线性代数 1-1 第1章1讲-行列式的基本概念(1)
- 格式:pptx
- 大小:632.28 KB
- 文档页数:10
线性代数知识点总结(第1、2章)(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
(六)矩阵的运算12、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
线性代数教学教案行列式21⋅.如果一对数的排列顺序与自然顺序相反,即排在左边的数比排在它右边的数大,i的逆序数记为那么它们就称为一个逆序,一个排列中逆序的总数就称为这个排列的逆序数,排列n )i.n3.定义:逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列二.二阶、三阶行列式1.引例:解方程组1,2,3,n )排成123132333123nnn n n n nn a a a a a a a 2323331123(1)n n n n nna a a a a a =-+21222,12123231323,13133312112,1131)+(1)n n n n nn n n n n n n nna a a a a a a a a a a a a a a a a a a --++-+-阶行列式(递归定义).余子式与代数余子式:由行列式D 中划去ij a 所在的第i 行和第j 列后,余下的元素按照原来的顺序构ij M ,称为元素ij a 的余子式,(1)i j ij A M +-称为元素ij a 的代数余子式D 11=n n a A a A =na ∑1,2,3,n )组成的阶行列式定义为 123132333123n nn n n n nna a a a a a a 1212)12=n n nj j j j nj j j j a a a ∑nj ∑表示对所有的列标排列12n j j j 求和.四.例题讲解1.求解二元线性方程组122321221x x x x -=⎧⎨+=.1233300n nn nn a a a a . 11121,121222,111,11,210000n n n n n a a a a a a D a a ----=,112122313233123000000n n n nn a a a a a a a a a a , 1122330000000000nna a a a .授课序号02in jn a A =,n ,i ≠0ni nj a A =,n ,i ≠综合上一节和该推论,对于行列式和代数余子式的关系有如下重要结论:, ,0, .i j i j =≠ , =0, kj D i A ⎧⎨⎩授课序号030000000000x y yx.(Vandermonde)行列式1221231111112311n n n i j nn n n n nx x D x x x x x ≤<≤----==∏31111111n a +12(0)n a a a ≠.3434340a a x x a a a a a ++=的根.0000000003200013.12211000100000001nn n x x x a a a a x a -----+.00000000000000000000000a b a b a b c d c dc d.22231112342344,证明:()0f x '=有且仅有两个实根授课序号041222222n n n n nn n a x a x x a x +=+++=1112121222120n n n n nna a a a a a a a a ≠,122n n D D Dx x D D D==,,,, 列换成常数项所得的n 阶行列式1,111,11212,122,121,1,1j j n j j n n n j nn j nna b a a a b a a a a b a a -+-+-+112222222n n n n nn n na xb a x b x a x b +=+=++=当12,,,n b b b 全为0时,得到11112121122221122n n n n n n nn n a x a a x a x a a x a x a x a x ++⎧⎪++⎪⎨⎪⎪+++⎩335111x x =-=-=211311213313n n n n n n n n n a x a x a x a x x a x ----+=+==+=,n ).互相关联,X 公司持有股份,持有Z 股份,持有Z 公司20%持有Y 公司20%,Z 公司各自的净收入分别为万元,每家公司的联合收入是净收入加上其他公司的股份按比例的提成收入,试求各公司的联合收入及实际收入《市场营销》是商业和经贸专业学生的一门核心课程,商经类学校的所有专业都开设本课程,是一门公共基础课。
线性代数讲义-01行列式第一章行列式第一节行列式的定义.一排列的逆序数将数n ,,2,1 按照某个顺序排成一行, 称为一个n 阶排列. 记作n p p p 21. 共有!n 种不同的n 阶排列.按照从小到大的顺序称为标准顺序. 而排列n 12称为标准排列.定义1.1 如果在一个排列中, 某两个数的先后顺序与标准顺序相反, 则称有一个逆序. 这个排列的逆序的总数称为该排列的逆序数.在n 阶排列中, 标准排列的逆序数最小, 等于0. 而排列1)1( -n n 的逆序数最大, 等于2/)1(-n n .定义1.2 如果一个排列的逆序数是奇数(偶数), 则称其为奇排列(偶排列).例如, 共有6个三阶排列, 其中123, 231, 312是偶排列, 而132, 213, 321是奇排列.定义 1.3 在排列中, 将任意两个数对调, 其余数不动, 这种产生新排列的过程称为对换. 将两个相邻的数对换, 称为相邻对换.定理1.1 一个排列中的任意两个数对换, 排列改变其奇偶性.证如果这两个数相邻, 进行对换时, 只改变这两个数的先后顺序. 因此, 逆序数或者增加1, 或者减少1. 即进行相邻对换时, 奇偶性改变.考虑排列n k i i i p p p p p ++11, 其中1>k . 为完成i p 与k i p +的对换, 其余数不动,可按照下面方式进行. 先将i p 与1+i p 对换, 再将i p 与2+i p 对换, 继续进行, 直至i p 与k i p +相邻. 在这个过程中, i p 逐渐向后移动, 而其他数的先后顺序不变. 如此共进行1-k 次对换, 得到排列n k i i i p p p p p ++11. 然后将k i p +与i p 对换, 再将k i p +与1-+k i p 对换, 继续进行, 直至k i p +向前移动到1+i p 的左边为止. 此时恰好得到排列n i i k i p p p p p 11++.如此又进行k 次相邻对换. 总计进行12-k 次相邻对换, 因此, 必然改变奇偶性.如果用定义计算一个排列的逆序数, 需要观察任意一对数的先后顺序, 比较繁琐. 考虑n ,,2,1 的一个排列n p p p 21, 任取一个数i p , 如果有i t 个比i p 大的数排在i p 的前面, 则称i t 是i p 的逆序数. 所有数的逆序数的和就是排列的逆序数.例1.1 求排列32514的逆序数.解按照上面的方法, 得逆序数为513010=++++.例1.2 设1>n , 求证: 在n 阶排列中, 奇排列与偶排列各占一半.证将一个奇排列中的数1与2对换, 产生一个偶排列. 反之, 将一个偶排列中的数1与2对换, 产生一个奇排列. 如此建立奇排列与偶排列之间的一一对应. 因此, 在n 阶排列中, 奇排列与偶排列的个数相等.二行列式定义以前学过二阶与三阶行列式:2112221122211211a a a a a a a a -=;333231232221131211a a a a a a a a a 322113312312332211a a a a a a a a a ++=312213332112322311a a a a a a a a a ---. 为了将他们推广, 首先研究三阶行列式的结构. 行列式中的数ij a 称为它的元素. 其中元素321,,i i i a a a 组成行列式的第i 行, 元素j j j a a a 321,,组成行列式的第j 列, 元素332211,,a a a 组成行列式的主对角线. 每个元素有两个下标. 第一个是行标i , 表示该元素属于第i 行. 第二个是列标j , 表示该元素属于第j 列.在形式上, 三阶行列式是一个数表. 而实质是其元素的一个多项式. 这个多项式由六项组成, 每项包含三个元素的乘积. 这三个元素分别属于不同的行, 不同的列. 现在每一项中元素的行标组成标准排列, 则其列标恰组成所有的三阶排列. 而且, 如果列标排列是奇排列, 则前面是负号. 如果列标排列是偶排列, 则前面是正号. 于是, 可以将三阶行列式写作333231232221131211a a a a a a a a a ∑-=321321)1(p p p t a a a , 其中t 是列标排列321p p p 的逆序数, 求和遍及所有三阶排列.按照三阶行列式的结构进行推广, 得到n 阶行列式的定义. 定义1.4 称111212122212n n n n nna a a a a a a a a∑-=n np p p t a a a 2121)1(为n 阶行列式, 其中t 是列标排列n p p p 21的逆序数, 而求和遍及所有n 阶排列.常将行列式简记作D . 如果需要明确行列式的阶, 则将n 阶行列式记作n D .一个n 阶行列式有!n 项. 当1>n 时, 其中正项与负项各占一半.与三阶行列式类似,n 阶行列式也是其元素的多项式. 因此, 如果行列式的元素都是数, 则行列式也是数. 如果行列式的元素是某些字母的多项式, 则行列式也是这些字母的多项式.注意一阶行列式||11a 与数的绝对值的符号相同, 但意义不同. 作为行列式2|2|-=-,而作为数的绝对值2|2|=-. 因此必须用文字严格区分这两种不同对象.例1.3 求四阶行列式中包含元素23a 的所有负项.解在四阶排列中, 数3在第二个位置的共有6个. 其中的奇排列为1324, 2341与4312. 于是, 四阶行列式中包含元素23a 的负项为44322311a a a a -, 41342312a a a a -, 42312314a a a a -.当n 较大时, n 阶行列式中的项很难一一列举. 不过, 如果一个行列式的许多元素等于0, 则不等于0的项数将大大减少.例1.4 求证:行列式1112122200n n nna a a a a a nn a a a 2211=.证为了得到非零项, 在第n 行中只能取nn a . 此后不能再取第n 列的其他元素. 因此,在第1-n 行只能取1,1--n n a . 继续这个讨论可得: 行列式只有一个正项nn a a a 2211.在这个行列式中, 主对角线下面的元素都等于0, 称为上三角行列式. 类似定义下三角行列式, 且有相同结果.例1.5 求证: 行列式12,1100000n n n a a a -11,212/)1()1(n n n n n a a a ---=.证仿照例1.4的推理, 这个行列式也只有一个非零项. 当该项的行标组成标准排列时, 它的列标排列为1)1( -n n . 逆序数为2/)1(1)2()1(-=++-+-n n n n .例1.6 求证:行列式000000044434241343332312111=a a a a a a a a a a .证因为行列式的每一项需要在前两行取不同列的元素,所以行列式的每一项都至少包含一个等于0的元素. 因此该行列式等于0.前面将行列式中每项的行标组成标准排列, 由列标排列的逆序数决定符号. 现在考虑列标组成标准排列时的情形.定理 1.2 行列式111212122212n n n n nna a a a a a a a a∑-=n p p p s n a a a 2121)1(. 其中s 是行标排列n p p p 21的逆序数.证行列式定义中的一般项为n np p p ta a a 2121)1(-. 对换它的两个元素, 该项中的元素乘积n np p p a a a 2121不变. 考虑该项前面的符号. 原来的符号是t)1(-, 其中t 是行标组成标准排列时, 列标排列的逆序数. 经过对换两个元素, 根据定理 1.1, 其行标排列与列标排列同时改变奇偶性. 然而, 行标排列与列标排列的逆序数之和不改变奇偶性. 继续这个过程, 使列标组成标准排列. 由于标准排列的逆序数等于0, 此时行标排列的奇偶性与原来列标排列的奇偶性相同. 即=-s)1(t)1(-.定理1.2说明行标排列与列标排列的地位是相同的. 从定理1.2的证明中还可以看到: 当行标排列与列标排列都不是标准排列时, 行列式的项的符号可以由行标排列与列标排列的逆序数之和的奇偶性决定.习题1-11. 求下列九阶排列的逆序数,从而确定其奇偶性. (1) 135792468;(2) 219786354.2. 选择i 与k 使下列九阶排列(1) 9561274k i 为偶排列; (2) 4897251k i 为奇排列.3. 求证: 用对换将奇(偶)排列变成标准排列的对换次数为奇(偶)数.4. 已知排列n p p p 21的逆序数为k ,求排列11n n p p p - 的逆序数.5. 在六阶行列式中, 确定下列项的符号.(1) 233146521465a a a a a a ; (2) 256651144332a a a a a a .6. 计算下列行列式.(1) 613322131; (2) 0551111115----. 7. 计算下列行列式.(1)00000012,11,11,2222111,11211n n n n n n a a a a a a a a a a ----; (2)nn 0000100200100-.8. 求证: 0000000052514241323125242322211514131211=a a a a a a a a a a a a a a a a . 9. 设一个n 阶行列式至少有12+-n n 个元素等于0,求证:这个行列式等于0.第二节行列式的性质用行列式定义计算一般的高阶行列式非常困难. 而计算三角行列式特别简单. 本节研究行列式的性质, 以寻找简单的计算方法.定义1.5 将行列式D 的行列互换, 而不改变行与列的先后顺序(第一行变成第一列, 第二行变成第二列等等), 所得到的行列式称为原行列式的转置, 记作D '.例如, 行列式613322131的转置是631123321. 性质1.1 行列式的转置与原行列式相等. 即D D ='.证设行列式D 的元素为ij a , 转置D '的元素为ij b , 则有ji ij a b =. 根据定理1.2, 有D '∑-=n np p p t b b b 2121)1(D a a a n p p p t n =-=∑ 2121)1(.注意在行列式中, 行与列的地位是相同的. 因此, 对行列式的行成立的命题, 对列也同样成立.性质1.2 交换行列式的两行(列), 行列式改变符号.证交换D 的第h 行与第k 行产生的新行列式记作hk D . 设hk D 的元素为ij b , 则有kj hj a b =, hj kj a b =,n j ,,2,1 =, 而hk D 的其他行的元素与D 相同. 设n 阶行列式D 的一般项为n k h np kp hp p ta a a a 11)1(-, 其中t 是列标排列n k h p p p p 1的逆序数. 在hk D 的定义中与上面D 的一般项具有相同元素的项为11(1)h k n s p kp hp np b b b b -= 11(1)k h n s p hp kp np b b b b - ,其中s 是列标排列n h k p p p p 1的逆序数. 根据定理 1.1, 这两个排列的奇偶性不同, 因此相应的两项符号相反. 因为hk D 与D 的具有相同元素的项符号都相反, 所以D D hk -=. 推论1.1 如果行列式D 中有两行的元素对应相等, 则0=D .证设行列式D 的第h 行与第k 行相同, 交换这两行产生的行列式记作hk D , 则D D hk =. 然而根据性质1.2, 又有D D hk -=. 于是0=D .性质1.3 用数k 乘以行列式的一行的每个元素,相当于用k 乘以原行列式. 即有111111j n i ij in n njnn a a a ka ka ka a a a111111j ni ij in n nj nna a a a a a k a a a =. 证设n 阶行列式∑-=n i np ip p t a a aD 11)1(, 用数k 乘以其第i 行的每个元素产生的新行列式记作)(k D i , 根据定义, 有)(k D i ∑-=n i np ip p t a ka a )()1(11kD a a a k n i np ip p t =-=∑ 11)1(.这个性质可以看作提取行列式的一行(或一列)元素的公因数.推论1.2 如果行列式D 的某两行的元素对应成比例, 则0=D .证设行列式第h 行的每个元素是第i 行的对应元素的k 倍, 提取第h 行元素的公因数k , 根据性质 1.3, 原行列式等于数k 乘以一个新行列式. 由于这个新行列式中有两行相同, 根据推论1.1, 有0=D .性质1.4 如果行列式的一行的每个元素都是两个数的和,则原行列式等于两个行列式的和. 即有1111111j n i i ij ij in in n njnna a abc b c b c a a a +++111111j n i ij in n nj nna a ab b b a a a =111111j n i ij in n nj nna a a c c c a a a +. 证设n 阶行列式∑-=n i np ip p t a b aD 111)1(,∑-=n i np ip p t a c a D 112)1(,其中只有第i 行不同. 将两个行列式的第i 行求和, 其他行不变产生的新行列式记作)(+i D ,根据行列式定义, 有)(+i D ∑+-=n i i np ip ip p t a c b a )()1(11∑-=n i np ip p t a b a 11)1(∑-+n i np ip p t a c a 11)1(21D D +=.可以将性质1.3看作行列式的数乘运算, 而将性质1.4看作行列式的加法. 行列式的加法与数乘都是对一行进行, 而不是对整个行列式. 此外, 性质 1.4可以推广为: 如果行列式的一行中所有元素都是k 个数的和, 则它等于k 个行列式的和.性质1.5 将行列式的某一行的每个元素加上另一行对应元素的k 倍, 行列式不变. 证设n 阶行列式∑-=n h i np hp ip p ta a a aD 11)1(, 将第i 行的元素加上第h 行的对应元素的k 倍产生的新行列式记作)(k D ih , 根据性质1.4与推论1.2, 有)(k D ih ∑+-=n h h i np hp hp ip p t a a ka a a )()1(11∑-=n h i np hp ip p t a a a a 11)1(∑-+n h h np hp hp p t a a ka a )()1(11D a a a a n h i np hp ip p t =-=∑ 11)1(.例1.7 求证: 行列式h g i g ih e d f d fe b a c a cb +++++++++i h g f e dc b a 2=. 证先用性质1.4将等式左边分成两个行列式, 再用性质1.5, 得h g i g i h e d f d f e b a c a c b +++++++++h g i g h e d f d e b a c a b ++++++=h g i g i e d f d fb ac a c +++++++ gi g hd fd e a c a b +++=hg gi e d d fb a ac ++++gihd fe a c b =hgie df b a c +ihgf e dc b a 2=. 例1.8 计算行列式4321651005311021.解用性质1.5, 得43216510053110213300651015101021-=3300700015101021-=21700330015101021-=--=.注意用性质将行列式变成三角行列式, 再用定义计算. 这种方法称为消元法.例1.9 计算行列式3111131111311113.解先将下面各行加到第一行, 提取第一行的公因数6,再用下面各行分别减去第一行. 得31111311113111133111131111316666=31111311113111116=4820000200002011116==.注意如果行列式的列和(或行和)相等, 常使用上述技巧.例1.10 计算行列式yyx x-+-+1111111111111111.解用第一列减第二列, 提取x ; 第三列减第四列, 提取y . 再用第二列, 第四列分别减第一列与第三列, 得yy x x -+-+1111111111111111yy y xx x --=110110101101y x xy--=111111010111011yx xy--=1000100001000122y x =.有时需要仔细观察行列式的结构, 才能找到最简捷的方法. 计算行列式时, 往往有多种方法. 应该考察各种路线, 从中选择最佳方案.习题1-21. 求证: bzay by ax bx az by ax bx az bzay bxaz bz ay by ax +++++++++yxzx z y z y x b a )(33+=. 2. 计算行列式efcfbfde cd bdae ac ab---. 3. 计算下列行列式.(1)2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d dc c c c b b b b a a a a ; (2) n222232222222221.4. 求t 的值, 使得行列式226332111=tt .5. 计算下列行列式(1)3214214314324321; (2)121212n n n x mx x x x m x x x x m---.6. 计算行列式01211111001na a a a, 其中021≠n a a a .7. 用两种方法计算行列式ab cc abbc a,从而证明因式分解: ))((3222333bc ac ab c b a c b a abc c b a ---++++=-++.8. 计算行列式111212122212n nn n n na b a b a b a b a b a b a b a b a b ---------, 其中2>n .9. 计算行列式1231110000220000020011n n nn n------.10. 计算行列式aba ba b b a b a ba D n=2,其中未写出的元素都等于0.第三节行列式的展开在本节中研究行列式按照一行或一列展开的公式, 从而可以将一个高阶行列式的计算转化为若干低阶行列式的计算.定义1.6 考虑n 阶行列式111212122212n n n n nna a a a a a a a a∑-=n np p p t a a a 2121)1(. 将行列式的元素ij a 所在的行与列删除(其余元素保持原来的相对位置), 得到的1-n 阶行列式称为元素ij a 的余子式, 记作ij M . 而称ij j i ij M A +-=)1(为元素ij a 的代数余子式.例如,行列式333231232221131211a a a a a a a a a 中元素12a 的余子式为2123123133aa M a a =,而代数余子式为212312123133(1)a a A a a +=-.注意左上角元素11a 的代数余子式11A 取正号, 其余正负相间. 特别, 主对角元素iia 的代数余子式ii A 全取正号.引理1.1 如果一个n 阶行列式D 的第i 行中只有ij a 不等于0, 则这个行列式等于ij a 与其代数余子式ij A 的乘积. 即ij ij A a D =.证先考虑n j i ==的特殊情况. 根据定义, 为了产生非零项, 在行列式D 的第n 行只能取nn a . 于是, 有∑---=nn p n p p t a a a a D n 121)1(21)1( ∑---=121)1(21)1(n p n p p t nn a a a a ,其中t 是列标排列n p p p n 121- 的逆序数, 求和遍及1,,2,1-n 的所有排列121-n p p p . 然而排列n p p p n 121- 与排列121-n p p p 的逆序数相等, 因此, 上式右边的和式为nn p n p p tM a a an =-∑--121)1(21)1( nn nn n n A M =-=+)1(.于是, 有nn nn A a D =.现在考虑一般情况, 设行列式D 的第i 行中只有ij a 不等于0. 将D 的第i 行与第1+i 行交换, 再将所得行列式的第1+i 行与第2+i 行交换, 继续进行, 直到D 的第i 行移到最后一行, 而其他行的上下顺序不变. 在这个过程中, 共进行i n -次交换行. 用同样的方法, 将所得的行列式的第j 列逐步移到最后一列, 而其他列的左右顺序不变. 在这个过程中, 共进行j n -次交换列. 最后得到的行列式记作B , 则在B 的最后一行中只有最后一个元素ij a 不等于0, 而且ij a 在B 中的代数余子式就是ij a 在D 中的余子式ij M . 由前面证明的特殊情况, 有ij ij M a B =. 另一方面, 根据性质1.2, 有D B j n i n )()()1(-+--=, 即B D j i +-=)1(. 于是,有ij ij ij ij ji A a M a D =-=+)1(.定理1.3 对于n 阶行列式D , 有in in i i i i A a A a A a D +++= 2211; nj nj j j j j A a A a A a D +++= 2211.证将行列式D 的第i 行的每个元素改写成n 个数的和, 其中由ij a 改写成的和中的第j 个加数等于ij a , 其他元素等于0. 用性质1.4的推广, 则D 等于n 个行列式的和. 在第j 个行列式的第i 行中, 只有属于第j 列的元素等于ij a , 其他元素等于0.对这n 个行列式分别用引理1.1, 得in in ij ij i i A a A a A a D ++++= 11.注意用定理 1.3, 可以将一个n 阶行列式的计算转化为n 个1-n 阶行列式的计算. 不过, 当行列式的阶数较大时, 计算量仍然相当大. 除非在行列式中有很多元素等于0. 联合使用消元与按照一行(列)展开, 常能得到最简捷的计算路线.例1.11 计算行列式500134267002430.解先按照第四行展开, 得50013426700243043032(1)5006241+=-321018006=-=-.有时用数学归纳法计算n 阶行列式是比较方便的. 不过此时需要行列式n D 与1-n D ,2-n D 之间的关系.例1.12 求证: 000100010000001n a b ab a b ab a b D a b ab a b+++=++b a b a n n --=++11. 证计算可得ba b a b a D --=+=221, b a b a b ab a D --=++=33222. 设命题对于1-n 阶与2-n 阶行列式成立.考虑n 阶行列式, 按第一行展开, 得0001000100000001n a b ab a b ab a b D a bab a b +++=++00100()0001a baba b a b a b ab a b++=+++1000000001ab a b ab a bab a b+-++21)(---+=n n abD D b a b a b a n n --=++1 1.例1.13 求证: 123222212311111231111nn nn n n n nx x x x D x x x x x x x x ----=∏<-=ji i j x x )(. 解当2=n 时, 有122x x D -=. 设命题对于1-n 阶行列式1-n D 成立. 考虑n 阶行列式n D , 从下边开始, 下面一行减去上面一行的1x 倍, 得123222212311111231111nn nn n n n nx x x x D x x x x x x x x ----=2131122133112222213311111100()()()0()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------=------232131122223111()()()n n n n n nx x x x x x x x x x x x ---=---111312)())((----=n n D x x x x x x ∏<-=ji i j x x )(.与前面的例题不同, 这里不是下面各行减去第一行, 而是下面一行减去其上面一行. 当然现在必须从第n 行开始, 逐行向上做.这个行列式称为范德蒙行列式. 易见, 当n x x x ,,,21 两两不同时, 范德蒙行列式不等于0. 这个性质产生了范德蒙行列式的许多应用.例1.14 求证: 211212212221212n n n n n na a a a a a a a a a D a a a a n a ++=+)1(!12∑=+=nk kka n .解当1=n , 2111a D +=. 设命题对于1-n 阶行列式1-n D 成立. 考虑n 阶行列式n D , 按照最后一行分成两个行列式的和, 得21121221222121200n n n n n na a a a a a a a a a D a a a a n a ++= +++21121221221200n na a a a a a a a a a n++= 211212212221212n nn n na a a a a a a a a a a a a a a +++ 21121122122121112112(1)n n n n n a a a a a a a a a a n a a a a n a -----++=-+110002nn na a a a +=21)!1(nn a n nD -+-211[(1)!(1)]n k k a n n k -==-+∑2(1)!n n a +-)1(!12∑=+=nk k ka n .推论 1.3 行列式的任意一行(列)的元素与另一行的元素的代数余子式的乘积之和等于零. 即当j i ≠时, 有02211=+++nj ni j i j i A a A a A a ; 02211=+++jn in j i j i A a A a A a .证只证第一个等式. 反向用定理1,3, 则nj ni j i j i A a A a A a +++ 2211等于一个n 阶行列式. 这个行列式的第i 行与第j 行相同, 根据推论1.1, 该行列式等于0.习题1-31. 计算行列式11312111311021---=D 的第二行所有元素的余子式与代数余子式.2. 计算行列式0000000000000000n x y x y x D x y yx =.3. 求证: 11211000010000000001n nn n x x x D xa a a a a +----=-n n n n a x a x a x a ++++=--1110 .4. 求证: 210001 210001200100021012n D n ==+.5. 设常数c b a ,,两两不等, 解方程01111 )(33332222==x c b a x c b a x c b a x f .6. 求证: 12322221231231111nn n n n n nn n n nnx x x x D x x x x x x x x ----=∑∏=<-=nk k ij j i x x x 1)(.7. 求证: 1231111111111111111n na a D a a ++=+++=∑=ni i n aa a a 12111 , 其中021≠n a a a .补充材料一拉普拉斯展开前面是行列式按一行或一列展开. 这个结果可以推广为按若干行展开.行列式中任意k 行与k 列交叉处的元素, 按照原来相对位置组成的k 阶行列式称为原行列式的一个k 阶子式k D . 删除这k 行与k 列得到的k n -阶行列式k M 称为k 阶子式k D 的余子式,而=k A ∑-+hh h j i )()1(k M 称为k D 代数余子式. 其中h h j i ,是k D 所在的行标与列标. 命题设||A 是n 阶行列式, 任意取其中的k 行,n k <<0, 则行列式等于这k 行中所有k 阶子式与其代数余子式的乘积之和.证明略.注意这个命题称为行列式的拉普拉斯展开. 展开时有kn C 项, 每项是一个k 阶子式与其代数余子式的乘积.例1 求证:行列式aba ba b b a b a b a D n=2n n b a b a )()(-+=.证按照第一行与第n 2行展开,得)1(2222)(--=n n D b a D . 用这个递推式即可得到所需结果.例2 求证:nnk n nkn nk k k k k k kk k k a a a a a a a a a a a a1,1,11,1.11,111110000++++++kk k k a a a a 1111=nnk n n k k k a a a a 1,,11,1++++ 证按照前k 行展开.注意由于右上角的元素都等于0,左下角的元素对行列式没有贡献. 当然, 如果左下角的元素都等于0, 也有类似结果.。