第二章 解线性方程组的直接法 第五节 追赶法课件ppt课件
- 格式:ppt
- 大小:389.00 KB
- 文档页数:16
第16讲 追赶法、误差分析在实际应用问题中,经常会遇到解三对角线方程组。
例如:用三次样条函数的插值问题中得到的三转弯及三弯矩方程组,当时说可用追赶法来求解。
还有用差分法解二阶线性常微分方程边值问题,若用三点插值格式也得到解三对角线方程组,本节介绍该类方程组中的特例及该种方程组的解法:追赶法。
优点:1.计算量小。
2.方法简单,存贮量小。
3.数值稳定的(对舍入误差来说)。
1 追赶法三对角线方程组的一般表示方法:可见,对A 的分解只需求i i u l ,且按n n n l u l u l u l −→−−→−−→−−→−−→−−→−−→−--112211.....的递推过程进行,形象地称为“追”的过程⎩⎨⎧=-==-),....2(/)(/1111n i l y a f y l f y i i i i⎩⎨⎧-=-==+)1,2,.....1(1n i x u y x y x i i i inn 形象地称回代求解过程为“赶”的过程追赶法的计算量为5n-4次乘除法,可用4个 一 维数组存放{}{}{}{}i i i i f c b a ,,,。
共占用4n-2个单元,在计算过程中{}{}{}i i i y u l ,,依次覆盖掉{}{}{}i i i f c b ,,最后,{}i x 覆盖掉{}i y ,所以,追赶法具有计算量小,占用内存单元少的特点。
2、误差分析⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n n l u u u U 121....111⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=n nl a l a l a l L ....33221)1,...,3,2,1(-=n i ⎪⎩⎪⎨⎧+===+++11111i i i i ii i lu a b u l c l b ⎪⎩⎪⎨⎧-===+++ii i i ii i u a b l l c u b l 11111/)1,...,3,2,1(-=n i病态方程组与条件数一个线性方程组Ax=b 是由它的系数矩阵A 和它的右端项b 所确定,在实际问题中,由于各种原因,A 或b 往往有误差,从而使得解也产生误差。
第二章线性方程组的直接法在近代数学数值计算和工程应用中,求解线性方程组是重要的课题。
例如,样条插值中形成的关系式,曲线拟合形成的法方程等,都落实到解一个元线性方程组,尤其是大型方程组的求解,即求线性方程组(2.1)的未知量的数值。
(2.1)其中ai j,bi为常数。
上式可写成矩阵形式Ax = b,即(2.2)其中,为系数矩阵,为解向量,为常数向量。
当detA=D0时,由线性代数中的克莱姆法则,方程组的解存在且惟一,且有为系数矩阵的第列元素以代替的矩阵的行列式的值。
克莱姆法则在建立线性方程组解的理论基础中功不可没,但是在实际计算中,我们难以承受它的计算量。
例如,解一个100阶的线性方程组,乘除法次数约为(101·100!·99),即使以每秒的运算速度,也需要近年的时间。
在石油勘探、天气预报等问题中常常出现成百上千阶的方程组,也就产生了各种形式方程组数值解法的需求。
研究大型方程组的解是目前计算数学中的一个重要方向和课题。
解方程组的方法可归纳为直接解法和迭代解法。
从理论上来说,直接法经过有限次四则运算,假定每一步运算过程中没有舍入误差,那么,最后得到方程组的解就是精确解。
但是,这只是理想化的假定,在计算过程中,完全杜绝舍入误差是不可能的,只能控制和约束由有限位算术运算带来的舍入误差的增长和危害,这样直接法得到的解也不一定是绝对精确的。
迭代法是将方程组的解看作某种极限过程的向量极限的值,像第2章中非线性方程求解一样,计算极限过程是用迭代过程完成的,只不过将迭代式中单变量换成向量而已。
在用迭代算法时,我们不可能将极限过程算到底,只能将迭代进行有限多次,得到满足一定精度要求的方程组的近似解。
在数值计算历史上,直接解法和迭代解法交替生辉。
一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。
一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。
对于中等规模的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。
第二章 解线性方程组的直接法本章研究的对象是n 阶线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a .........22112222212111212111 (2.1)其矩阵形式为b AX = (2.1)′其中,)(ij a A =是方程组的系数矩阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X ...21,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b b ...21分别为方程组的未知向量和常数向量。
所谓直接法,就是在不计舍入误差时,经过有限步运算能求得方程组精确解的方法。
下面介绍几种较实用的直接法。
2.1 Gauss 消去法 2.1.1 Gauss 顺序消去法高斯(Gauss )消去法实质是消元法,只是步骤规范,便于编程。
它的基本做法是把方程组(2.1)转化成一个等价的三角方程组⎪⎪⎩⎪⎪⎨⎧==++=+++n n nn n n n n g x b g x b x b g x b x b x b 2222211212111 (2.2) 这个过程称为消元。
然后,逐个求出11,,,x x x n n -,这个过程称为回代。
(一) 高斯消去法的计算过程为了符号统一,把方程组(2.1)改写成下面形式⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++)1()1(2)1(1)1()1()1(2)1(1)1()1()1(2)1(1)1( (212)22221111211n nn n n n n b x a x a x a b x a x a x a b x a x a x a n n n(2.3)用矩阵表示为)1()1(b X A = (2.3)′其中⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)1()1(2)1(1)1(2)1(22)1(21)1(1)1(12)1(11)1(nn n n nn a a a a aa a aa A, ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=)1()1()1()1(...21n b b b b 若0)1(11≠a ,用第二个方程减去第一个方程的)1(11)1(21/a a 倍,第三个方程减去第一个方程的)1(11)1(31/a a 倍,等等。