节点设计计算表格
- 格式:xls
- 大小:1.12 MB
- 文档页数:8
目录第1章设计原始资料 (1)1.1设计概况 (1)1.2技术标准 (1)1.3主要规范 (1)第2章桥跨总体布置及结构尺寸拟定 (2)2.1尺寸拟定 (2)2.1.1 桥孔分跨 (2)2.1.2 截面形式 (2)2.1.3 梁高 (3)2.1.4 细部尺寸 (4)2.15 主要材料及材料性能 (6)2.2模型建立与分析 (7)2.2.1 计算模型 (8)第3章荷载内力计算 (9)3.1荷载工况及荷载组合 (9)3.2作用效应计算 (10)3.2.1 永久作用计算 (10)3.3作用效应组合 (16)第4章预应力钢束的估算与布置 (20)4.1力筋估算 (20)4.1.1 计算原理 (20)4.1.2 预应力钢束的估算 (24)4.2预应力钢束的布置(具体布置图见图纸) (27)第5章预应力损失及有效应力的计算 (29)5.1预应力损失的计算 (29)5.1.1摩阻损失 (29)5.1.2. 锚具变形损失 (30)5.1.3. 混凝土的弹性压缩 (30)5.1.4.钢束松弛损失 (31)5.1.5.收缩徐变损失 (31)5.2有效预应力的计算 (32)第6章次内力的计算 (33)6.1徐变次内力的计算 (33)6.2预加力引起的次内力 (33)第7章内力组合 (35)7.1承载能力极限状态下的效应组合 (35)7.2正常使用极限状态下的效应组合 (37)第8章主梁截面验算 (41)8.1正截面抗弯承载力验算 (41)8.2持久状况正常使用极限状态应力验算 (44)8.2.1 正截面抗裂验算(法向拉应力) (44)8.2.2 斜截面抗裂验算(主拉应力) (46)8.2.3混凝土最大压应力验算 (49)8.2.4 预应力钢筋中的拉应力验算 (50)8.3挠度的验算 (51)小结 (53)第1章设计原始资料1.1 设计概况设计某预应力混凝土连续梁桥模型,标准跨径为35m+50m+35m。
施工方式采用满堂支架现浇,采用变截面连续箱梁。
目录第8章节点设计原理 (1)§8-1 节点设计的原则 (1)§8-2 次梁与主梁的连接节点 (1)8.2.1 次梁与主梁铰接 (1)8.2.2 次梁与主梁刚接 (3)§8-3 梁与柱的连接节点 (3)8.3.1 梁与柱的铰接连接 (4)8.3.2 梁与柱的刚性连接 (5)8.3.3 梁与柱的半刚性连接 (9)§8-4 桁架与柱的连接节点 (10)8.4.1 桁架与柱的铰接连接 (10)8.4.2 桁架与柱的刚性连接 (12)§8-5 变截面柱的节点构造 (13)§8-6 柱脚节点 (15)8.6.1 柱脚的形式与构造 (15)8.6.2 轴心受压柱的柱脚计算 (17)8.6.3 框架柱的柱脚计算 (19)§8-7 支座节点 (28)8.7.1 支座节点的形式 (28)8.7.2 支座节点的设计 (30)§8-8 直接焊接管节点 (30)8.8.1 直接焊接管节点的构造形式 (30)8.8.2 相贯焊缝的计算 (32)8.8.3 直接焊接管节点的承载力计算 (33)第8章节点设计原理§8-1 节点设计的原则整个结构是由构件和节点(connection)构成的。
单个构件必须通过节点相连接,协同工作才能形成结构整体。
即使每个构件都能满足安全使用的要求,如果节点设计处理不恰当,连接节点的破坏,也常会引起整个结构的破坏。
可见,要使结构能够满足预定功能的要求,正确的节点设计与构件设计,两者具有同等的重要性。
由于连接节点受力状态较为复杂,不易精确地分析其工作状态。
所以,在节点设计时应遵循下列基本原则:(1)连接节点应有明确的传力路线和可靠的构造保证。
传力应均匀和分散,尽可能减少应力集中现象。
在节点设计过程中,一方面要根据节点构造的实际受力状况,选择合理的结构计算简图;另一方面节点构造要与结构的计算简图相一致。
避免因节点构造不恰当而改变结构或构件的受力状态,并尽可能地使节点计算简图接近于节点实际工作情况。
任丘锅炉钢架典型节点计算书一、基本情况1、荷载工况说明:34 TL 偶然荷载40 NGL 活荷载41 GL 静载42 EQ_X(+) 地震作用前后方向44 EQ_Z(+) 地震作用左右方向46 WIND_X(+) 风荷载从前到后47 WIND_X(-) 风荷载从后到前48 WIND_Z(+) 风荷载从左到右49 WIND_Z(-) 风荷载从右到左2、荷载作用及其效应组合说明:(1).节点设计选用荷载时,地震作用从42和44工况中选大值,风荷载从46~49工况中选大值。
(2).表格中荷载值除风荷载为设计值外(工况46~49),其余均为标准值,节点设计时参照《锅炉钢结构设计规程》进行荷载组合。
(3)组合地震作用时,节点板件、螺栓、焊缝承载力调整系数取0.90。
(4).力的方向坐标系如右图所示:FX: 杆件轴力FY:平面内剪力FZ:平面外剪力3、高强螺栓:M22(10.9级),摩擦型连接,孔径d0=24mm,抗滑移系数值μ取0.40。
单个螺栓的承载力设计值:受剪承载力设计值N v=68.4kN(单剪),136.8kN(双剪);b受拉承载力设计值N t=152kN。
b二、节点设计:(一)、柱拼接节点设计节点号75820:B1立面,标高12.600,见下图:节点上柱1404(H480X580X20X40),节点下柱1403(H500X600X20X50). 各工况下节点力见下表:1.节点内力核算首先计算各作用效应的组合设计值,经比较分析得出节点最大内力。
A、最大轴力:FX max=γG S Gk+γW S Wk+γQΨC S Qk=1.35×5398.297+946.162+1.35×0.7×764.428=8956kNFX min=γEG S GE+γEhk S Ehk=1.0×(5398.297+0.5×746.162)+1.35×(-1901.1)=3205kNB、最大剪力(取绝对值最大):平面内剪力:FY max=γG S Gk+γW S Wk+γQΨC S Qk=1.35×(-35.376)+(-1.278)+1.35×0.7×(-10.473)=-63.2kN平面外剪力:FZ max=γEG S GE+γEhk S Ehk=1.35×(-2.337-0.5×1.371)+1.35×(-21.091)=-32.6kN可见此节点内力以轴向压力为主,剪力较小。
工程名称:原则上梁端弯矩全部由梁翼缘承担,梁端剪力全部由梁腹板承担。
1、数据输入:基本尺寸:钢梁1截面:BH800.X250X12X16材质:Q345B 钢柱截面:BH300X300X8.X14材质:Q345B 连接板尺寸:PL-195*700*16材质:Q345B梁跨度L 0:12000.00mm材质特性:梁之Fu:470.00N/mm^2柱之Fu:470.00N/mm^2接板之Fu:470.00N/mm^2梁之Fy:345.00N/mm^2柱之Fy:345.00N/mm^2焊缝f wt :310.00N/mm^2柱之fv:180.00N/mm^2高强螺栓:螺栓数量:14.00螺栓直径M20抗拉极限:1040.00N/mm^2螺栓有效面积:249.79mm^2输入荷载:梁端弯矩:M L b =262KN*M 梁端剪力:V=438KN2、基本计算:1)、梁翼缘与柱完全焊透的坡口对接焊缝强度计算:梁翼缘宽b fb =250梁翼缘厚t fb =16梁截面高度h b =800梁翼缘贴板厚t=8.00σ =Mmax/[(h b -t fb )*b fb *(t fb +t)]55.70N/mm^2<f w t OK!2)、梁腹板与连接板采用摩擦型高强螺栓连接计算:一个高强螺栓预拉力P :155KN 传力摩擦面数目N f :1个摩擦面抗滑移系数u :0.45一个摩擦型高强螺栓单面抗剪承载力设计值:N v bH =0.9*N f *u*P 62.78KN计算所需螺栓数目n wb :n wb1=V / N v bH6.98个或n wb2=0.5*Anw*fv /N v bH4.92个梁ZL1(非加掖端)与工字柱的刚性连接节点设计第1页或n wb3=(M L b+M R b)/(L0*N v bH)0.35个n wb=max(n wb1,n wb2,n wb3) 6.98个<12个1.5*n wb=10.47<12个第2页3)、连接板厚度计算:t=tw*(h b-2t fb)/h L+2~4mm15.2mm取16.0mm3、抗震设计校核:3.1.极限受弯承载力验算:梁1的全塑性弯距:Mpb1=(b bf1*t fb1*(h b1-t fb1)+(h b1-2*t fb1)^2*t w1/4)*Fy1692387840.00N*mm翼板熔透焊接时最大抗弯:Mu1=b F b1*(t Fb1+t)*Fu1*h0b12210880000.00N*mm> 1.2*Mpb1=2030865408OK!梁2的全塑性弯距:Mpb2=(b bF2*t Fb2*(h b2-t Fb2)+(h b2-2*t Fb2)^2*t w2/4)*Fy1340962560.00N*mm翼板熔透焊接时最大抗弯:Mu2=b F b2*(t Fb2+t)*Fu2*h0b21629584000.00N*mm>1.2*Mpb2=1609155072OK!梁翼缘的塑性截面模量Wf=3200000梁全截面的塑性截面模量Wb=4905472梁翼缘的塑性截面模量与梁全截面的塑性截面模量之比=0.65<0.7需要设两列螺栓,且螺栓总数不小于计算值的1.5倍3.2.极限受剪承载力验算:翼焊腹栓时最大抗剪:腹板抗剪:Vu1=Anw*Fu/1.7321965207.85接板抗剪:Vu2=Anw*Fu/1.7322325034.64螺栓抗剪:Vu3=0.58*Nf*n*Aebh*Fubh2109418.15Vu3'=d*Nf*n*∑t*1.5Fub1738800.00Vu=MIN(Vu1,Vu2,Vu3,Vu3’)1738800.00≥ 2.6*Mp1/LbOK!0.58*hw*tw*fy1054126.803.3.连接板与柱连接焊缝计算:hf1=Anw*fv/(4*0.7*lw*f w t)0.21mmhf2=(M L b+M R b)/(2*0.7*lw*f w t*L b)0.07mmhf3=V/(2*0.7*lw*f w t) 1.46mmhf=Max(hf1,hf2,hf3) 1.46mm选取焊缝为:8.00mm第3页4、柱腹板加劲板计算:柱翼缘与腹板焊脚尺寸 6.00mm梁单侧翼缘的截面面积A FB:4000.00mm^2加劲板面积:As=A fb-t wc*(t Fb+5*t0)3072.00mm^2选取加劲板厚度ts:16mm加劲板宽度:Bs=As/(2*ts)96.00mm加劲板宽厚比:Bs/ts= 6.00<18*SQRT(235/345)=14.9OK!5、节点域校核:梁柱截面高度之和的1/70:15.71mm柱腹板厚度:8.mm需贴板!计算双面贴板厚度: 3.86mm选用贴板厚度: 6.00mm第4页。
梁柱节点核心区抗剪超限的应对对于高烈度区的框架结构,梁柱节点核心区抗剪超限一直是一个比较棘手的问题。
传统的设计中,为了核心区抗剪满足限值要求,一般采取的措施是加大梁柱截面、提高混凝土标号,这种做法虽然能解决柱节点核心区的抗剪超限问题,但往往是以损坏建筑物的使用效果,增加结构材料用量为代价的。
一、YJK与PKPM在计算节点核心区抗剪问题上的差异在实际工程中,用户往往会遇到YJK与PKPM在计算节点核心区抗剪结果差异的问题,比如此例,同一工程,两个软件在核心区计算结果上差异比较大,查看构件信息可知,两个软件在核心区剪力设计值限值的计算上存在差异。
YJK计算结果:PKPM计算结果:产生这一差异的主要原因是两款软件根据《混凝土规范》11.6.3计算核心区剪力设计值限值时对于正交梁对节点的约束影响系数的取值规则不同。
YJK在计算正交梁对节点的约束影响系数时,按照规范的要求只要柱X、Y两个方向中有一个方向的梁宽小于柱宽一半,则正交梁约束影响系数取为1,而PKPM的判断规则不同,PKPM判断时根据各侧梁宽和柱宽的关系分别决定正交梁对节点的约束影响系数,对于此例,PKPM在计算X向核心区抗剪时,正交梁约束系数取1.5。
所以PKPM结果中Vj=3610.34KN>节点核心区剪力限制3585.0KN,并未对此进行提示。
二、选择地震工况按全楼弹性板6计算可大量减少柱节点核心区抗剪超限从《混凝土规范》11.6.3可知:当梁柱材料、截面尺寸一定时,若想使框架梁柱节点核心区抗剪满足要求,唯一的方法是减小节点核心区剪力设计值Vj;从《混凝土规范》11.6.2可知:节点核心区剪力设计值Vj与节点处框架梁端地震作用弯矩值有关。
所以解决框架节点核心区抗剪超限问题的根本在于降低地震作用下节点位置处梁端的弯矩设计值。
结构计算时对于楼板较厚(如大于150mm时)的板可以将其设置为弹性板6(壳元)计算,这是梁板共同工作的计算模型,可使梁上荷载由板和梁共同承担,从而减少梁的受力和配筋。
屈曲约束支撑承载力说明屈曲约束支撑承载力说明上图为图纸中屈曲约束支撑相关参数,其中屈服荷载为 1.25fyA,从该公式看,1.25为芯材Q235的材料超强系数,fy为芯材屈服强度,A理应为芯板面积,而不是图纸中的等效截面面积,建议可用标识A1代替,具体依据可见建筑抗震设计规范GB50011-2010(2016版) 8.1.6条文说明。
而由于刚度匹配的原因,节点段有效面积,支撑弹性段面积均大于芯板面积,芯板相对模型中等效面积较小。
有关芯板面积与支撑承载力计算表格如下表所示。
而关于刚度匹配计算表之前已经提供,如附件1所示。
附件1:屈曲约束支撑刚度计算说明1.1支撑等效刚度设A e为模型中截面面积,L e为支撑轴线长度,则支撑在模型中等效刚度K e按下列公式计算:K e=E s A e/L e(1)式中E s为钢材弹性模量。
1.2支撑的刚度组成模型中的支撑为整个轴线长度,在实际设计中,将支撑分为三个部分组成,分别为:上节点段、下节点段及支撑段。
BRB示意图节点示意图节点段与支撑段串联组成模型中的支撑刚度,因此根据刚度串联公式可得到:1/K e=1/K上+1/K下+1/K C (2)其中K上表示上节点段刚度,K下表示下节点段刚度,K C表示支撑段刚度。
节点段刚度可简化为L a和L b两部分串联组成,其刚度可按下列公式计算;1/K j=1/K a+1/K b (3)通过节点计算可以得到上、下节点段等效刚度,带入(2)式可得到支撑段等效刚度,产品根据支撑段等效刚度进行设计,从而实现与模型中支撑刚度的匹配。
1.屈曲约束支撑刚度匹配计算屈曲约束支撑刚度匹配计算如下表所示,根据计算结果可以看出,根据产品刚度、节点刚度计算得到的支撑等效刚度与模型中等效刚度误差均小于。
说明刚度匹配满足要求。
屈曲约束支撑吨位及刚度计算表格详细屈曲约束支撑吨位及刚度计算表格详细(续)。
电力系统分析综合实训报告课题名称:基于N-R法的电力系统潮流计算小组成员:王劲凯、周李、唐天赐、周镇、胡永健、徐再祥专业班级:电气工程及其自动化161***师:**实习时间:2018年12月课题:《基于N-R 法的电力系统潮流计算》如图所示,一个5节点系统,已知节点5为平衡节点,节点1为PV 节点,其余为PQ 节点。
以100MVA 为基准的标幺值支路数据如表1所示。
1123°450.20 1.10.450.15,0.400.050.60j0.10=1.050P V S j S j S V ===+=+=+∠,,, 给定电压的初始值如表2所示,收敛系数=0.00001ε,请利用牛顿-拉夫逊法计算图中网络的潮流分布。
任务分配目录摘要 (1)关键词:N-R法潮流计算;雅克比矩阵;MA TLAB;节点;仿真 (1)一、研究背景及意义 (1)二、潮流计算方法分析 (1)2.1高斯-赛德尔迭代法: (1)2.2 P-Q 分解法: (2)2.3 N-R法: (2)三、总体方案 (2)3.1 N-R法基本原理 (2)3.2 N-R法潮流求解过程 (3)3.3求解过程 (4)四、算法流程图及仿真结果 (7)4.1 MA TLAB的功能特点及算法流程 (7)4.2 仿真结果分析 (9)五、总结 (10)六、参考文献 (10)附录 (11)摘要:本文针对复杂电力系统潮流的分析问题,分别介绍了几种常用的潮流计算方法:牛顿-拉夫逊法、高斯-赛德尔法和PQ分解法。
也分别对比这三种方法的优缺点以及算法原理,其中,本文对N-R法进行重点探讨,详述了其基本原理以及算法过程。
在这项设计中,我们选用了MATLAB开发潮流计算设计程序,通过对五节点电力系统进行仿真,得出了N-R法收敛速度快,误差小的特点。
关键词:N-R法潮流计算;雅克比矩阵;MATLAB;节点;仿真一、研究背景及意义原先电力系统潮流计算是通过人工计算的。
后来为了适应电力系统日益发展的需要,采用了交流计算台.随着电子数字计算机的出现,1956年Ward等人编制了实际可行的计算机潮流计算程序。
节点设计
操作步骤
一.设置验算合格后保存
1.反回三维模型空间/后处理/对齐(这个阶段不能点保存)
2.对齐/对齐净高(V)端板坚放(○)
3.生成后处理实体模型(保存在默认路径和名称)
4.构件编辑(调整杆件、整体、分断或长度增减)
5.节点设计参数选择/
1)基本计算参数/
设计、计算方法(3D3S整体结构计算内力)
高强螺栓/
螺栓等级(10.9级)
构件接触面处理方法(喷砂)
螺栓类型(摩擦型)
对焊缝的质量等级(Ⅰ、Ⅱ级)
柱脚锚栓钢号(Q235)
连接板钢号(Q345)实际出图先用Q235,以免计算过大
铰接柱脚锚栓直径构造值(M20)
基础混凝土强度(C30)
螺栓直径或间距(缺省)(缺省)
2)基本构造参数(钢板厚度市场上没有的和不符合的厚度要取消V号)3)框架节点设置(带有二层的)
节点计算(V)梁柱短梁连接—短梁制作形式(热轧型钢)
抗震设计—框架梁柱刚接点加强方法(加翼缘楔形盖板)
其他选项默认
4)轻钢节点/
截面50%承载力计算(V)
节点区域搞剪验算(V)
5)脚柱(选项默认)
二.后处理/主钢架节点设计/选择杆件设计节点。
1边柱节点(端板竖放)
2中柱节点(端板竖放)
3夹层梁柱刚接节点(栓焊刚结)
4屋脊节点
5梁梁对接。
钢结构课程设计计算书学院:土木与建筑工程学院专业:土木工程班级:土木应用11-6班学生姓名:学号:指导教师:目录1.设计资料 (3)2.屋架形式、尺寸、材料选择及支撑布置 (3)3.荷载和内力计算 (3)(1)荷载计算 (3)(2)荷载组合 (3)(3)内力计算 (6)4.截面选择计算 (7)(1)上弦杆 (7)(2)下弦杆 (8)(3)斜腹杆 (8)(4)竖杆 (10)5.节点设计计算 (12)(1)上弦节点B (12)(2)下弦节点c (12)(3)屋脊节点I (13)(4)端部支座节点a (13)钢结构设计计算书1、设计资料某厂房总长90m,跨度24m,纵向中距6m。
结构形式:钢筋混凝土柱,梯形钢屋架。
柱的混凝土强度等级为C30,屋面坡度为i=1:10;L为屋架跨度。
地区计算温度高于—20℃,无侵蚀性介质,地震设防烈度为8度,屋架下弦标高为18m;厂房内桥式吊车为2台150/30 t(中级工作制),锻锤为2台5t 。
2、屋架形式、尺寸、材料选择及支撑布置学号为单号本设计采用无檩体系考虑,i=1/10,采用平坡梯形屋架。
屋架计算跨度L0=L-300=23700mm。
端部高度取H=1990mm,中部高度H=3190mm,屋架杆件几何长度见施工图(跨中起拱按L/500考虑)。
屋架采用的钢材、焊条为:学号为单号用Q235钢,焊条采用E43型,手工焊。
根据厂房长度(90m>60m)、屋架跨度(24m)和荷载情况,设置上、下弦横向水平支撑3道,垂直支撑和系杆,见附图1。
3、荷载和内力计算(1)、荷载计算三毡四油(上铺绿豆沙)防水层 0.40 kN/m2水泥砂浆找平层 0.40 kN/m2保温层 0.55 kN/m2一毡二油隔气层 0.05 kN/m2水泥砂浆找平层 0.30 kN/m2预应力混凝土屋面板 1.45 kN/m2屋架和支撑自重 0.12+0.1L=0.12+0.01*24=0.36 kN/㎡恒荷载总和 3.51 kN/㎡活荷载(或雪荷载0.35 kN/m2) 0.70 kN/m2积灰荷载 1.20 kN/㎡可变荷载总和 1.90 kN/㎡屋面坡度不大,对荷载影响小,未予考虑。