大学物理麦克斯韦方程组
- 格式:pdf
- 大小:703.09 KB
- 文档页数:23
麦克斯韦方程组维基百科,自由的百科全书麦克斯韦方程组(Maxwell's equations)是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组偏微分方程,描述电场、磁场与电荷密度、电流密度之间的关系。
它含有的四个方程分别为:电荷是如何产生电场的高斯定理;论述了磁单极子的不存在的高斯磁定律;电流和变化的电场是怎样产生磁场的麦克斯韦-安培定律,以及变化的磁场是如何产生电场的法拉第电磁感应定律。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程共同形成了经典电磁学的完整组合。
1865年,麦克斯韦建立了最初形式的方程,由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
当代使用的数学表达式是由奥利弗·赫维赛德和约西亚·吉布斯于1884年使用矢量分析的形式重新表达的。
概论麦克斯韦方程组乃是由四个方程共同组成的。
它们分别为▪高斯定律描述电场是怎样由电荷生成的。
更详细地说,通过任意闭合表面的电通量与这闭合表面内的电荷之间的关系。
▪高斯磁定律表明,通过任意闭合表面的磁通量等于零,或者,磁场是一个螺线矢量场。
换句话说,类比于电荷的磁荷,又称为磁单极子,实际并不存在于宇宙。
▪法拉第电磁感应定律描述含时磁场怎样生成电场。
许多发电机的运作原理是法拉第电磁感应定律里的电磁感应效应:机械地旋转一块条形磁铁来生成一个含时磁场,紧接着生成一个电场于附近的导线。
▪麦克斯韦-安培定律阐明,磁场可以用两种方法生成:一种是靠电流(原本的安培定律),另一种是靠含时电场(麦克斯韦修正项目)。
这个定律意味着一个含时磁场可以生成含时电场,而含时电场又可以生成含时磁场。
这样,理论上允许电磁波的存在,传播于空间。
▪一般表述在这段落里,所有方程都采用国际单位制。
若改采其它单位制,经典力学的方程形式不会改变;但是,麦克斯韦方程组的形式会稍微改变,大致形式仍旧相同,只有不同的常数会出现于方程的某些位置。
大学物理电磁学公式大学物理电磁学是物理学中的一个重要分支,研究电场和磁场以及它们之间的相互作用。
在学习和研究电磁学的过程中,我们经常会接触到一系列重要的公式。
以下是一些常见的大学物理电磁学公式的详细介绍。
1. 库仑定律(Coulomb's Law):库仑定律描述了两个点电荷之间相互作用力的大小和方向。
它的数学表达式为:F = k * |q1 * q2| / r²其中,F为两个电荷所受的力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
2. 电场强度(Electric Field Intensity):电场强度描述了电荷在某一点周围的电场的强弱。
对于一个点电荷,其电场强度的数学表达式为:E = k * |q| / r²其中,E为电场强度,k为库仑常数,q为电荷的大小,r为点电荷到被测点之间的距离。
3. 电势能(Electric Potential Energy):电势能描述了电荷由于存在于电场中而具有的能量。
对于一个点电荷,其电势能的数学表达式为:U = k * |q1 * q2| / r其中,U为电势能,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
4. 电势差(Electric Potential Difference):电势差描述了电场中两个点之间的电势能的差异。
对于两个点电荷之间的电势差,其数学表达式为:ΔV = V2 - V1 = -∫(E · dl)其中,ΔV为电势差,V1和V2分别为两个点的电势,E为电场强度,dl为路径元素。
5. 电场线(Electric Field Lines):电场线用于可视化电场的分布情况。
电场线从正电荷流向负电荷,并且密集的电场线表示电场强度较大,稀疏的电场线表示电场强度较小。
6. 电场的高斯定律(Gauss's Law for Electric Fields):电场的高斯定律描述了电场通过一个闭合曲面的总通量与该闭合曲面内的电荷量之间的关系。
世界10大公式一、麦克斯韦方程组(电磁学)1. 公式内容。
- 积分形式:- ∮_S →D· d→S=∫_Vρ dV(高斯定律,表示通过任意闭合曲面的电位移通量等于该闭合曲面所包围的自由电荷的代数和)。
- ∮_S →B· d→S = 0(高斯磁定律,表明通过任意闭合曲面的磁通量恒为零,即磁场是无源场)。
- ∮_L→E· d→l=-(d)/(dt)∫_S→B· d→S(法拉第电磁感应定律,感应电动势与磁通量变化率的关系)。
- ∮_L→H· d→l=∫_S(→J+(∂→D)/(∂ t))· d→S(安培 - 麦克斯韦定律,磁场强度沿闭合回路的线积分等于穿过该回路所限定面积的全电流)。
- 微分形式:- ∇·→D=ρ- ∇·→B = 0- ∇×→E=-(∂→B)/(∂ t)- ∇×→H=→J+(∂→D)/(∂ t)2. 意义。
- 它统一了电学和磁学,揭示了电场和磁场之间的相互联系、相互转化的规律。
麦克斯韦方程组的建立是经典电磁学理论的集大成者,并且预言了电磁波的存在,为现代通信、电子技术等众多领域奠定了理论基础。
- 在高中物理选修3 - 4中会初步涉及电磁感应现象(法拉第电磁感应定律部分内容),在大学物理教材(如电磁学部分)会详细讲解麦克斯韦方程组的积分形式和微分形式。
二、欧拉公式(复变函数等多领域)1. 公式内容。
- e^iθ=cosθ + isinθ,当θ=π时,有著名的等式e^iπ+1 = 0。
2. 意义。
- 它将数学中最重要的几个常数e(自然对数的底数)、i(虚数单位)、π(圆周率)、1(自然数的基本单位)和0(代表无或起点等多种数学概念)联系在一起,体现了数学的简洁性和统一性。
在复变函数、信号处理、量子力学等众多领域有着广泛的应用。
3. 在人教版教材中的体现。
- 在高中数学选修2 - 2中会简单介绍复数的概念,在大学的复变函数教材中会深入讲解欧拉公式及其应用。