幂级数和函数的分析性质1
- 格式:ppt
- 大小:403.50 KB
- 文档页数:7
高数幂级数知识点高数幂级数是高等数学中一个重要的概念,通过幂级数可以对一些函数进行近似展开,并得到它们的一些性质以及在某个点附近的近似值。
一、高数幂级数的定义高数幂级数由一列项数不同的幂函数相加而成,通常形式如下: f(x) = a0 + a1(x -x0) + a2(x - x0)^2 + a3(x - x0)^3 + ... 其中,a0,a1,a2,a3等为常数,称为系数;x0为展开点,x为自变量。
二、高数幂级数的收敛域幂级数并不在所有点都收敛,而是在一定范围内收敛。
收敛域由展开点x0和幂级数的收敛半径r决定。
收敛半径可以通过柯西-阿达玛公式计算得到: R = 1 / lim sup |an|^(1/n) 其中,an为系数,n为项数。
当n趋向于无穷大时,计算结果即为收敛半径。
三、高数幂级数的求和公式当幂级数收敛时,我们可以通过求和公式计算幂级数的和。
常见的求和公式有以下几种: 1. 几何级数:当|q| < 1时,幂级数a + aq +aq^2 + aq^3 + ...收敛,且和为A = a / (1 - q)。
2. 指数级数:e^x = 1 + x / 1! + x^2 / 2! + x^3 / 3!+ ...,这是由指数函数的泰勒级数展开得到的幂级数。
3. 三角函数级数:sin(x) = x - x^3 / 3! + x^5 / 5! -x^7 / 7! + ...,cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...,这是由三角函数的泰勒级数展开得到的幂级数。
四、高数幂级数的应用高数幂级数在数学及其他学科中有着广泛的应用,包括但不限于以下几个方面: 1. 近似计算:通过幂级数可以对一些复杂的函数进行近似展开,从而得到它们在某个点附近的近似值。
这在计算机科学、物理学等领域中非常重要。
2. 函数性质研究:通过幂级数可以研究函数的性质,如判定函数的奇偶性、周期性等。
幂级数求和函数方法概括与总结常见幂级数求和函数方法综述引言级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。
中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。
这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。
而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。
同时,他也开始讨论判断无穷级数的敛散性方法。
到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。
中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。
而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。
它在自然科学、工程技术和数学本身方面都有广泛的作用。
幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。
但很多人往往对这一内容感到困难。
产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。
事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。
一、幂级数的基本概念(一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =是定义在数集E 上的一个函数列,则称12()()(),n u x u x u x x E ++++∈为定义在E 上的函数项级数,简记为1()n n u x ∞=∑ 。
2、具有下列形式的函数项级数200102000()()()()n nn n n a x x a a x x a x x a x x ∞=-=+-+-++-+∑称为在点0x 处的幂级数。
幂级数的知识点总结一、幂级数的定义与基本概念1. 幂级数定义幂级数是指形如 $\sum_{n=0}^{\infty} a_nx^n$ 的级数,其中 $a_n$ 是常数,$x$ 是变量。
我们将 $a_nx^n$ 称为幂级数的通项。
当 $x=0$ 时,幂级数收敛,此时幂级数的值为 $a_0$。
当 $x\neq0$ 时,幂级数可能发散,也可能收敛。
2. 幂级数的收敛半径幂级数的收敛半径是指所有幂级数都收敛的 $x$ 范围。
收敛半径 $R$ 的计算公式为\[R = \lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}\]当 $R=0$ 时,幂级数只在 $x=0$ 处收敛;当 $R=\infty$ 时,幂级数在整个实数范围都收敛;当 $0<R<\infty$ 时,幂级数在 $(-R,R)$ 范围内收敛。
3. 幂级数的收敛域幂级数的收敛域是指其收敛的 $x$ 区间范围。
我们可以通过比较 $|x|<R$ 和 $|x|=R$ 以及$|x|>R$ 的情况来判断幂级数的收敛域。
二、幂级数的性质1. 幂级数的加法性与乘法性若 $\sum_{n=0}^{\infty} a_nx^n$ 和 $\sum_{n=0}^{\infty} b_nx^n$ 是两个幂级数,由于级数的加法与乘法遵循线性性质,因此这两个幂级数的和与乘积仍然是幂级数,它们的收敛性与原幂级数相同。
2. 幂级数的导数与积分幂级数在其收敛域内可以进行导数与积分运算,这是因为这些运算不会改变收敛性质。
具体来说,对于 $\sum_{n=0}^{\infty} a_nx^n$,它的导数等于 $\sum_{n=1}^{\infty}na_nx^{n-1}$,它的不定积分等于 $\sum_{n=0}^{\infty} \frac{a_n}{n+1}x^{n+1}+C$。
三、幂级数的收敛性与收敛域判断1. 幂级数的收敛性判定判断幂级数 $\sum_{n=0}^{\infty} a_nx^n$ 的收敛性时,我们可以使用比值判别法、根式定理、韦达定理等方法。
第十四章 幂级数1幂级数概念:由幂函数序列{a n (x-x 0)n }所产生的函数项级数∑∞=0n nn )x -(x a=a 0+a 1(x-x 0)+a 2(x-x 0)2+…+a n (x-x 0)n+…称为幂级数. 特别地,当x 0=0时,有∑∞=0n n n x a =a 0+a 1x+a 2x 2+…+a n x n +…一、幂级数的收敛区间定理14.1:(阿贝尔定理)若幂级数∑∞=0n n n x a 在x=x ≠0处收敛,则对满足不等式|x|<|x |的任何x ,幂级数∑∞=0n n n x a 收敛且绝对收敛;若幂级数∑∞=0n n n x a 在x=x 处发散,则对满足不等式|x|>|x |的任何x ,幂级数∑∞=0n n nx a发散.证:设级数∑∞=0n n n x a 收敛,从而数列{nn x a }收敛于0且有界,即存在某正数M ,使得|nn x a |<M (n=0,1,2,…). 又对任一个满足不等式|x|<|x |的x ,可设r=xx<1, 都有 |a n x n|=x x x a nn ⋅=|n n x a |x x <Mr n. 又级数∑∞=0n n Mr 收敛,∴对满足不等式|x|<|x |的任何x ,幂级数∑∞=0n n n x a 绝对收敛.设级数∑∞=0n nn x a 发散,若存在某一x 0,满足|x 0|>|x |且使∑∞=0n n 0n x a 收敛,则∑∞=0nnnxa绝对收敛,矛盾!∴对满足不等式|x|>|x|的任何x,幂级数∑∞=0nnnxa发散.注:由定理14.1可知,幂级数∑∞=0nnnxa的收敛域是以原点为中心的区间. 若以2R表示区间的长度,则称R为幂级数的收敛半径. R就是使得幂级数∑∞=0nnnxa收敛的收敛点绝对值的上确界. 所以幂级数∑∞=0nnnxa当R=0时,仅在x=0处收敛;当R=+∞时,在(-∞,+ ∞)上收敛;当0<R<+∞时,在(-R,R)上收敛;对一切满足不等式|x|>R的x,发散;在x=±R处,不确定. (-R,R)称为幂级数∑∞=0nnnxa的收敛区间.定理14.2:对于幂级数∑∞=0nnnxa,若n n∞n|a|lim→=ρ,则当(1)0<ρ<+∞时,幂级数∑∞=0nnnxa的收敛半径R=ρ1;(2)ρ=0时,幂级数∑∞=0nnnxa的收敛半径R=+∞;(3)ρ=+∞时,幂级数∑∞=0nnnxa的收敛半径R=0.证:对于幂级数∑∞=0nnnxa,∵n nn∞n|xa|lim→=nn∞n|a|lim→|x|=ρ|x|,根据级数的根式判别法,当ρ|x|<1时,∑∞=0nnnxa收敛.∴当0<ρ<+∞时,由ρ|x|<1得幂级数∑∞=0n n n x a 的收敛半径R=ρ1;当ρ=0时,R=+∞;当ρ=+∞时,R=0.注:也可由比式判别法|a ||a |lim n1n ∞n +→=n n ∞n |a |lim →=ρ,来求出幂级数∑∞=0n n n x a 的收敛半径.例1:求级数∑2nnx 的收敛半径R 及收敛域.解:记a n =2n 1, 则|a ||a |lim n1n ∞n +→=22∞n )1(n n lim +→=1,∴R=1. 又当x=±1时,2nn)1(±=2n 1,由级数∑2n 1收敛,知∑2n n x 在x=±1收敛.∴级数∑2nnx 的收敛域为[-1,1].例2:求级数∑nx n的收敛半径R 及收敛域.证:记a n =n1, 则|a ||a |lim n 1n ∞n+→=1n nlim ∞n +→=1,∴R=1. 又当x=1时,级数∑n 1发散;当x=-1时,级数∑n (-1)n 收敛.∴级数∑nx n的收敛域为[-1,1).注:级数∑∞=0n nn!x 与∑∞=0n n x n!的收敛半径分别为R=+∞与R=0.定理14.3:(柯西—阿达马定理)对幂级数∑∞=0n n n x a ,设ρ=n n ∞n|a |lim →,则 (1)当0<ρ<+∞时,R=ρ1;(2)当ρ=0时,R=+∞;(3)当ρ=+∞时,R=0.证:对于任意x,∵n n n ∞n|x a |lim →=n n ∞n |a |lim →|x|=ρ|x|, 根据级数的根式判别法,当ρ|x|<1时,∑∞=0n n n x a 收敛.∴当0<ρ<+∞时,由ρ|x|<1得幂级数∑∞=0n n n x a 的收敛半径R=ρ1;当ρ=0时,R=+∞;当ρ=+∞时,R=0.例3:求级数1+3x +222x +333x +442x +…+12n 1-2n 3x -+2n 2n 2x +…的收敛域.解:∵n n ∞n|a |lim →=21,∴R=2. 又当x=±2时,原级数都发散,∴原级数的收敛域为(-2,2).例4:求级数∑∞=1n 2n2n3-n x 的收敛域. 解:方法一:∵2n n ∞n|a |lim →=2n 2n ∞n 3-n 1lim →=2n 2n∞n 3n11lim 31-→=31,∴R=3.方法二:∵当n2n2n ∞n 3-n x lim →=n2n2n∞n 3n -1x lim 91→=9x 2<1,即|x|<3时,收敛.∴原级数的收敛半径为R=3.又当x=±3时,原级数=∑∞=1n 2n2n3-n 3=-1≠0,发散.∴原级数的收敛域为(-3,3).定理14.4:若幂级数∑∞=0n nn x a 的收敛半径为R(>0),则∑∞=0n n n x a 在它的收敛区间(-R,R)内任一闭区间[a,b]上都一致收敛.证:设x =max{|a|,|b|}∈(-R,R),则任一x ∈[a,b],都有|a n x n |≤|a n x n |. ∵∑∞=0n nn x a 在x 绝对收敛,由优级数判别法知∑∞=0n n n x a 在[a,b]上一致收敛.定理14.5:若幂级数∑∞=0n n n x a 的收敛半径为R(>0),且在x=R(或x=-R)收敛,则∑∞=0n n n x a 在[0,R](或[-R,0])上一致收敛.证:设幂级数∑∞=0n n n x a 在x=R 收敛,对于x ∈[0,R]有∑∞=0n n n x a =nn n n R x R a ⎪⎭⎫ ⎝⎛∑∞=.已知级数∑∞=0n nn R a 收敛,函数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛nR x 在[0,R]上递减且一致有界,即1≥R x ≥2R x ⎪⎭⎫ ⎝⎛≥…≥nR x ⎪⎭⎫⎝⎛≥…≥0. 由阿贝尔判别法知∑∞=0n n nx a在[0,R]上一致收敛. 同理可证:∑∞=0n n nx a在x=-R 收敛时,在[-R,0]上一致收敛.例5:考察级数∑n21)-(x n n的收敛域.解:∵|a ||a |lim n1n ∞n +→=|1)(n 2||n 2|lim 1n n ∞n ++→=1)2(n n lim ∞n +→=21,∴R=2.又当x-1=2时,原级数=∑n 1发散;当x-1=-2时,∑-n22)(n n =∑n (-1)n 收敛.∴x-1∈[-2,2),原级数的收敛域为[-1,3).二、幂级数的性质定理14.6:(1)幂级数∑∞=0n n n x a 的和函数是(-R,R)上的连续函数;(2)若幂级数∑∞=0n n n x a 在收敛区间的左(右)端点上收敛,则其和函数也在这一端点上右(左)连续.定理14.7:幂级数∑∞=0n n n x a 在收敛区间(-R,R)上逐项求导与逐项求积后分别得到幂级数:∑∞=1n 1-n n x na 与∑∞=++0n 1n n x 1n a ,它们的收敛区间都是(-R,R). 证法一:设x 0为幂级数∑∞=0n n n x a 在收敛区间(-R,R)上任一不为零的点,由阿贝尔定理(定理14.1)的证明过程知,存在正数M 与r(<1), 对一切正整数n ,都有|a n x 0n |<Mr n . 于是|na n x 0n-1|=x n|a n x 0n |<0x M nr n .由级数比式判别法知级数∑n nr 收敛,根据级数的比较原则知,∑∞=1n 1-n nxna收敛. 由x 0为(-R,R)上任一点,知∑∞=1n 1-n n x na 在(-R,R)上收敛.若存在一点x ’,使|x ’|>R ,且幂级数∑∞=1n 1-n n x na 在x ’收敛,则必有一数x ,使得|x ’|>|x |>R ,由阿贝尔定理,∑∞=1n 1-n n x na 在x 处绝对收敛.但,取n ≥|x |时,就有|na n x n-1|=xn |a n x n |≥|a n x n |,由比较原则得幂级数∑∞=0n n n x a 在x 处绝对收敛,矛盾!∴幂级数∑∞=1n 1-n n x na 在一切满足不等式|x|>R 的x 都不收敛,即幂级数∑∞=0n n n x a 与其在收敛区间(-R,R)上逐项求导所得幂级数∑∞=1n 1-n nx na有相同的收敛区间(-R,R).又幂级数∑∞=0n nn x a 在收敛区间(-R,R)上逐项求积可得幂级数∑∞=++0n 1n n x 1n a , 即∑∞=0n nn x a 是由幂级数∑∞=++0n 1n n x 1n a 在其收敛区间上逐项求导所得, ∴它们也有相同的收敛区间(-R,R). 证法二:对于幂级数∑∞=0n n n x a ,R=1n n∞n a a lim+→. 对幂级数∑∞=1n 1-n n x na ,1n n ∞n1)a (n na lim +→+=1n n ∞na a 1n nlim +→⋅+=R. 对幂级数∑∞=++0n 1n n x 1n a,2n a 1n a lim 1n n∞n +++→=1n n ∞n a a 1n 2n lim +→⋅++=R. 得证!定理14.8:设∑∞=0n n n x a 在收敛区间(-R,R)上的和函数为f ,x ∈(-R,R),则:(1)f 在点x 可导,且f ’(x)=∑∞=1n 1-n n x na ;(2)f 在0与x 之间的这个区间上可积,且⎰x0f(t)dt=∑∞=++0n 1n n x 1n a .证法:由定理14.7知,∑∞=0n nn x a ,∑∞=1n 1-n n xna 和∑∞=++0n 1n n x 1n a 有相同的R. ∴总存在r ,使|x|<r<R ,根据定理14.4,它们在[-r,r]上都一致收敛. 根据逐项求导与逐项求积定理得证!推论1:记f 为幂级数∑∞=0n n n x a 在收敛区间(-R,R)上的和函数,则在(-R,R)上f 具有任何阶导数,且可逐项求导任何次,即: f ’(x)=∑∞=1k 1-k k x ka ;f ”(x)=∑∞=2k 2-k k x1)a -k(k ;…;f (n)(x)=∑∞=n k n -k k x a n)!-(k k!;….推论2:记f 为幂级数∑∞=0n n n x a 在点x=0某邻域上的和函数,则{a n }与f在x=0处的各阶导数有如下关系:a 0=f(0), a n =n!(0)f (n),(n=1,2,…).三、幂级数的运算定义:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 在点x=0的某邻域内有相同的和函数,则称这两个幂级数在该邻域内相等.定理14.9:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 在点x=0的某邻域内相等,则它们同次幂项的系数相等,即a n =b n (n=1,2,…).定理14.10:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 的收敛半径分别为R a 和R b ,则λ∑∞=0n nn x a =∑∞=0n nn x λa , |x|<R a , λ为常数;记R=min{R a ,R b }, c n =∑=nk k -n k b a , 有∑∑∞=∞=±0n 0n nn nn x b x a =∑∞=±0n nn n )x b (a ;⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n n 0n n n x b x a =∑∞=0n n n x c . |x|<R.例6:几何级数∑∞=0n n x 在收敛域(-1,1)上有f(x)=x-11. 在(-1,1)上 逐项求导可得:f ’(x)=2x )-(11=∑∞=1n 1-n nx ; f ”(x)=3x )-(1!2=∑∞=2n 2-n 1)x -n(n . 在[0,x](x<1)上逐项求积可得:⎰xt -1dt=∑⎰∞=0n x 0n t dt ,从而可得: ln x -11=∑∞=++0n 1n 1n x (|x|<1), 其对x=-1也成立.注:可通过的逐项求导或逐项求积间接地求出级数的和函数.例7:求级数∑∞=1n n 21-n x n (-1)的和函数.解:由R=1n n ∞n a a lim +→=2n 21-n ∞n 1)(n (-1)n (-1)lim +→=2∞n 1n n lim ⎪⎭⎫⎝⎛+→=1, 且x=±1时,级数发散,知其收敛域为(-1,1). 记S(x)=∑∞=1n n21-n x n (-1)=x ∑∞=1n 1-n 21-n x n (-1)=xg(x), x ∈(-1,1),则⎰x)t (g dt=∑⎰∞=1n x1-n 21-n tn (-1)dt=∑∞=1n n1-n nx (-1)=x ∑∞=1n 1-n 1-n nx (-1)=xh(x),则⎰x)t (h dt=∑⎰∞=1n x1-n 1-n tn (-1)dt=∑∞=1n n1-n x (-1)=x ∑∞=1n 1-n 1-n nx (-1)=x1x+, x ∈(-1,1). ∴h(x)='⎪⎭⎫⎝⎛+x 1x =2x )(11+;g(x)=(xh(x))’='⎥⎦⎤⎢⎣⎡+2x)(1x =3x )(1x -1+; ∴原级数的和函数S(x)=xg(x)=32x)(1x -x +, x ∈(-1,1).习题1、求下列幂级数的收敛半径与收敛区域:(1)∑nnx ;(2)∑⋅n 2n2n x ;(3)∑n 2x (2n)!)(n!;(4)∑n n x r 2(0<r<1); (5)∑1)!-(2n )2-(x 1-2n ;(6)nn n )1x (n )2(3+-+∑;(7)∑+⋯++n x )n1211(;(8)∑n n 2x 2. 解:(1)∵n n ∞n|a |lim →=n ∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散,∴原级数的收敛域为(-1,1).(2)R=1n n ∞n a a lim +→=n 21n 2∞n 2n 21)(n lim ⋅⋅++→=2. 又当x=±2时,原级数收敛, ∴原级数的收敛域为[-2,2].(3)R=1n n∞n a a lim+→=2)]![(2n ]1)![(n (2n)!)(n!lim 22∞n ++→=2∞n 1)(n 1)2)(2n (2n lim +++→=4. 又当x=±4时,|u n |=n 24(2n)!)(n!=(2n)!)2(n!2n ⋅=(2n)!]![(2n)!2=!1)!-(2n !(2n)!>12n +→∞ (n →∞), ∴原级数发散. ∴收敛域为(-4,4).(4)∵n n ∞n |a |lim →=nn ∞n2r lim →=0,∴R=+∞,收敛域为(-∞, +∞).(5)R=1n n ∞na a lim +→=1)!-(2n 1)!(2n lim ∞n +→=1)2n(2n lim ∞n +→=+∞,收敛域为(-∞, +∞).(6)R=1n n ∞n a a lim +→=1n 1n nn ∞n )2(3)2(3n 1n lim ++→-+-+⋅+=1n n∞n 3233321n 1n lim +→⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⋅+=31. 又当x=31时,n 1n ∞n u u lim +→=34)2(3)2(31n n lim n n 1n 1n ∞n ⋅-+-+⋅+++→=4,原级数发散. 当x=-31,n 1n ∞n u u lim +→=34)2(3)2(31n n lim n n 1n 1n ∞n ⋅-+-+⋅+++→=2,原级数发散. ∴x+1∈(-31,31),原级数的收敛域为(-34,-32). (7)∵1=n n 1n ⋅≤n n1211+⋯++≤n n →1 (n →∞),∴R=1. 又当x=±1时,n ∞n)1()n1211(lim ±+⋯++→≠0,∴原级数发散. ∴原级数的收敛域为(-1,1).(8)∵n1n ∞nu u lim +→=22n n1n 1)(n ∞n x 22xlim ⋅++→=2x lim 12n ∞n +→=⎪⎩⎪⎨⎧>∞+=<1|x |1|x | ,211|x | 0,,,∴R=1, 且当x=±1时,原级数收敛. ∴原级数的收敛域为[-1,1].2、应用逐项求导或逐项求积方法求下列幂级数的和函数(应同时指出它们的定义域):(1)∑∞=++0n 12n 12n x ;(2)∑∞=1n n nx ;(3)∑∞=+1n nx )1n (n ;(4)∑∞=1n n 2x n . 解:(1)∵R=1n n ∞n a a lim +→=12n 32n lim ∞n ++→=1,又当x=±1时,级数∑∞=+±0n 12n 1发散; ∴幂级数的和函数S(x)定义在(-1,1),且S ’(x)=∑∞=+'⎪⎪⎭⎫ ⎝⎛+0n 12n 12n x =∑∞=0n 2nx =2x 11-, ∴S(x)=⎰x 02t -1dt =21ln x -1x 1+, x ∈(-1,1). (2)∵n n ∞n|a |lim →=n ∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且S(x)=∑∞=1n nnx =x ∑∞=1n 1-n nx =xf(x).∵⎰x0f(t)dt=∑⎰∞=1n x1-n nt dt=∑∞=1n n x =x 11-,∴f(x)='⎪⎭⎫ ⎝⎛-x 11=2x )1(1-. ∴S(x)=2x )1(x-, x ∈(-1,1). (3)∵R=1n n ∞na a lim +→=2)1)(n (n 1)n(n lim ∞n +++→=1,又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且⎰xS(t)dt=∑⎰∞=+1n xn1)t n(n dt=∑∞=+1n 1n nx=x ∑∞=1n nnx =22x)1(x -. ∴S(x)='⎥⎦⎤⎢⎣⎡-22x)1(x =3x )1(2x-, x ∈(-1,1). (4)∵n n ∞n|a |lim →=n 2∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且S(x)=∑∞=1n n2x n =x ∑∞=1n 1-n 2x n =xf(x).∵⎰x0f(t)dt=∑⎰∞=1n x1-n 2t n dt=∑∞=1n n nx =2x )1(x -,∴f(x)='⎥⎦⎤⎢⎣⎡-2x)1(x=3x )1(x 1-+. ∴S(x)=32x)1(x x -+, x ∈(-1,1).3、证明:设f(x)=∑∞=0n nn x a 当|x|<R 时收敛,若∑∞=++0n 1n nR 1n a 也收敛,则 ⎰Rf(x )dx=∑∞=++0n 1n n R 1n a . 应用这个结论证明:⎰+10x 11dx=ln2=∑∞=+1n 1n n 1(-1).证:∵∑∞=++0n 1n n R 1n a 收敛,补充定义f(x)=∑∞=++0n 1n n R 1n a , x=R.则f(x)=∑∞=0n nn x a , x ∈(-R,R]. ∴⎰R0f(x )dx=∑⎰∞=0n R0nn x a dx=∑∞=++0n 1n nR 1n a . 对幂级数∑∞=1n 1-n 1-n x(-1)=x 11+, 又当x=1时,∑∞=+1n 1n n 1(-1)收敛,∴⎰+10x 11dx= ln2=∑∞=+1n 1n n 1(-1).4、证明:(1)y=∑∞=0n 4n (4n)!x 满足方程y (4)=y ;(2)y=∑∞=0n 2n )(n!x 满足方程xy ”+y ’-y=0. 证:(1)∵n n ∞n|a |lim →=n ∞n (4n)!1lim →=0,∴R=+∞,收敛域为(-∞, +∞). 从而在(-∞, +∞)逐项微分得:y ’=∑∞='⎥⎦⎤⎢⎣⎡1n 4n (4n)!x =∑∞=1n 1-4n 1)!-(4n x ;y ”=∑∞='⎥⎦⎤⎢⎣⎡1n 1-4n 1)!-(4n x =∑∞=1n 2-4n 2)!-(4n x ;y ”’='⎥⎦⎤⎢⎣⎡∑∞=1n 2-4n 2)!-(4n x =∑∞=1n 3-4n 3)!-(4n x ;y (4)=∑∞='⎥⎦⎤⎢⎣⎡1n 3-4n 3)!-(4n x =∑∞=1n 1)-4(n 1)]!-[4(n x =∑∞=0n 4n (4n)!x =y. (2)∵n n ∞n|a |lim →=n 2∞n )(n!1lim →=0,∴R=+∞,收敛域为(-∞, +∞). 从而在(-∞, +∞)逐项微分得:y ’=∑∞='⎥⎦⎤⎢⎣⎡0n 2n )(n!x =∑∞=0n 1-n n!1)!-(n x ;y ”=∑∞='⎥⎦⎤⎢⎣⎡0n 1-n n!1)!-(n x =∑∞=0n 2-n n!2)!-(n x . 则 xy ”+y ’=x ∑∞=1n 2-n n!2)!-(n x +∑∞=1n 1-n n!1)!-(n x =∑∞=1n 21-n ]1)!-[(n x =∑∞=0n 2n )(n!x =y. ∴xy ”+y ’-y=0.5、证明:设f 为∑∞=0n n n x a 在(-R,R)上的和函数,若f 为奇函数,则原级数仅出现奇次幂的项,若f 为偶函数,则原级数仅出现偶次幂的项. 证:∵f(x)=∑∞=0n nn x a , x ∈(-R,R);∴f(-x)=∑∞=0n n n n x a (-1).若f 为奇函数,即f(-x)=-f(x),则∑∞=0n nn nx a (-1)=-∑∞=0n n n x a 得(-1)n a n =-a n ,当n=2k-1时,成立;当n=2k 时,a 2k =0. 即f(x)=∑∞=1k 1-2k 1-2k x a .若f 为偶函数,即f(-x)=f(x),则∑∞=0n nn nx a (-1)=∑∞=0n n n x a 得(-1)n a n =a n ,当n=2k 时,成立;当n=2k-1时,a 2k-1=0. 即f(x)=∑∞=0k 2k 2k x a .6、求下列幂级数的收敛域:(1)∑+n n n b a x (a>0,b>0);(2)nn x n 112∑⎪⎭⎫ ⎝⎛+.解:(1)∵R=1n n ∞n a a lim +→=n n 1n 1n ∞n b a b a lim ++++→=max{a,b},又当|x|=R 时, nn n∞n b a R lim +→=1≠0,∴原级数的x=±R 发散,收敛域为(-R,R). (2)∵n n ∞n|a |lim →=n n ∞n 2n 11lim ⎪⎭⎫⎝⎛+→=n∞n n 11lim ⎪⎭⎫⎝⎛+→=e ,∴R=e 1, 又当x=±e 1时,nn ∞n e 1n 11lim 2⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛+→≠0,∴原级数在x=±e 1发散, 收敛域为(-e 1,e1).7、求下列幂级数的收敛半径:(1)n n n x n](-1)[3∑+;(2)a+bx+ax 2+bx 3+… (0<a<b).解:(1)∵n n ∞n|a |lim →=n n∞n n 4lim →=n ∞nn4lim →=4,∴R=41. (2)∵n n ∞n|a |lim →=n ∞n b lim →=1,∴R=1.8、求下列幂级数的收敛半径及其和函数:(1)∑∞=+1n n 1)n(n x ;(2)∑∞=++1n n 2)1)(n n(n x ;(3)∑∞=+2n n2x 1n )1-n (. 解:(1)R=1n n ∞na a lim +→=1)n(n )2n )(1n (lim ∞n +++→=1. 又当x=±1时,原级数收敛. ∴收敛域为[-1,1]. 记S(x)=∑∞=+1n n 1)n(n x =∑∞=++1n 1n 1)n(n x x 1=x 1f(x).∵f ”(x)='⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎥⎦⎤⎢⎣⎡+∑∞=+1n 1n 1)n(n x =∑∞='⎪⎪⎭⎫ ⎝⎛1n nn x =∑∞=0n n x =x -11. ∴f ’(x)=⎰xt-11dt=-ln(1-x);f(x)=⎰--x 0)t 1ln(dt=(1-x)ln(1-x)+x. 又当x=1时,S(1)=∑∞=+1n 1)n(n 1=⎪⎭⎫ ⎝⎛+-→1n 11lim ∞n =1;当x=0时,S(0)=0. ∴S(x)=⎪⎪⎩⎪⎪⎨⎧==≠<≤-+ 0x ,0 1x ,10x 1x 1,1x)-ln(1x x-1且. (2)R=1n n ∞na a lim +→=2)1)(n n(n )3n )(2n )(1n (lim ∞n +++++→=1. 又当x=±1时,原级数收敛. ∴收敛域为[-1,1]. 记S(x)=∑∞=++1n n 2)1)(n n(n x =∑∞=+++1n 2n 22)1)(x n(n x x 1=2x 1f(x). ∵f ’(x)=∑∞=+'⎥⎦⎤⎢⎣⎡++1n 2n 2)1)(x n(n x=∑∞=++1n 1n 1)n(n x =x ∑∞=+1n n 1)n(n x =(1-x)ln(1-x)+x.∴f(x)=t]t)-t)ln(1-[(1x 0+⎰dt=-21(1-x)2ln(1-x)+43x 2-21x.又当x=0时,S(0)=0;当x=1时,S(1)=f(1)=41.∴S(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧==≠<≤-+- 0x ,0 1x ,410x 1x 1,432x 1-x)-ln(12xx)-(122且 . (3)R=1n n ∞n a a lim +→=1)(n n 2)(n )1-n (lim 22∞n ++→=1. 又当x=±1时,原级数发散. ∴收敛域为(-1,1). 记S(x)=∑∞=+2n n 2x 1n )1-n (=∑∞=++2n 1n 21n x 1)-(n x 1=x 1f(x). f ’(x)=∑∞=+'⎥⎦⎤⎢⎣⎡+2n 1n 21n x 1)-(n =∑∞=2n n 2x )1-n (=x 2∑∞=2n 2-n 2x )1-n (=x 2g(x). ⎰xg(t)dt=∑⎰∞=2n x2-n 2t)1-n (dt=∑∞=2n 1-n x )1-n (=x ∑∞=2n 2-n x )1-n (=xh(x).⎰xh(t)dt=∑⎰∞=2n x2-n t)1-n (dt=∑∞=2n 1-n x =∑∞=1n n x =x-1x. ∴h(x)='⎪⎭⎫⎝⎛x -1x =2x )-(11;g(x)='⎥⎦⎤⎢⎣⎡2x)-(1x =3x )-(1x 1+;f(x)='⎥⎦⎤⎢⎣⎡+332x)-(1x x =42x)-(1x 42x +; 又当x=0时,S(0)=0;∴S(x)=⎪⎩⎪⎨⎧=<+0x 0,1|x |,x )-(1x424.9、设a 0, a 1, a 2,…为等差数列(a 0≠0). 试求: (1)幂级数∑∞=0n nn x a 的收敛半径;(2)数项级数∑∞=0n nn2a 的和数. 解:记等差数列a 0, a 1, a 2,…的公差为d ,则a n =a 0+nd ,a n =a 0+(n+1)d ,R=1n n∞n a a lim +→=1)d n (a nd a lim 00∞n +++→=1. ∴幂级数∑∞=0n n n x a 有收敛区间(-1,1). 记S(x)=∑∞=0n nn x a =∑∞=+0n n0nd)x (a = a 0∑∞=0n nx +d ∑∞=0n n nx =x 1a 0-+2x )1(dx-,当x=21∈(-1,1)时,S(21)=∑∞=0n nn 2a =2a 0+2d=2a 1. ∴(1)幂级数∑∞=0n nn x a 的收敛半径R=1; (2)数项级数∑∞=0n n n2a 的和数S=2a 1.。
幂级数和函数的研究现状幂级数和函数的研究在现代数学中具有核心地位,特别是在分析学、泛函分析、复分析、微分方程和特殊函数等领域。
以下是一些关于幂级数和函数研究现状的概述:1. 复分析中的幂级数:在复分析领域,幂级数被用于定义并研究解析函数。
任何在某个区域内部解析的函数都可以通过泰勒级数或者洛朗级数展开成该区域内的幂级数。
当前的研究不仅关注经典理论的发展,还涉及到了奇异点分类、解析延拓以及复动力系统等方面。
2. 数值分析与计算方法:幂级数在数值计算中有广泛应用,如求解微分方程、进行函数逼近等。
研究者正在开发更高效、稳定的算法来处理带有复杂特性的幂级数,并利用高精度计算技术对幂级数的收敛性和截断误差进行深入分析。
3. 泛函分析视角下的幂级数:泛函分析中的希尔伯特空间理论为幂级数提供了新的框架,例如,在Lp空间中研究幂级数的完备性、基性质以及它们构成的函数系的正交性问题。
4. 特殊函数与幂级数的关系:特殊函数(如贝塞尔函数、勒让德多项式、超几何函数等)的定义往往通过特定形式的幂级数给出。
目前的研究包括探索这些特殊函数的新性质、应用以及它们在不同科学领域(如物理学、工程学等)中的具体表现。
5. 非线性系统的幂级数解法:非线性微分方程或差分方程可以通过幂级数方法求近似解。
现代研究集中在如何有效拓展这种方法以处理更复杂的非线性现象,例如发展多尺度分析方法和多参数幂级数展开技术。
6. 随机过程与概率论中的幂级数:在概率论和随机分析中,幂级数也扮演着重要角色,例如在研究马尔科夫过程、随机游走、布朗运动等问题时,可能涉及到随机变量序列的幂级数表示及其统计特性。
7. 量子力学与幂级数展开:在量子力学中,波函数和其他物理量常常采用幂级数形式表示,如狄拉克δ函数的展开、格林函数的幂级数解法等。
这方面研究继续深化对微观粒子行为的理解,以及对量子体系精确计算能力的提升。
总之,幂级数和函数的研究始终活跃在数学及交叉学科前沿,不断有新的理论成果和技术应用涌现出来。
函数幂级数的展开和应用我们称形如200102000()()()()nn nn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的级数为幂级数,它是一类最简单的函数项级数.从某种意义上说,它也可以看作是多项式函数的延伸.幂级数在理论和实际上都有很多应用,特别在应用它表示函数方面,又由于函数幂级数的逐项求导和逐项可积等好的运算性质,为函数的研究和应用提供了便利的条件.1 函数幂级数展开的条件函数()f x 可以在点0x x =作幂级数展开,是指存在0x x =,使得在(r x r x +-00,)上,00()()n n n f x a x x ∞==-∑ (1) 其中()f x 是此幂级数的和函数.根据幂级数的逐项可积性,若函数()f x 能表示成幂级数()nnn a x x ∞=-∑且其收敛半径0r >,则函数()f x 在区间(,)r r -上有任意阶导数,且1'1()()n nn f x na x x -∞==-∑,'01()f x a = ,,()()00()()!,!n n n f x fx n a n ==因此自然会提出下述问题,是否每一个在区间(,)r r -上有任意阶导数的函数()f x 一定能在区间上展成形如()nnn a x x ∞=-∑的幂级数呢?回答是不一定的.例1 在),(+∞-∞上具有任意阶导数的函数21()0x e f x -⎧⎪=⎨⎪⎩ 00x x ≠=,易验证当0x ≠时,21'32()x f x e x -= , 2211''4664()x x f x e e x x--=-+ ,一般来说,有21()1()()n x n fx P e x -= (0x ≠),其中1()n P x 是关于1x的某个多项式.令21t x =,易得21201lim lim 0mx m t x t te x e-→→+∞==.由此可知21()()0001lim ()lim ()lim ()0n n x n x x x fx f x P e x-+-→→→=== ),2,1,0( =n ,又因为()f x 在0x =处连续,所以有'(0)0f =.类似逐次可推得()(0)0n f = ),3,2( =n 所以()f x 在0x =的幂级数为200002!!nx x n +⨯+++显然它在),(+∞-∞上收敛,且其和函数()0s x =. 但是,()f x 只在0x =处为零值.0x ∀≠,都有 ()()f x s x ≠.上述例子告诉我们:具有任意阶导数的函数,其幂级数(泰勒级数)并不是都收敛于函数本身.那么具备什么条件的函数()f x ,它的幂级数(泰勒级数)才能收敛于()f x 本身呢?定理1 设()f x 在点0x x =具有任意阶导数,那么()f x 在区间00(,)x r x r -+内等于它的泰勒级数的和函数的充分必要条件是:对一切满足不等式0x x r -<的x ,都有lim ()0n n R x →∞=.这里()n R x 是()f x 在0x 的泰勒公式余项.应用定理1 判别一个函数是否可以展成泰勒级数常常是不方便的,我们有如下充分条件: 定理2 设()f x 在00(,)x r x r -+内有任意阶导数,若存在0M >,使得00(,)x x r x r ∀∈-+,及 ,2,1,0=∀n , 有 ()()n n f x M ≤ (2) 则 ()000()()()!n n n f x f x x x n ∞==-∑(3) 证明 由条件(2)得,00(,)x x r x r ∀∈-+有()0()()0!!n n n nf M r x x n n ξ-≤→ ()n →∞ 即得所证. 若()f x 在0x 这一邻域内可以展开成泰勒级数,即+-++-+-+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)())(()()(00)(200''00'0(4) 则(4)的右边为()f x 在0x x =处的泰勒展开式,或称幂级数展开式.在实际应用中,主要讨论函数在00x =处的展开式,这时(4)式可以写作+++++=nn x n f x f x f f x f !)0(!2)0()0()0()()(2''',称为麦克劳林级数,简称幂级数.2 函数幂级数的展开一般说来,可以将一个函数展成幂级数的方法分为直接展开法和间接展开法,下面就这两种方法做一一介绍.2.1 直接展开法这种方法也可以称其为余项估算法.设()f x 在0x x =处任意次可导,记()000()()()()!k nk n k f x R x f x x x k ==--∑()k N +∈,若()000()()()!n n n f x f x x x n ∞==-∑,只需0()x U x ∀∈,有lim ()0n n R x →∞=.当00x =时,()n R x 的各种表达式:()()n n R x x ο= (佩亚诺型余项);(1)1()()(1)!n n n f R x x n ξ++=+,ξ在0与x 之间 (拉格朗日型余项);(1)01()()()!x n n n R x x t f t dt n +=-⎰(积分型余项); (1)1()()(1)!n n n n f x R x x n θθ++=-,01θ≤≤(柯西型余项);佩亚诺型余项只是定性的描述了余项的性态不利于具体估算误差,所以我们常用其它三种余项形式.用直接展开法可得[1](5457)P -:201111!1!2!!n xnn x e x x x n n ∞===+++++∑ ,(,)x ∈-∞+∞;213210(1)11sin (1)(21)!3!(21)!n n nn n x x x x x n n ∞++=-==-++-+++∑ ,(,)x ∈-∞+∞;2220(1)11cos 1(1)(2)!2!(2)!n n nn n x x x x n n ∞=-==-++-+∑ ,(,)x ∈-∞+∞;12311(1)111ln(1)(1)23n n n nn x x x x x x n n-∞-=-+==-+-+-+∑ ,(1,1]x ∈-;2(1)(1)(1)(1)12!!nn x x x x n ααααααα---++=+++++,(1,1)x ∈-;arctan x =3521210(1)(1)213521n n n nn x x x x x n n +∞+=-=-+-+-+++∑ ,[1,1]x ∈-;211(21)!!arcsin (2)!!21n n n x x x n n +∞=-=++∑ ,[1,1]x ∈-;例2 求函数23()3247f x x x x =+-+在1x =处的幂级数展开式.解 由于'21(1)8,(1)(2821)15,x f f x x ===-+=''1(1)(842)34x f x ==-+=,'''()(1)42,,(1)0n f f ==,(3n >),从而总有 lim ()0n n R x →∞=(其中(1)1()(),(1)!n n n f R x x n ξ++=+ξ在0与x 之间),所以23233442()815(1)(1)(1)815(1)17(1)7(1)2!3!f x x x x x x x =+-+-+-=+-+-+- 例3 求2()sin f x x =的幂级数展式.解 由于'''00(0)0,(0)(sin 2)0,(0)(2cos 2)2,x x f f x f x ======='''(4)00(0)(4sin 2)0,()(8cos 2)8x x f x f x x ===-==-=-,,(21)(2)121(0)0,(0)(1)2,n n n n f f ---==- ,因此2122412282sin (1)(,)2!4!(2)!n n nx x x x n --=-++-+-∞+∞;x ∀,级数的拉格朗日余项2212()(21)!n n n R x x n +≤+,显然有lim ()0n n R x →∞=. 所以上述展式成立.2.2 间接展开法上面讨论的几个函数展开都是采用直接展开法.一般说来,求函数的各阶导数比较麻烦,尤其要检验余项是否趋向于零,往往不是一件容易的事.因此,在可能的情况下,我们总是尽可能不用直接方法,而采用间接方法把已给函数展成幂级数,所谓间接展开法指的是,利用已知的函数展开式作为出发点,把给定函数展开成幂级数.由于函数展成幂级数的唯一性,用这种方法展开的结果应与直接方法展开的结果完全一致.在实际的练习中,将初等函数展开为幂级数,要用到多种方法,现将其常用的方法归结如下: 2.2.1通过变形,利用已知的展开式例4 将下列函数展成x 的幂级数.1)241()(1)(1)(1)f x x x x =+++ 解 241()(1)(1)(1)f x x x x =+++811x x -==- 8898810(1)1n n n n x x x x x x x ∞+=-=-+-++-+∑ ,(11)x -<<.2)3()sin x x ϕ=解 2121300313(1)1(1)(3)sin sin sin 3444(21)!4(21)!n n n n n n x x x x x n n ++∞∞==--=-=-++∑∑34=2210(1)(13)(21)!nn n n x n ∞+=--+∑ , (,)x ∈-∞+∞. 例5 设0x >,求证:㏑x =2[ ++-++-++-53)11(51)11(3111x x x x x x ] 证明 令11x t x -=+即11tx t+=-,从而 121111ln ln ln(1)ln(1)(1)(1)1n n n n n n t t t x t t t n n ∞∞--==+==+--=----∑∑ 1211211111[(1)(1)][(1)(1)]()1nn n n n n n n t x n n x ∞∞----==-=---=---+∑∑ 35111112[()()]13151x x x x x x ---=++++++例6 求函数2()(1)(1)xf x x x =--的麦克劳林展式. 解 设222(1)(1)(1)(1)11(1)x x A B C x x x x x x x ==++--+-+--得111,,,442A B C =-=-=又221(1)(1)(1)n n x n x x ∞-==-=+-∑,01(1)1n n n x x ∞==-+∑,011nn x x ∞==-∑ (11x -<<) 所以20011(1)11(1)((1))()(1)(1)2222n n n nn n x n x n x x x ∞∞==+---=+-=+--∑∑,(11x -<<) 2.2.2 利用逐项积分或逐项微分法 例7 求2()xt F x e dt -=⎰的幂级数展开式.解 将2x -代替xe 展式中的x ,得+-+++-=-nn x x n x x e242!)1(!21!1112,()x -∞<<+∞.再逐项求积分就得到()F x 在(,-∞+∞)展开式2357210111(1)()1!32!53!7!21n n xt x x x x F x e dt x n n +--==-+-++++⎰ .例8 试求22()arctan2xf x x =-的幂级数展开式. 解 2''22000221()()(arctan )(1)221()2xxx t t f x f x dt dt dt t t ===+-+⎰⎰⎰ =2400(1)(1)()24nxn n t t dt ∞=+-∑⎰ (t < 2222222234500[1()()()()](1)()222222n xx nn t t t t tt dt dt ⎡⎤∞⎢⎥⎣⎦==+--++-=-∑⎰⎰2120(1)2(21)n n n n x n⎡⎤+∞⎢⎥⎣⎦==-+∑,(t <当x =2122011111(1)(1))2(21)21357911n n nnn n n n ⎡⎤⎡⎤+∞∞⎢⎥⎢⎥⎣⎦⎣⎦==-=-=+--++-++∑∑001111111(1)()()2((1)(1))3579114143n nn n n n ∞∞==⎤=+-+++-=-+-⎥++⎦∑∑可见x=x =22()arctan2xf x x=-在x =所以上面展式在⎡⎣上成立.2.2.3 利用待定系数法 例9 求2sin 12cos x x xαα-+ (1)x <的幂级数展式. 解 设2sin 12cos n n n x a x x x αα∞==-+∑,则20sin (12cos )nn n x x x a x αα∞==-+∑232323012301201(2cos )(2cos )(2cos )a a x a x a x a x a x a x a x a x ααα=++++---++++比较等式两边同次幂的系数,得0120,sin ,sin 2,,sin n a a a a n ααα====,这里用到三角恒等式sin(1)2sin cos sin(1)n n n αααα+=⋅-- (2,3,)n =,所以 原式= ++++nx n x x αααsin 2sin sin 22.2.4 利用级数的运算(加,减,乘,复合) 例10 求2()ln (1)f x x =-的幂级数展开式.解 由于10ln(1)1n n x x n +∞=-=-+∑在[1,1)-上内闭一致收敛,故[1,1)-上可用级数乘法2321111111111()()23121321n n x x f x x x n n n n ∞+=⎡⎤=----=++++⎢⎥--⎣⎦∑ =()()111111111()()(1)11nn n n n k n k k n k x x k n k n k n k ∞∞++====++-⎡⎤⎣⎦=+-++-∑∑∑∑ 111111111112111n n n n n k n k x x n n k k n k ∞∞++====⎡⎤⎛⎫⎛⎫=+= ⎪ ⎪⎢⎥++-+⎝⎭⎝⎭⎣⎦∑∑∑∑ 1111121231n n x n n +∞=⎛⎫=++++ ⎪+⎝⎭∑ 上面的展式在[1,1)-内成立.例11 求()()111x f x x e =+按x 的幂的展开式至三次项.解 ()()111x f x x e=+()()111111ln 11nn n x x x nxee∞-=--+-∑== (1)x <= +-+-43232x x x e23232323111()()()23422346234x x x x x x x x x =+-+-++-+-++-+-+)11(,167241121132<<-+-+-=x x x x 2.2.5 其它方法举例例 12 求函数()sin xf x e x =的麦克劳林级数的前四项. 解23521111111sin (1)((1))1!2!!3!5!(21)!x nnn e x x x x x x x x n n +=+++++-+++-++233441111()()3!2!3!3!x x x x x x =++-++-++ 2313x x x =+++3 幂级数的应用3.1 计算积分 例13 计算积分120ln 1xdx x -⎰ 解 11112222220000ln 1ln ln ln 111x x x x dx xdx xdx xdx x x x -+==+---⎰⎰⎰⎰ 因为10ln 1xdx =-⎰,及2221ln ln 1nn x x x x x ∞==-∑,故 原式=12101ln n n x xdx ∞=-+∑⎰. 又知级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可在(0,1]上逐项积分①,因此原式12011ln nn x xdx ∞==-+∑⎰()()2211112121n n n n ∞∞===--=-++∑∑()()22220111111()2212n n n n n n ∞∞∞====-+++∑∑∑2222221111126248n n nnπππ∞∞===-+=-+=-∑∑ 例14 计算22cos(sin )x x d πθπ⎰解 因()()21(sin )cos sin 11(2)!k kk x x k θθ∞==+-∑ ()()221sin 112!k k kk x k θ∞==+-∑ , (,)x ∈-∞+∞故2222222001122(1)(1)cos(sin )sin 12(2)!(!)2k k k k kk k k xx x d d k k πππθθθθππ∞∞==⎡⎤--=+=+⎢⎥⎣⎦∑∑⎰⎰ 3.2 证明不等式幂级数是表达函数的重要工具,因此也可应用于证明函数不等式. 例15 证明不等式222,(,)x x x e e e x -+≤∈-∞+∞ 证明 因2022(2)!n xxn x e echx n ∞-=+==∑,222022(2)!!x nn x e n ∞==∑,而22(2)!(2)!!n n x x n n ≤,故222,xx xe e e -+≤ 例16 确定λ的值,使得22,(,)x x x e e e x λ-+≤∈-∞+∞解1)若上述不等式成立,则有222220001110()()2!2!2!2!x x n n n n n x n nn n n n n n n e e x x x x e n n n n λλλλ-∞∞∞∞====+≤-=-=-=-∑∑∑∑ 两端除以2x ,再令0x =,可得12λ≥.2)若12λ≥ ,则有22222002(2)!2!x x x n nx n n n e e x x e e n n λ-∞∞==+===≤∑∑3.3 近似计算幂级数常常用于近似计算. 例17 求下列各值的近似值: (1)e ,使误差小于0.001;解 在xe 的展开式中令1x =,得111112!3!!e n =++++++ 若取上述级数的前(1)n +项作为e 的近似值,即设111112!3!!e n ≈+++++则误差11(1)!(2)!n R n n =++++ 111[1](1)!2(2)(3)n n n n =+++++++2111111[1]1(1)!1(1)(1)!!11n n n n n nn <+++==++++-+ 所以要使0.001n R <,只要!1000n n >,可算出当6n =时就满足要求.因而可取前七位即可,即11111 2.7182!3!6!e ≈+++++= (2)6π,使误差小于0.001;解 在arcsin x 的展开式中令12x =,得3521111131(21)!!1622322452(2)!!(21)2n n n n π+⨯-≈+++++⨯⨯⨯+若取前(1)n +项作为6π的近似值,误差2325(21)!!1(23)!!1(22)!!(23)2(24)!!(25)2n n n n n R n n n n ++++=++++++2324(21)!!111(1)(22)!!(23)222n n n n ++<+++++234(21)!!13(22)!!(23)2n n n n ++=++要使0.001n R <,只要使上式右端小于0.001即可,不难算出当2n =时即满足要求,因而取前三项即可,即45111310.52362322452π⨯≈++=⨯⨯⨯ 3.4 应用幂级数性质求下列级数的和 例18()11!n nn ∞=+∑ 分析 ()11!n n n ∞=+∑是幂级数()111!n n nx n ∞+=+∑的和函数在1x =处的值.解 设()()111!n n nf x x n ∞+==+∑ ()x -∞<<+∞, 则()1110'()1!(1)!!n n nx n n n x x x f x x x xe n n n -∞∞∞=======--∑∑∑ ()x -∞<<+∞,所以0()(0)'()1xxtxxf x f f t dt te dt xe e =+==-+⎰⎰,从而()1(1)11!n nf n ∞===+∑.3.5 利用函数的幂级数展开式求下列不定式极限 例19 21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 因为23311111ln 123o x x x x x ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭,所以 原式223311111111lim lim 23232x x x x x x x x x x x x οο→∞→∞⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫=--++=-+-+=⎨⎬ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭ 例20 3arcsin limsin x x x x→∞-解 因为()()331arcsin ,sin 6x x x o x x x o x =++=+,所以原式=()()()()()333333311166lim lim 6x x x x x o x x o x x o x x o x →∞→∞⎛⎫-++-+ ⎪⎝⎭==-++ 3.6 求幂级数的和函数例21 +++++++12531253n x x x x n 解 设2121n n x n μ+=+,因21lim n x nu x u +→∞=,故原级数的收敛半径1R =,又当1x =±时,原级数可化为0121n n ∞=⎛⎫± ⎪+⎝⎭∑发散,从而得收敛域为(1,1)-. 设()()21021n n x S x n +∞==+∑ ()()1,1x ∈-,在()1,1x ∈-内逐项求导,得()2201'1nn S x x x ∞===-∑, 故和函数()()()2011'0ln 121xxdt xS x S t dt S t x +==+=--⎰⎰ ()1,1x ∈-. 例22 求幂级数()()211nn n x n n ∞=--∑的和函数. 解 易知原级数的收敛域为[1,1]-.记()()21()1nn n F x x n n ∞=-=-∑,则()()()()()1222111'()()'()'111nnnn nn n n n F x x x x n n n n n ∞∞∞-===---===---∑∑∑,()()()()21122222111''()()'()'1111nnn n n n n n n n F x xxnxx n n x ∞∞∞∞----====--===-==--+∑∑∑∑故()001'()''()ln 11xxF x F t dt dt x t ===++⎰⎰, ()()()0()'()ln 11ln 1xxF x F t dt t dt x x x ==+=++-⎰⎰,所以()()()()211ln 11n n x x x x n n ∞=-=++--∑ ,(1,1)-.注释: ① 求证级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可以在(0,1]上逐项积分证 1当1x =时级数通项()211ln |0nn x u x x ===.当01x <<,21nn xlnx ∞=∑为等比级数,所以和22ln ()10x x S x x⎧⎪=-⎨⎪⎩, 011x x <<= 时,可见211(10)lim ln(1(1))(1).(1)(1)2x x S x S x x -→-=--=≠+- 故 该级数非一致收敛(根据和函数连续定理).2(证明能逐项积分)因22222221ln ()ln ln ,11n kn n k n x x x R x x x x x x x +∞=+===⋅--∑其中220ln lim 1x x xx +→-及221ln lim 1x x x x -→-都有有限极限,且22ln 1x x x -在(0,1)内连续,所以22ln 1x x x -在(0,1)内有界,即0M ∃>,使得22ln ||1x xM x ≤-,故 2|()|n n R x M x ≤⋅, 11120|()||()|0().21n n n MR x dx R x dx M x dx n n ≤≤=→→∞+⎰⎰⎰ 此即表明1lim ()0.n n R x dx →∞=⎰级数可以逐项取积分.。
幂级数的性质与应用一、幂级数的定义与性质幂级数是数学分析中一种重要的级数形式,它是一系列幂函数的和。
幂级数可表示为:$$f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$$其中,$a_n$是常数系数,$a$是幂级数的中心。
幂级数具有以下性质:1. 收敛域性质:幂级数可能在某个特定区间内收敛或发散。
如果幂级数在$x=a$处收敛,那么它在该收敛区间内的任意点$x$也收敛,这被称为收敛半径。
收敛区间可能为开区间、闭区间或半开半闭区间。
2. 系数唯一性:一个幂级数在给定收敛区间内的每个点上的函数值都是唯一确定的。
也就是说,若两个幂级数在某个收敛区间内完全相同,则它们的各项系数必须一一对应相等。
3. 绝对收敛性:如果幂级数在其收敛区间内的所有点上都收敛,且收敛绝对值级数$\sum_{n=0}^{\infty} |a_n(x-a)^n|$也收敛,则称该幂级数为绝对收敛。
4. 幂级数和的可积性:如果幂级数在收敛区间内每个点上都可积(即广义积分存在),则称该幂级数是可积的。
5. 导函数与积分的性质:幂级数在其收敛区间内可导和可积。
幂级数的导函数和积分具有以下性质:- 给定一个幂级数$f(x)$,则$f'(x)$的系数$a'_n = n\cdot a_n$,$f''(x)$的系数$a''_n = n(n-1)\cdot a_n$,以此类推。
- 给定一个幂级数$f(x)$,则$f(x)$的积分$\int f(x)dx$的系数$b_n= \frac{a_n}{n+1}$。
二、幂级数的应用幂级数广泛应用于多个数学和物理学领域,以下介绍其中几个重要的应用:1. 函数逼近:通过适当选择幂级数中心和系数,可以用幂级数来逼近和展开各种函数。
例如,泰勒级数是一种特殊的幂级数,可以用来逼近函数在某个点的近似值。
在实际计算中,我们可以利用幂级数展开,将复杂函数转化为简单的多项式计算。
幂级数与幂函数幂级数和幂函数是数学中重要的概念,它们在微积分、数学分析、物理学等领域有广泛的应用。
本文将详细介绍幂级数和幂函数的定义、性质以及它们之间的关系。
一、幂级数的定义与性质幂级数是指形如$\sum_{n=0}^{\infty}a_nx^n$的级数,其中$a_n$是常数系数,$x$是自变量。
幂级数可以看作是一种无穷多项式的形式,它的每一项都是$x$的整数次幂。
我们可以通过求和的方式来表示幂级数。
幂级数的收敛半径是一个重要的概念,它决定了幂级数能够在哪些范围内收敛。
收敛半径$R$的计算公式如下:$$R = \dfrac{1}{\lim_{n\to\infty}\sqrt[n]{|a_n|}}$$根据收敛半径的不同取值情况,我们可以将幂级数分为三种情况:1. 当$|x| < R$时,幂级数绝对收敛;2. 当$|x| > R$时,幂级数发散;3. 当$|x| = R$时,幂级数可能收敛也可能发散,需要进一步讨论。
幂级数可以进行加减乘除等运算,并且满足幂级数的收敛性质。
当幂级数的收敛半径$R$存在时,幂级数在收敛区间内可以无限次求导和求积分。
二、幂函数的定义与性质幂函数是指形如$f(x)=a*x^b$的函数,其中$a$和$b$是常数,$x$是自变量。
幂函数的图像通常表现为一条曲线,曲线的形状与常数$a$和$b$的取值有关。
幂函数的性质如下:1. 当$a=0$且$b>0$时,幂函数为常数函数$y=0$;2. 当$a>0$且$b>0$时,幂函数为递增函数;3. 当$a>0$且$0<b<1$时,幂函数为递减函数;4. 当$a<0$且$b$为奇数时,幂函数关于原点对称;5. 当$a<0$且$b$为偶数时,幂函数图像在第一、第三象限递增,在第二、第四象限递减。
幂函数与幂级数之间存在紧密的联系。
事实上,幂函数可以看作是幂级数在某个特定点展开后的形式,这个点通常是0。
§ 11 3 幂 级 数 一、函数项级数的概念函数项级数 给定一个定义在区间I 上的函数列{u n (x )} 由这函数列构成的表达式 u 1(x )u 2(x )u 3(x ) u n (x )称为定义在区间I 上的(函数项)级数 记为∑∞=1)(n n x u收敛点与发散点对于区间I 内的一定点x 0 若常数项级数∑∞=10)(n n x u 收敛 则称 点x 0是级数∑∞=1)(n n x u 的收敛点 若常数项级数∑∞=10)(n n x u 发散 则称 点x 0是级数∑∞=1)(n n x u 的发散点收敛域与发散域函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域所有发散点的全体称为它的发散域 和函数在收敛域上 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x )s (x )称为函数项级数∑∞=1)(n n x u 的和函数 并写成∑∞==1)()(n n x u x s∑u n (x )是∑∞=1)(n n x u 的简便记法 以下不再重述在收敛域上 函数项级数∑u n (x )的和是x 的函数s (x )s (x )称为函数项级数∑u n (x )的和函数 并写成s (x )∑u n (x )这函数的定义就是级数的收敛域 部分和函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x )函数项级数∑u n (x )的前n 项的部分和记作s n (x ) 即 s n (x ) u 1(x )u 2(x )u 3(x ) u n (x )在收敛域上有)()(lim x s x s n n =∞→或s n (x )s (x )(n)余项函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )s (x )s n (x )叫做函数项级数∑∞=1)(n n x u 的余项函数项级数∑u n (x )的余项记为r n (x ) 它是和函数s (x )与部分和s n (x )的差 r n(x )s (x )s n (x )在收敛域上有0)(lim =∞→x r n n二、幂级数及其收敛性 幂级数函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数 这种形式的级数称为幂级数 它的形式是 a 0a 1x a 2x 2a n x n其中常数a 0 a 1 a 2a n叫做幂级数的系数幂级数的例子 1x x 2x 3 x n!1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x注 幂级数的一般形式是 a 0a 1(xx 0)a 2(x x 0)2 a n (x x 0)n经变换t x x 0就得a 0a 1t a 2t 2 a n t n幂级数1x x2x 3 x n可以看成是公比为x 的几何级数 当|x |1时它是收敛的 当|x |1时 它是发散的 因此它的收敛域为(1 1) 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x x 0 (x 00)时收敛 则适合不等式|x ||x 0|的一切x 使这幂级数绝对收敛 反之如果级数∑∞=0n n n x a 当x x 0时发散 则适合不等式|x ||x 0|的一切x 使这幂级数发散定理1 (阿贝尔定理) 如果级数∑a n x n当x x 0 (x 00)时收敛 则适合不等式|x ||x 0|的一切x 使这幂级数绝对收敛 反之 如果级数∑a n x n当x x 0时发散 则适合不等式|x ||x 0|的一切x 使这幂级数发散提示 ∑a n x n是∑∞=0n n n x a 的简记形式证 先设x 0是幂级数∑∞=0n n n x a 的收敛点 即级数∑∞=0n n n x a 收敛 根据级数收敛的必要条件有0lim 0=∞→n n n x a 于是存在一个常数M 使| a n x 0n|M (n 0, 1, 2, )这样级数∑∞=0n n n x a 的的一般项的绝对值nn n n n nn n nn x x M x x x a x x x a xa ||||||||||00000⋅≤⋅=⋅=因为当|x ||x 0|时 等比级数n n x x M ||00⋅∑∞=收敛 所以级数∑∞=0||n n n x a 收敛 也就是级数∑∞=0n n n x a 绝对收敛简要证明 设∑a n x n在点x 0收敛 则有a n x 0n0(n ) 于是数列{a n x 0n}有界 即存在一个常数M 使| a n x 0n|M (n 0, 1, 2, ) 因为 nn n n n nn n nn x x M x x x a x x x a xa || |||| || ||00000⋅≤⋅=⋅=而当||||0x x <时 等比级数n n x x M ||⋅∑∞=收敛 所以级数∑|a n x n |收敛 也就是级数∑a nx n 绝对收敛定理的第二部分可用反证法证明 倘若幂级数当x x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛 则根据本定理的第一部分 级数当x x 0时应收敛 这与所设矛盾定理得证推论 如果级数∑∞=0n n n x a 不是仅在点x 0一点收敛 也不是在整个数轴上都收敛则必有一个完全确定的正数R 存在 使得 当|x |R 时 幂级数绝对收敛 当|x |R 时 幂级数发散当x R 与x R 时 幂级数可能收敛也可能发散收敛半径与收敛区间正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径开区间(R R )叫做幂级数∑∞=0n n n x a 的收敛区间 再由幂级数在xR 处的收敛性就可以决定它的收敛域 幂级数∑∞=0n n n x a 的收敛域是(R , R )(或[R , R )、(R , R ]、[R , R ]之一规定 若幂级数∑∞=0n n n x a 只在x0收敛 则规定收敛半径R 0 若幂级数∑∞=0n n n x a 对一切x 都收敛 则规定收敛半径R 这时收敛域为(, )定理2如果ρ=+∞→||lim 1nn n a a其中a n 、a n 1是幂级数∑∞=0n n n x a 的相邻两项的系数则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 0010 R定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 0010 R定理2如果ρ=+∞→||lim 1nn n a a则幂级数∑∞=0n n n x a 的收敛半径R 为当0时ρ1=R 当0时R 当时R 0简要证明 || ||||lim ||lim 111x x a a x a x a nn n n n n n n ρ=⋅=+∞→++∞→ (1)如果0 则只当|x |1时幂级数收敛 故ρ1=R(2)如果0 则幂级数总是收敛的 故R(3)如果 则只当x 0时幂级数收敛 故R 0例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑n x x x x n x n n n n n 的收敛半径与收敛域 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ所以收敛半径为11==ρR当x 1时 幂级数成为∑∞=--111)1(n n n是收敛的 当x 1时幂级数成为∑∞=-1)1(n n是发散的 因此收敛域为(1, 1]例2 求幂级数∑∞=0!1n n x n !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域 例2 求幂级数∑∞=0!1n n x n 的收敛域解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ所以收敛半径为R从而收敛域为(, )例3 求幂级数∑∞=0!n n x n 的收敛半径解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ所以收敛半径为R 0 即级数仅在x 0处收敛例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径 解 级数缺少奇次幂的项定理2不能应用可根据比值审敛法来求收敛半径幂级数的一般项记为nn x n n x u 22)!()!2()(=因为 21||4 |)()(|lim x x u x u n n n =+∞→当4|x |21即21||<x 时级数收敛 当4|x |21即21||>x 时级数发散 所以收敛半径为21=R提示 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n x n n xn n x u x u n n n n +++=++=++ 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域解 令t x 1 上述级数变为∑∞=12n n n n t因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ所以收敛半径R 2当t 2时 级数成为∑∞=11n n此级数发散 当t2时 级数成为∑∞=-1)1(n n此级数收敛 因此级数∑∞=12n n n nt 的收敛域为2t 2 因为2x 12 即1x 3 所以原级数的收敛域为[1, 3)三、幂级数的运算 设幂级数∑∞=0n nn xa 及∑∞=0n n n x b 分别在区间(R , R )及(R , R )内收敛 则在(R , R )与(R , R )中较小的区间内有加法 ∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b x a 减法 ∑∑∑∞=∞=∞=-=-0)(n nn n n n n n n n x b a x b x a设幂级数∑a n x n及∑b n x n分别在区间(R , R )及(R, R )内收敛则在(R , R )与(R , R )中较小的区间内有加法 ∑a n x n∑b n x n ∑(a n b n )x n减法 ∑a n x n∑b n x n∑(a n b n )x n乘法 )()(0∑∑∞=∞=⋅n n n n nn x b x a a 0b 0(a 0b 1a 1b 0)x (a 0b 2a 1b 1a 2b 0)x 2(a 0b n a 1b n1a nb 0)xn性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续如果幂级数在x R (或xR )也收敛 则和函数s (x )在(R , R ](或[R , R ))连续性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===01001)()(n n n n xn n xn n n x x n a dx x a dx x a dx x s (x I ) 逐项积分后所得到的幂级数和原级数有相同的收敛半径性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(R R )内可导并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n nn n nn x na x a x a x s (|x |R )逐项求导后所得到的幂级数和原级数有相同的收敛半径 性质1 幂级数∑a n x n的和函数s (x )在其收敛域I 上连续性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积 并且有逐项积分公式 ∑∑⎰⎰∑⎰∞=+∞=∞=+===01001)()(n n n n xnn x n nn xx n a dx x a dx x a dx x s (x I ) 逐项积分后所得到的幂级数和原级数有相同的收敛半径 性质3 幂级数∑a n x n的和函数s (x )在其收敛区间(R R )内可导 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='010)()()(n n n n n n n n n x na x a x a x s (|x |R )逐项求导后所得到的幂级数和原级数有相同的收敛半径例6 求幂级数∑∞=+011n n x n 的和函数 解 求得幂级数的收敛域为[1 1) 设和函数为s (x ) 即∑∞=+=011)(n n x n x s x [1 1) 显然s (0)1在∑∞=++=0111)(n n x n x xs 的两边求导得 x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001对上式从0到x 积分 得 )1ln(11)(0x dx xx xs x--=-=⎰于是 当x 0时 有)1ln(1)(x x x s --= 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(11000x dx x dx x x x n n--=-==⎰⎰∑∞=所以 当x 0时 有)1ln(1)(x xx s --=从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s例6 求幂级数∑∞=+011n n x n 的和函数解 求得幂级数的收敛域为[1 1) 设幂级数的和函数为s (x ) 即∑∞=+=011)(n nx n x s x [1 1)显然S (0)1 因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)()11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx x dx x x x n n所以 当1||0<<x 时有)1ln(1)(x xx s --=从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s由和函数在收敛域上的连续性 2ln )(lim )1(1==-+-→x S S x综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x xx s提示 应用公式)0()()(0F x F dx x F x-='⎰ 即⎰'+=xdxx F F x F 0)()0()(11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x例7 求级数∑∞=+-01)1(n nn 的和解 考虑幂级数∑∞=+011n n x n 此级数在[1, 1)上收敛 设其和函数为s (x ) 则∑∞=+-=-01)1()1(n nn s在例6中已得到xs (x )ln(1x ) 于是s (1)ln2 21ln)1(=-s 即21ln 1)1(0=+-∑∞=n n n。