=+= ⎪ ⎪⎢⎥++-+⎝⎭⎝⎭⎣⎦∑∑∑∑ 1111121231n n x n n +∞=⎛⎫=++++ ⎪+⎝⎭∑ 上面的展式在[1,1)-内成立.例11 求()()111x f x x e =+按x 的幂的展开式至三次项.解 ()()111x f x x e=+()()111111ln 11nn n x x x nxee∞-=--+-∑== (1)x <= +-+-43232x x x e23232323111()()()23422346234x x x x x x x x x =+-+-++-+-++-+-+)11(,167241121132<<-+-+-=x x x x 2.2.5 其它方法举例例 12 求函数()sin xf x e x =的麦克劳林级数的前四项. 解23521111111sin (1)((1))1!2!!3!5!(21)!x nnn e x x x x x x x x n n +=+++++-+++-++233441111()()3!2!3!3!x x x x x x =++-++-++ 2313x x x =+++3 幂级数的应用3.1 计算积分 例13 计算积分120ln 1xdx x -⎰ 解 11112222220000ln 1ln ln ln 111x x x x dx xdx xdx xdx x x x -+==+---⎰⎰⎰⎰ 因为10ln 1xdx =-⎰,及2221ln ln 1nn x x x x x ∞==-∑,故 原式=12101ln n n x xdx ∞=-+∑⎰. 又知级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可在(0,1]上逐项积分①,因此原式12011ln nn x xdx ∞==-+∑⎰()()2211112121n n n n ∞∞===--=-++∑∑()()22220111111()2212n n n n n n ∞∞∞====-+++∑∑∑2222221111126248n n nnπππ∞∞===-+=-+=-∑∑ 例14 计算22cos(sin )x x d πθπ⎰解 因()()21(sin )cos sin 11(2)!k kk x x k θθ∞==+-∑ ()()221sin 112!k k kk x k θ∞==+-∑ , (,)x ∈-∞+∞故2222222001122(1)(1)cos(sin )sin 12(2)!(!)2k k k k kk k k xx x d d k k πππθθθθππ∞∞==⎡⎤--=+=+⎢⎥⎣⎦∑∑⎰⎰ 3.2 证明不等式幂级数是表达函数的重要工具,因此也可应用于证明函数不等式. 例15 证明不等式222,(,)x x x e e e x -+≤∈-∞+∞ 证明 因2022(2)!n xxn x e echx n ∞-=+==∑,222022(2)!!x nn x e n ∞==∑,而22(2)!(2)!!n n x x n n ≤,故222,xx xe e e -+≤ 例16 确定λ的值,使得22,(,)x x x e e e x λ-+≤∈-∞+∞解1)若上述不等式成立,则有222220001110()()2!2!2!2!x x n n n n n x n nn n n n n n n e e x x x x e n n n n λλλλ-∞∞∞∞====+≤-=-=-=-∑∑∑∑ 两端除以2x ,再令0x =,可得12λ≥.2)若12λ≥ ,则有22222002(2)!2!x x x n nx n n n e e x x e e n n λ-∞∞==+===≤∑∑3.3 近似计算幂级数常常用于近似计算. 例17 求下列各值的近似值: (1)e ,使误差小于0.001;解 在xe 的展开式中令1x =,得111112!3!!e n =++++++ 若取上述级数的前(1)n +项作为e 的近似值,即设111112!3!!e n ≈+++++则误差11(1)!(2)!n R n n =++++ 111[1](1)!2(2)(3)n n n n =+++++++2111111[1]1(1)!1(1)(1)!!11n n n n n nn <+++==++++-+ 所以要使0.001n R <,只要!1000n n >,可算出当6n =时就满足要求.因而可取前七位即可,即11111 2.7182!3!6!e ≈+++++= (2)6π,使误差小于0.001;解 在arcsin x 的展开式中令12x =,得3521111131(21)!!1622322452(2)!!(21)2n n n n π+⨯-≈+++++⨯⨯⨯+若取前(1)n +项作为6π的近似值,误差2325(21)!!1(23)!!1(22)!!(23)2(24)!!(25)2n n n n n R n n n n ++++=++++++2324(21)!!111(1)(22)!!(23)222n n n n ++<+++++234(21)!!13(22)!!(23)2n n n n ++=++要使0.001n R <,只要使上式右端小于0.001即可,不难算出当2n =时即满足要求,因而取前三项即可,即45111310.52362322452π⨯≈++=⨯⨯⨯ 3.4 应用幂级数性质求下列级数的和 例18()11!n nn ∞=+∑ 分析 ()11!n n n ∞=+∑是幂级数()111!n n nx n ∞+=+∑的和函数在1x =处的值.解 设()()111!n n nf x x n ∞+==+∑ ()x -∞<<+∞, 则()1110'()1!(1)!!n n nx n n n x x x f x x x xe n n n -∞∞∞=======--∑∑∑ ()x -∞<<+∞,所以0()(0)'()1xxtxxf x f f t dt te dt xe e =+==-+⎰⎰,从而()1(1)11!n nf n ∞===+∑.3.5 利用函数的幂级数展开式求下列不定式极限 例19 21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 因为23311111ln 123o x x x x x ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭,所以 原式223311111111lim lim 23232x x x x x x x x x x x x οο→∞→∞⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫=--++=-+-+=⎨⎬ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭ 例20 3arcsin limsin x x x x→∞-解 因为()()331arcsin ,sin 6x x x o x x x o x =++=+,所以原式=()()()()()333333311166lim lim 6x x x x x o x x o x x o x x o x →∞→∞⎛⎫-++-+ ⎪⎝⎭==-++ 3.6 求幂级数的和函数例21 +++++++12531253n x x x x n 解 设2121n n x n μ+=+,因21lim n x nu x u +→∞=,故原级数的收敛半径1R =,又当1x =±时,原级数可化为0121n n ∞=⎛⎫± ⎪+⎝⎭∑发散,从而得收敛域为(1,1)-. 设()()21021n n x S x n +∞==+∑ ()()1,1x ∈-,在()1,1x ∈-内逐项求导,得()2201'1nn S x x x ∞===-∑, 故和函数()()()2011'0ln 121xxdt xS x S t dt S t x +==+=--⎰⎰ ()1,1x ∈-. 例22 求幂级数()()211nn n x n n ∞=--∑的和函数. 解 易知原级数的收敛域为[1,1]-.记()()21()1nn n F x x n n ∞=-=-∑,则()()()()()1222111'()()'()'111nnnn nn n n n F x x x x n n n n n ∞∞∞-===---===---∑∑∑,()()()()21122222111''()()'()'1111nnn n n n n n n n F x xxnxx n n x ∞∞∞∞----====--===-==--+∑∑∑∑故()001'()''()ln 11xxF x F t dt dt x t ===++⎰⎰, ()()()0()'()ln 11ln 1xxF x F t dt t dt x x x ==+=++-⎰⎰,所以()()()()211ln 11n n x x x x n n ∞=-=++--∑ ,(1,1)-.注释: ① 求证级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可以在(0,1]上逐项积分证 1当1x =时级数通项()211ln |0nn x u x x ===.当01x <<,21nn xlnx ∞=∑为等比级数,所以和22ln ()10x x S x x⎧⎪=-⎨⎪⎩, 011x x <<= 时,可见211(10)lim ln(1(1))(1).(1)(1)2x x S x S x x -→-=--=≠+- 故 该级数非一致收敛(根据和函数连续定理).2(证明能逐项积分)因22222221ln ()ln ln ,11n kn n k n x x x R x x x x x x x +∞=+===⋅--∑其中220ln lim 1x x xx +→-及221ln lim 1x x x x -→-都有有限极限,且22ln 1x x x -在(0,1)内连续,所以22ln 1x x x -在(0,1)内有界,即0M ∃>,使得22ln ||1x xM x ≤-,故 2|()|n n R x M x ≤⋅, 11120|()||()|0().21n n n MR x dx R x dx M x dx n n ≤≤=→→∞+⎰⎰⎰ 此即表明1lim ()0.n n R x dx →∞=⎰级数可以逐项取积分.。
函数的幂级数展开及其应用
函数的幂级数展开指将一个函数表示成一个无穷级数的形式,其中每一项都是该函数的幂函数,常常用于求解微积分问题和数学物理问题。
以函数$f(x)$在$x_0$处的幂级数展开为例,其一般形式为:
$$ f(x) = \\sum_{n=0}^{\\infty} a_n (x-x_0)^n $$
其中,$a_n$为展开系数,可以通过求解$f(x)$在$x_0$处的各阶导数来计算,即:
$$ a_n = \\frac{f^{(n)}(x_0)}{n!} $$
应用幂级数展开,可以求解一些常见的数学问题,例如:
1. 求解函数在某一点的近似值:可以通过对函数在该点处的幂级数展开,截取前几项进行计算,得到一个逼近函数。
2. 求解函数的极限:当幂级数的展开系数趋近于零时,可以证明该函数收敛于幂级数展开式。
3. 求解常微分方程:有些常微分方程可以通过将其转化为幂级数展开的形式,从而求解其解析解。
4. 计算函数的积分、导数等:有时候可以通过将函数先展开成幂级数,在进行积分、导数等运算。
第十一章 无穷级数教学目的:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与P 级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。
9.了解函数展开为泰勒级数的充分必要条件。
10.掌握,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。
教学重点 :1、级数的基本性质及收敛的必要条件。
2、正项级数收敛性的比较判别法、比值判别法和根值判别;3、交错级数的莱布尼茨判别法;4、幂级数的收敛半径、收敛区间及收敛域;5、,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式;6、傅里叶级数。
教学难点:1、比较判别法的极限形式;2、莱布尼茨判别法;3、任意项级数的绝对收敛与条件收敛;4、函数项级数的收敛域及和函数;5、泰勒级数;6、傅里叶级数的狄利克雷定理。
§11. 1 常数项级数的概念和性质一、常数项级数的概念 常数项级数: 给定一个数列 u 1, u 2, u 3, ⋅ ⋅ ⋅, u n , ⋅ ⋅ ⋅, 则由这数列构成的表达式 u 1 + u 2 + u 3 + ⋅ ⋅ ⋅+ u n + ⋅ ⋅ ⋅叫做常数项)无穷级数, 简称常数项)级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项u n 叫做级数的一般项. 级数的部分和: 作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和.级数敛散性定义: 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim ,则称无穷级数∑∞=1n n u 收敛, 这时极限s 叫做这级数的和,并写成3211⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.余项: 当级数∑∞=1n n u 收敛时, 其部分和s n 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值r n =s -s n =u n +1+u n +2+ ⋅ ⋅ ⋅ 叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)20⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n aq aq aq a aq的敛散性, 其中a ≠0, q 叫做级数的公比. 例1 讨论等比级数n n aq ∑∞=0(a ≠0)的敛散性.解 如果q ≠1, 则部分和 qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当|q |<1时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当|q |>1时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果|q |=1, 则当q =1时, s n =na →∞, 因此级数n n aq ∑∞=0发散;当q =-1时, 级数n n aq ∑∞=0成为a -a +a -a + ⋅ ⋅ ⋅,时|q |=1时, 因为s n 随着n 为奇数或偶数而等于a 或零, 所以s n 的极限不存在, 从而这时级数n n aq ∑∞=0也发散.综上所述, 如果|q |<1, 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果|q |≥1, 则级数n n aq ∑∞=0发散. 仅当|q |<1时, 几何级数n n aq ∑∞=0a ≠0)收敛, 其和为qa -1.例2 证明级数 1+2+3+⋅ ⋅ ⋅+n +⋅ ⋅ ⋅ 是发散的.证 此级数的部分和为 2)1( 321+=+⋅⋅⋅+++=n n n s n . 显然, ∞=∞→n n s lim , 因此所给级数是发散的. 例3 判别无穷级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 的收敛性. 解 由于 111)1(1+-=+=n n n n u n ,因此 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n从而1)111(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1. 例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性. 解 因为 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n , 从而1)111(lim lim =+-=∞→∞→n s n n n ,所以这级数收敛, 它的和是1. 提示: 111)1(1+-=+=n n n n u n .二、收敛级数的基本性质性质1 如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛,且其和为ks .性质1 如果级数∑∞=1n n u 收敛于和s , 则级数∑∞=1n n ku 也收敛, 且其和为ks .性质1 如果s u n n =∑∞=1, 则ks ku n n =∑∞=1.这是因为, 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为s n 与σn , 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21.这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为s ±σ.性质2 如果s u n n =∑∞=1、σ=∑∞=1n n v , 则σ±=±∑∞=s v u n n n )(1.这是因为, 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为s n 、σn 、τn , 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性. 比如, 级数 )1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的, 级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的, 级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数1-1)+1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的. 推论: 如果加括号后所成的级数发散, 则原来级数也发散. 级数收敛的必要条件:性质5 如果∑∞=1n n u 收敛, 则它的一般项u n 趋于零, 即0lim 0=→n n u .性质5 如果∑∞=1n n u 收敛, 则0lim 0=→n n u .证 设级数∑∞=1n n u 的部分和为s n , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .应注意的问题: 级数的一般项趋于零并不是级数收敛的充分条件. 例4 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n 是发散的.例4 证明调和级数∑∞=11n n是发散的. 证 假若级数∑∞=11n n 收敛且其和为s , s n是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面, 2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n , 故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.§11. 2 常数项级数的审敛法 一、正项级数及其审敛法正项级数: 各项都是正数或零的级数称为正项级数.定理1 正项级数∑∞=1n n u 收敛的充分必要条件它的部分和数列{s n }有界.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ ). 若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (k >0, ∀n ≥N ).若∑∞=1n n v 收敛, 则∑∞=1n n u 收敛; 若∑∞=1n n u 发散, 则∑∞=1n n v 发散.设∑u n 和∑v n 都是正项级数, 且u n ≤kv n (k >0, ∀n ≥N ). 若级数∑v n 收敛, 则级数∑u n 收敛; 反之, 若级数∑u n 发散, 则级数∑v n 发散.证 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和s n =u 1+u 2+ ⋅ ⋅ ⋅ +u n ≤v 1+ v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.证 仅就u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ )情形证明. 设级数∑v n 收敛, 其和为σ, 则级数∑u n 的部分和 s n =u 1+ u 2+ ⋅ ⋅ ⋅ + u n ≤v 1+v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界. 因此级数∑u n 收敛.反之, 设级数∑u n 发散, 则级数∑v n 必发散. 因为若级数 ∑v n 收敛, 由上已证明的结论, 级数∑u n 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当n ≥N 时有u n ≤kv n (k >0)成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当n ≥N 时有u n ≥kv n (k >0)成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=p p p p p n n n 的收敛性, 其中常数p >0. 例1 讨论p -级数)0( 11>∑∞=p np n 的收敛性. 解 设p ≤1. 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当p ≤1时级数p n n11∑∞=发散.设p >1. 此时有]1)1(1[111111111-------=≤=⎰⎰p p n n p n n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).对于级数]1)1(1[112--∞=--∑p p n n n , 其部分和111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s .因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s . 所以级数]1)1(1[112--∞=--∑p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数p n n11∑∞=当p >1时收敛.综上所述, p -级数p n n11∑∞=当p >1时收敛, 当p ≤1时发散. 解 当p ≤1时, n n p 11≥, 而调和级数∑∞=11n n发散, 由比较审敛法知,当p ≤1时级数pn n 11∑∞=发散. 当p >1时,]1)1(1[111111111-------=≤=⎰⎰p p n n pn n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).而级数]1)1(1[112--∞=--∑p p n n n 是收敛的, 根据比较审敛法的推论可知,级数pn n 11∑∞=当p >1时收敛.提示: 级数]1)1(1[112--∞=--∑p p n n n 的部分和为111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s . 因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s ,所以级数]1)1(1[112--∞=--∑p p n n n 收敛.p -级数的收敛性: p -级数pn n 11∑∞=当p >1时收敛, 当p ≤1时发散. 例2 证明级数∑∞=+1)1(1n n n 是发散的. 证 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的. 定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果l v u nnn =∞→lim(0<l <+∞),则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,(1)如果l v u n nn =∞→lim (0≤l <+∞), 且级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; (2)如果+∞=>=∞→∞→n nn n n n v u l v u lim 0lim 或, 且级数∑∞=1n n v 发散, 则级数∑∞=1n n u 发散. 定理3(比较审敛法的极限形式) 设∑u n 和∑v n 都是正项级数,(1)如果lim(u n /v n )=l (0≤l <+∞), 且∑v n 收敛, 则∑u n 收敛;(2)如果lim(u n /v n )=l (0<l ≤+∞), 且∑v n 发散, 则∑u n 发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当n >N 时, 有不等式l l v u l l n n2121+<<-, 即n n n lv u lv 2321<<, 再根据比较审敛法的推论1, 即得所要证的结论. 例3 判别级数∑∞=11sinn n的收敛性.解 因为111sin lim =∞→nn n , 而级数∑∞=11n n发散,根据比较审敛法的极限形式, 级数∑∞=11sinn n发散. 例4 判别级数∑∞=+12)11ln(n n 的收敛性. 解 因为11)11ln(lim22=+∞→n n n , 而级数211n n ∑∞=收敛, 根据比较审敛法的极限形式, 级数∑∞=+12)11ln(n n 收敛. 定理4(比值审敛法, 达朗贝尔判别法)若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ:ρ=+∞→nn n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散; 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 满足ρ=+∞→nn n u u 1lim, 则当ρ<1时级数收敛;当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散. 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法)设∑∞=1n n u 为正项级数, 如果ρ=+∞→n n n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim )时级数发散; 当ρ =1时级数可能收敛也可能发散.例5 证明级数 )1( 3211 3211211111⋅⋅⋅+-⋅⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅++n 是收敛的. 解 因为101lim 321)1( 321lim lim1<==⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅=∞→∞→+∞→nn n u u n n n n n ,根据比值审敛法可知所给级数收敛. 例6 判别级数10! 10321102110132⋅⋅⋅++⋅⋅⋅+⋅⋅+⋅+nn 的收敛性.解 因为∞=+=⋅+=∞→+∞→+∞→101lim ! 1010)!1(lim lim11n n n u u n nn n n n n ,根据比值审敛法可知所给级数发散.例7 判别级数∑∞∞→⋅-n n n 2)12(1的收敛性. 解 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n .这时ρ=1, 比值审敛法失效, 必须用其它方法来判别级数的收敛性.因为212)12(1n n n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛. 解 因为212)12(1n n n <⋅-, 而级数211nn ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.提示: 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n , 比值审敛法失效.因为212)12(1nn n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.定理5(根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项u n 的n 次根的极限等于ρ:ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim)时级数发散; 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 若正项级数∑∞=1n n u 满足ρ=∞→nn n u lim, 则当ρ<1时级数收敛;当ρ>1(或+∞=∞→nn n u lim)时级数发散. 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 设∑∞=1n n u 为正项级数, 如果ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim )时级数发散; 当ρ=1时级数可能收敛也可能发散.例8 证明级数 1 3121132⋅⋅⋅++⋅⋅⋅+++nn 是收敛的. 并估计以级数的部分和s n 近似代替和s 所产生的误差. 解 因为01lim 1lim lim ===∞→∞→∞→nn u n nn n n n n ,所以根据根值审敛法可知所给级数收敛.以这级数的部分和s n 近似代替和s 所产生的误差为 )3(1)2(1)1(1||321⋅⋅⋅++++++=+++n n n n n n n r )1(1)1(1)1(1321⋅⋅⋅++++++<+++n n n n n n + nn n )1(1+=. 例6判定级数∑∞=-+12)1(2n nn的收敛性. 解 因为21)1(221limlim =-+=∞→∞→n n n n n n u ,所以, 根据根值审敛法知所给级数收敛. 定理6(极限审敛法) 设∑∞=1n n u 为正项级数,(1)如果)lim (0lim +∞=>=∞→∞→n n n n nu l nu 或, 则级数∑∞=1n n u 发散;(2)如果p >1, 而)0( lim +∞<≤=∞→l l u n n pn , 则级数∑∞=1n n u 收敛.例7 判定级数∑∞=+12)11ln(n n 的收敛性. 解 因为)(1~)11ln(22∞→+n n n , 故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→nn n n u n n n n n ,根据极限审敛法, 知所给级数收敛.例8 判定级数)cos 1(11nn n π-+∑∞=的收敛性.解 因为 222232321)(211lim )cos 1(1limlimπππ=⋅+=-+=∞→∞→∞→n n n n n n n u n n n nn ,根据极限审敛法, 知所给级数收敛.二、交错级数及其审敛法交错级数: 交错级数是这样的级数, 它的各项是正负交错的. 交错级数的一般形式为∑∞=--11)1(n n n u , 其中0>n u .例如,1)1(11∑∞=--n n n 是交错级数, 但 cos 1)1(11∑∞=---n n n n π不是交错级数.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足条件:(1)u n ≥u n +1 (n =1, 2, 3, ⋅ ⋅ ⋅); (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足: (1)1+≥n n u u ; (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.简要证明: 设前n 项部分和为s n .由s 2n =(u 1-u 2)+(u 3-u 4)+ ⋅ ⋅ ⋅ +(u 2n 1-u 2n ), 及 s 2n =u 1-(u 2-u 3)+(u 4-u 5)+ ⋅ ⋅ ⋅ +(u 2n -2-u 2n -1)-u 2n 看出数列{s 2n }单调增加且有界(s 2n <u 1), 所以收敛.设s 2n →s (n →∞), 则也有s 2n +1=s 2n +u 2n +1→s (n →∞), 所以s n →s (n →∞). 从而级数是收敛的, 且s n <u 1.因为 |r n |=u n +1-u n +2+⋅ ⋅ ⋅也是收敛的交错级数, 所以|r n |≤u n +1. 例9 证明级数 1)1(11∑∞=--n n n收敛, 并估计和及余项.证 这是一个交错级数. 因为此级数满足 (1)1111+=+>=n n u n n u (n =1, 2,⋅ ⋅ ⋅), (2)01lim lim ==∞→∞→nu n nn ,由莱布尼茨定理, 级数是收敛的, 且其和s <u 1=1, 余项11||1+=≤+n u r n n .三、绝对收敛与条件收敛: 绝对收敛与条件收敛:若级数∑∞=1||n n u 收敛, 则称级数∑∞=1n n u 绝对收敛; 若级数∑∞=1n n u收敛, 而级数∑∞=1||n n u 发散, 则称级∑∞=1n n u 条件收敛.例10 级数∑∞=--1211)1(n n n 是绝对收敛的, 而级数∑∞=--111)1(n n n 是条件收敛的.定理7 如果级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定收敛.值得注意的问题:如果级数∑∞=1||n n u 发散, 我们不能断定级数∑∞=1n n u 也发散.但是, 如果我们用比值法或根值法判定级数∑∞=1||n n u 发散,则我们可以断定级数∑∞=1n n u 必定发散.这是因为, 此时|u n |不趋向于零, 从而u n 也不趋向于零, 因此级数∑∞=1n n u 也是发散的.例11 判别级数∑∞=12sin n nna 的收敛性. 解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n n na 也收敛, 从而级数∑∞=12sin n nna 绝对收敛.例12 判别级数∑∞=+-12)11(21)1(n n nnn 的收敛性.解: 由2)11(21||n nn n u +=, 有121)11(lim 21||lim >=+=∞→∞→e n u n n n nn ,可知0lim ≠∞→n n u , 因此级数∑∞=+-12)11(21)1(n n nnn 发散.§ 11. 3 幂级数一、函数项级数的概念函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x )+ ⋅ ⋅ ⋅ 称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .收敛点与发散点:对于区间I 内的一定点x 0, 若常数项级数∑∞=10)(n n x u 收敛, 则称 点x 0是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n n x u 发散, 则称 点x 0是级数∑∞=1)(n n x u 的发散点.收敛域与发散域:函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域. 和函数:在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x ),s (x )称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s .∑u n (x )是∑∞=1)(n n x u 的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x ).在收敛域上有)()(lim x s x s n n =∞→或s n (x )→s (x )(n →∞) .余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ). 在收敛域上有0)(lim =∞→x r n n .二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是 a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 其中常数a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n , ⋅ ⋅ ⋅叫做幂级数的系数. 幂级数的例子:1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅ , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x . 注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ ⋅ ⋅ ⋅ +a n (x -x 0)n + ⋅ ⋅ ⋅ , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ ⋅ ⋅ ⋅ +a n t n + ⋅ ⋅ ⋅ . 幂级数1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |≥1时, 它是发散的. 因此它的收敛 域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 0≠0)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散.定理1 (阿贝尔定理) 如果级数∑a n x n 当x =x 0 (x 0≠0)时收敛, 则适合不等式 |x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑a n x n 当 x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散. 提示: ∑a n x n是∑∞=0n n n x a 的简记形式.证 先设x 0是幂级数∑∞=0n nn x a 的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件, 有0lim 0=∞→nn n x a , 于是存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅).这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n n n x x M x x x a x x x a x a ||||||||||00000⋅≤⋅=⋅=. 因为当|x |<|x 0|时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n n x a 绝对收敛.简要证明 设∑a n x n 在点x 0收敛, 则有a n x 0n →0(n →∞) , 于是数列{a n x 0n }有界, 即存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅). 因为 n n n n n nn n nn x x M x x x a x x x a xa || |||| || ||00000⋅≤⋅=⋅=,而当||||0x x <时, 等比级数n n x x M ||⋅∑∞=收敛, 所以级数∑|a n x n |收敛, 也就是级数∑a nx n 绝对收敛.定理的第二部分可用反证法证明. 倘若幂级数当x =x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛, 则根据本定理的第一部分, 级数当x =x 0时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n n x a 不是仅在点x =0一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的正数R 存在, 使得 当|x |<R 时, 幂级数绝对收敛; 当|x |>R 时, 幂级数发散;当x =R 与x =-R 时, 幂级数可能收敛也可能发散.收敛半径与收敛区间: 正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径. 开区间(-R , R )叫做幂级数∑∞=0n nn xa 的收敛区间. 再由幂级数在x =±R 处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n nn x a 的收敛域是(-R , R )(或[-R , R )、(-R , R ]、[-R , R ]之一.规定: 若幂级数∑∞=0n nn x a 只在x =0收敛, 则规定收敛半径R =0 , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径R =+∞, 这时收敛域为(-∞, +∞). 定理2如果ρ=+∞→||lim 1n n n a a , 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 1R .定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a , 则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .定理2如果ρ=+∞→||lim 1n n n a a , 则幂级数∑∞=0n n n x a 的收敛半径R 为: 当ρ≠0时ρ1=R , 当ρ=0时R =+∞, 当ρ=+∞时R =0.简要证明: || ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1)如果0<ρ<+∞, 则只当ρ|x |<1时幂级数收敛, 故ρ1=R .(2)如果ρ=0, 则幂级数总是收敛的, 故R =+∞. (3)如果ρ=+∞, 则只当x =0时幂级数收敛, 故R =0. 例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n的收敛半径与收敛域. 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的; 当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域. 例2 求幂级数∑∞=0!1n n x n 的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+∞, 从而收敛域为(-∞, +∞). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径: 幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2>1即21||>x 时级数发散, 所以收敛半径为21=R . 提示: 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n x n n xn n x u x u n n n n +++=++=++. 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n nnt .因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ,所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n , 此级数收敛. 因此级数∑∞=12n n nnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算 设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有 加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b xa ,减法:∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ ⋅ ⋅ ⋅+(a 0b n +a 1b n -1+ ⋅ ⋅ ⋅ +a n b 0)x n + ⋅ ⋅ ⋅性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R , R ))连续. 性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n xn n n x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径. 性质1 幂级数∑a n x n 的和函数s (x )在其收敛域I 上连续.性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑a n x n 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式 ∑∑∑∞=-∞=∞=='='='010)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然s (0)=1. 在∑∞=++=0111)(n n x n x xs 的两边求导得 x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001. 对上式从0到x 积分, 得 )1ln(11)(0x dx xx xs x--=-=⎰.于是, 当x ≠0时, 有)1ln(1)(x x x s --=. 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(1100x dx x dx x x x n n--=-==⎰⎰∑∞=, 所以, 当x ≠0时, 有)1ln(1)(x xx s --=,从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设幂级数的和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然S (0)=1. 因为 ⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)()11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx x dx x xx n n, 所以, 当1||0<<x 时, 有)1ln(1)(x xx s --=.从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .由和函数在收敛域上的连续性, 2ln )(lim )1(1==-+-→x S S x .综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x x x s .提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.例7 求级数∑∞=+-01)1(n nn 的和.解 考虑幂级数∑∞=+011n nx n , 此级数在[-1, 1)上收敛, 设其和函数为s (x ), 则∑∞=+-=-01)1()1(n nn s .在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n nn .§11. 4 函数展开成幂级数一、泰勒级数要解决的问题: 给定函数f (x ), 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数f (x ). 如果能找到这样的幂级数, 我们就说, 函数f (x )在该区间内能展开成幂级数, 或简单地说函数f (x )能展开成幂级数, 而该级数在收敛区间内就表达了函数f (x ).泰勒多项式: 如果f (x )在点x 0的某邻域内具有各阶导数, 则在该邻域内f (x )近似等于 )(!2)())(()()(200000⋅⋅⋅+-''+-'+=x x x f x x x f x f x f )()(!)(00)(x R x x n x f n n n +-+,其中10)1()()!1()()(++-+=n n n x x n f x R ξ(ξ介于x 与x 0之间). 泰勒级数: 如果f (x )在点x 0的某邻域内具有各阶导数f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ , 则当n →∞时, f (x )在点x 0的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+= 成为幂级数)(!3)()(!2)())(()(300200000⋅⋅⋅+-'''+-''+-'+x x x f x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f 这一幂级数称为函数f (x )的泰勒级数. 显然, 当x =x 0时, f (x )的泰勒级数收敛于f (x 0).需回答的问题: 除了x =x 0外, f (x )的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于f (x )? 定理 设函数f (x )在点x 0的某一邻域U (x 0)内具有各阶导数, 则f (x )在该邻域内能展开成泰勒级数的充分必要条件是f (x )的泰勒公式中的余项R n (x )当n →0时的极限为零, 即))(( 0)(lim 0x U x x R n n ∈=∞→.证明 先证必要性. 设f (x )在U (x 0)内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设s n +1(x )是f (x )的泰勒级数的前n +1项的和, 则在U (x 0)内s n +1(x )→ f (x )(n →∞). 而f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是R n (x )=f (x )-s n +1(x )→0(n →∞). 再证充分性. 设R n (x )→0(n →∞)对一切x ∈U (x 0)成立.因为f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是s n +1(x )=f (x )-R n (x )→f (x ), 即f (x )的泰勒级数在U (x 0)内收敛, 并且收敛于f (x ). 麦克劳林级数: 在泰勒级数中取x 0=0, 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2nn x n f x f x f f ,此级数称为f (x )的麦克劳林级数.展开式的唯一性: 如果f (x )能展开成x 的幂级数, 那么这种展式是唯一的, 它一定与f (x )的麦克劳林级数一致. 这是因为, 如果f (x )在点x 0=0的某邻域(-R , R )内能展开成x 的幂级数, 即 f (x )=a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 那么根据幂级数在收敛区间内可以逐项求导, 有 f '(x )=a 1+2a 2x +3a 3x 2+ ⋅ ⋅ ⋅+na n x n -1+ ⋅ ⋅ ⋅ , f ''(x )=2!a 2+3⋅2a 3x + ⋅ ⋅ ⋅ + n ⋅(n -1)a n x n -2 + ⋅ ⋅ ⋅ , f '''(x )=3!a 3+ ⋅ ⋅ ⋅+n ⋅(n -1)(n -2)a n x n -3 + ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ f (n )(x )=n !a n +(n +1)n (n -1) ⋅ ⋅ ⋅ 2a n +1x + ⋅ ⋅ ⋅ , 于是得a 0=f (0), a 1=f '(0), !2)0(2f a ''=, ⋅ ⋅ ⋅, !)0()(n f a n n =, ⋅ ⋅ ⋅.应注意的问题: 如果f (x )能展开成x 的幂级数, 那么这个幂级数就是f (x )的麦克劳林级数. 但是, 反过来如果f (x )的麦克劳林级数在点x 0=0的某邻域内收敛, 它却不一定收敛于f (x ). 因此, 如果f (x )在点x 0=0处具有各阶导数, 则f (x )的麦克劳林级数虽然能作出来, 但这个级数是否在某个区间内收敛, 以及是否收敛于f (x )却需要进一步考察. 二、函数展开成幂级数展开步骤:第一步 求出f (x )的各阶导数: f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ . 第二步 求函数及其各阶导数在x =0 处的值: f (0), f '(0), f ''(0), ⋅ ⋅ ⋅ , f (n )( 0), ⋅ ⋅ ⋅ . 第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+nn x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(-R , R )内时是否R n (x )→0(n →∞).1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ是否为零. 如果R n (x )→0(n →∞), 则f (x )在(-R , R )内有展开式!)0( !2)0()0()0()()(2⋅⋅⋅++⋅⋅⋅+''+'+=nn x n f x f x f f x f (-R <x <R ).例1 将函数f (x )=e x 展开成x 的幂级数.解 所给函数的各阶导数为f (n )(x )=e x (n =1, 2, ⋅ ⋅ ⋅), 因此f (n )(0)=1(n =1, 2, ⋅ ⋅ ⋅). 于是得级数 ⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x ,它的收敛半径R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(| |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ,而0)!1(||lim1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x .例2 将函数f (x )=sin x 展开成x 的幂级数. 解 因为)2sin()()(π⋅+=n x x f n (n =1, 2, ⋅ ⋅ ⋅),所以f (n )(0)顺序循环地取0, 1, 0, -1, ⋅ ⋅ ⋅ ((n =0, 1, 2, 3, ⋅ ⋅ ⋅), 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n , 它的收敛半径为R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(]2)1(sin[||)(|11+≤+++=++n x x n n x R n n n πξ→0 (n →∞). 因此得展开式)( )!12()1( !5!3sin 12153+∞<<-∞⋅⋅⋅+--+⋅⋅⋅-+-=--x n x x x x x n n . )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x . 例3 将函数f (x )=(1+ x )m 展开成x 的幂级数, 其中m 为任意常数. 解: f (x )的各阶导数为 f '(x )=m (1+x )m -1, f ''(x )=m (m -1)(1+x )m -2, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,f (n )(x )=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1)(1+x )m -n , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,所以 f (0)=1, f '(0)=m , f ''(0)=m (m -1), ⋅ ⋅ ⋅, f (n )(0)=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1), ⋅ ⋅ ⋅ 于是得幂级数 !)1( )1( !2)1(12⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++n x n n m m m x m m mx . 可以证明)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x nm .间接展开法:例4 将函数f (x )=cos x 展开成x 的幂级数. 解 已知 )!12()1( !5!3sin 12153⋅⋅⋅+--+⋅⋅⋅-+-=--n x x x x x n n (-∞<x <+∞).对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n . 例5 将函数211)(x x f +=展开成x 的幂级数.解 因为)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn , 把x 换成-x 2, 得)1( 1112422⋅⋅⋅+-+⋅⋅⋅-+-=+n n x x x x (-1<x <1). 注: 收敛半径的确定: 由-1<-x 2<1得-1<x <1. 例6 将函数f (x )=ln(1+x ) 展开成x 的幂级数.解 因为xx f +='11)(,而x +11是收敛的等比级数∑∞=-0)1(n n n x (-1<x <1)的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x.所以将上式从0到x 逐项积分, 得)11( 1)1( 432)1ln(1432≤<-⋅⋅⋅++-+⋅⋅⋅+-+-=++x n x x x x x x n n . 解: f (x )=ln(1+x )⎰⎰+='+=x x dx xdx x 0011])1[ln(∑⎰∑∞=+∞=+-=-=01001)1(])1([n n nx n n n n x dx x (-1<x ≤1).上述展开式对x =1也成立, 这是因为上式右端的幂级数当x =1时收敛, 而ln(1+x )在x =1处有定义且连续.例7 将函数f (x )=sin x 展开成)4(π-x 的幂级数.解 因为)]4sin()4[cos(22)]4(4sin[sin ππππ-+-=-+=x x x x , 并且有)( )4(!41)4(!211)4cos(42+∞<<-∞⋅⋅⋅--+--=-x x x x πππ, )( )4(!51)4(!31)4()4sin(53+∞<<-∞⋅⋅⋅--+---=-x x x x x ππππ, 所以 )( ] )4(!31)4(!21)4(1[22sin 32+∞<<-∞⋅⋅⋅+-----+=x x x x x πππ.例8 将函数341)(2++=x x x f 展开成(x -1)的幂级数. 解 因为 )411(81)211(41)3(21)1(21)3)(1(1341)(2-+--+=+-+=++=++=x x x x x x x x x f ∑∑∞=∞=-----=004)1()1(812)1()1(41n n nn n n n n x x)31( )1)(2121()1(0322<<----=∑∞=++x x n n n n n .提示: )211(2)1(21-+=-+=+x x x ,)411(4)1(43-+=-+=+x x x . ∑∞=<-<---=-+0)1211( 2)1()1(2111n nn n x x x , ∑∞=<-<---=-+0)1411( 4)1()1(4111n nn n x x x , 收敛域的确定: 由1211<-<-x 和1411<-<-x 得31<<-x .展开式小结:)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn ,。