电磁感应定律_1
- 格式:ppt
- 大小:1.71 MB
- 文档页数:26
电磁感应定律电磁感应定律是关于电磁学中电场和磁场相互作用的基本原理,它由法拉第于1831年首次发现,对电磁学的发展产生了深远的影响。
电磁感应定律可以分为法拉第第一定律和法拉第第二定律。
一、法拉第第一定律法拉第第一定律规定:当导体中的磁通量发生变化时,导体中会产生感应电动势。
这一定律表明,磁场的变化可以引起电场的产生。
根据右手定则,如果我们握住一段导体,拇指指向磁场的方向,其他四个手指的方向则代表了感应电流的方向。
这个定律在电磁感应的实际应用中十分重要,例如电动机、变压器、电感应加热等。
在数学上,法拉第第一定律可以用以下公式表示:ε = -dΦ/dt其中ε表示感应电动势,dΦ/dt表示磁通量的变化率。
负号表示感应电动势的方向和磁通量变化的方向相反。
二、法拉第第二定律法拉第第二定律规定:感应电动势的大小等于导体中电流的变化率乘以电流的阻力。
这一定律表明,感应电动势和电流之间存在一种直接的关系,可以通过改变电流的大小和方向来改变感应电动势的大小。
法拉第第二定律是电磁感应定律的核心内容。
在数学上,法拉第第二定律可以用以下公式表示:ε = -d(BA)/dt其中ε表示感应电动势,B表示磁场的强度,A表示导体所处的面积,d(BA)/dt表示磁通量的变化率。
三、电磁感应的应用电磁感应定律在现实生活中有着广泛的应用。
其中最常见的就是发电机原理。
根据电磁感应定律,当导体在磁场中运动时,会产生感应电动势,从而驱动电流的流动。
这就是发电机的基本原理,它将机械能转化为电能。
此外,电磁感应定律还应用于变压器、电感应加热、感应电动机等技术领域。
通过合理利用磁场和导体的相互作用,可以实现电能的传输、能量转换以及各种电磁设备的工作。
总结电磁感应定律是电磁学中的基本定律之一,它描述了磁场和导体之间的相互作用关系。
法拉第第一定律指出了磁场的变化可以引起感应电动势的产生,而法拉第第二定律则说明了感应电动势和电流之间的关系。
电磁感应定律的应用广泛,特别在发电、能量转换和电磁设备等领域发挥着重要作用。
第四节法拉第电磁感应定律(1)一、学习目标1.知道什么叫感应电动势。
2.知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、E=△Φ/△t。
3.理解法拉第电磁感应定律内容、数学表达式。
4.知道E=BLv sinθ如何推得。
5.会用E=n△Φ/△t和E=BLv sinθ解决问题。
二、重点、难点重点:法拉第电磁感应定律。
难点:平均电动势与瞬时电动势区别。
三、预习自测1.回顾第一节的实验二:4.2-2图,当我们把条形磁铁向线圈中插入、从线圈中拔出,这个过程中产生了感应电流。
其原因是什么?联系恒定电流的知识我们应该知道,有电流就必须要有什么?那么这个实验情况给我们的启发式什么?2:如图所示,同一平面内的两条平行导线串有一个电阻R,导体棒PQ与两条导线接触良好,匀强磁场的方向垂直纸面向里.导体棒的电阻可忽略.当导体棒如图滑动时,回路中产生感应电流,为什么?谁相当于电源?四、合作探究探究1:观看下图所对应的课件,将条形磁铁快速插入和慢慢插入线圈有什么物理量相同、和什么不同?(提示从磁通量、时间、磁通量的变化量等角度来分析。
)探究2:如图所示,同一平面内的两条平行导线串有一个电阻R,导体棒PQ长为L与两条导线接触良好且垂直,匀强磁场的方向垂直纸面向里,大小为B.导体棒的电阻可忽略.当导体棒以v的速度向左滑动时,此回路中的感应电动势为多大?探究3:回顾初中学过的直流电动机的原理是什么?现在学习电磁感应现象以后,来分析直流电动机的线圈在转动的过程中是否能产生感应电动势?这个感应电动势和原电路的电动势相比较如何?五、当堂检测1.关于电路中感应电动势的大小,下列说法中正确的是( )A.穿过电路的磁通量越大,感应电动势就越大B.电路中磁通量的改变量越大,感应电动势就越大C.电路中磁通量改变越快,感应电动势就越大D.若电路中某时刻磁通量为零,则该时刻感应电流一定为零2.有一个100匝的线圈,在0.5s内通过它的磁通量从0.04Wb增加到0.09Wb,求线圈中的感应电动势。
4.4法拉第电磁感应定律(一)【学习目标】1.知道什么叫感应电动势。
2.知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、tnE ∆∆Φ=。
3.理解法拉第电磁感应定律内容、数学表达式。
4.知道E =BLv sin θ如何推得。
【知识回顾】1.在电磁感应现象中,产生感应电流的条件是什么?2.在电磁感应现象中,磁通量发生变化的方式有哪些情况?3.恒定电流中学过,电路中存在持续电流的条件是什么?【新知学习】一、感应电动势1.感应电动势 在电磁感应现象中产生的电动势,叫感应电动势.产生感应电动势的那部分导体相当于电源,导体本身的电阻相当于电源内阻.当电路断开时,无(“有”或“无”)感应电流,但有(“有”或“无”)感应电动势.2、产生感应电动势的条件是 。
二、电磁感应定律1、内容: .2、表达式:3、注意事项:(1)要严格区分磁通量、磁通量的变化量、磁通量的变化率。
(2)磁通量的变化率与匝数的多少无关。
(3)由ε=Δφ/Δt 算出的通常是时间Δt 内的 ,一般不等于初态与末态电动势的平均值。
(4)E =n ΔΦΔt 计算的是Δt 时间内平均感应电动势,当Δt →0时,E =n ΔΦΔt的值才等于瞬时感应电动势.(5)磁通量的变化常由B 的变化或S 的变化引起.①当ΔΦ仅由B 的变化引起时,E =nS ΔB Δt . ②当ΔΦ仅由S 的变化引起时,E =nB ΔS Δt . (6)、感应电动势的方向由 来判断(7)、感应电量:在Δt 时间内通过电路中某一横截面的电量q=例1 下列几种说法中正确的是( )A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,线圈中产生的感应电动势一定越大C.线圈放在磁场越强的位置,线圈中产生的感应电动势一定越大D.线圈中磁通量变化越快,线圈中产生的感应电动势一定越大例2 如图1甲所示的螺线管,匝数n =1500匝,横截面积S =20cm 2,方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化,(1)2s 内穿过线圈的磁通量的变化量是多少?(2)磁通量的变化率多大?(3)线圈中感应电动势的大小为多少?应用E =n ΔΦΔt时应注意的三个问题: 1 此公式适用于求平均电动势.2 计算电动势大小时,ΔΦ取绝对值不涉及正、负.3 ΔΦΔt =ΔB Δt ·S ,ΔΦΔt 为Φ-t 图象的斜率,ΔB Δt为B -t 图象的斜率. 二、导体切割磁感线时的感应电动势1.垂直切割:导体棒垂直于磁场运动,B 、l 、v 两两垂直时,如上图甲所示,E =Blv .2.不垂直切割:导体的运动方向与导体本身垂直,但与磁感线方向夹角为θ时,如图乙所示,则E =Blv 1=Blv sin θ.3.公式E =Blv sin θ的理解:(1)此公式一般应用于 导体各部分的磁感应强度相同的情况;(2)该公式可看成法拉第电磁感应定律的一个推论,通常用来求导体做切割磁感线运动时的感应电动势.(3)式中l 应理解为导体切割磁感线时的有效长度,即导体在与v 垂直方向上的投影长度.如图3甲中,感应电动势E =Blv =2Brv ≠B πrv (半圆弧形导线做切割磁感线运动).在图乙中,感应电动势E =Blv sin θ≠Blv .(4)公式中的v 应理解为导体和磁场间的相对速度,当导体不动而磁场运动时,同样有感应电动势产生.(5)若导体棒绕某一固定轴旋转切割磁感应线,虽然棒上各点的线速度并不相同,但可用棒各点的平均速度(即棒的中点速度)代替切割速度。