实验四 linux进程通信
- 格式:doc
- 大小:2.13 MB
- 文档页数:3
linux课程设计进程间通信一、教学目标本节课的教学目标是让学生了解和掌握Linux进程间通信的基本概念和常用方法。
知识目标包括:掌握进程间通信的定义、作用和分类;理解Linux系统中进程间通信的机制和原理。
技能目标包括:学会使用Linux系统中的管道、信号和共享内存等通信方法;能够编写简单的Linux进程间通信程序。
情感态度价值观目标包括:培养学生对Linux系统的兴趣和好奇心,提高学生对计算机操作系统的基本认识;培养学生团队合作精神和自主学习能力。
二、教学内容本节课的教学内容主要包括Linux进程间通信的概念、分类和机制,以及常用的进程间通信方法。
首先,介绍进程间通信的定义和作用,让学生了解进程间通信的重要性。
然后,讲解Linux系统中进程间通信的机制和原理,包括管道、信号和共享内存等方法。
接下来,通过实例演示和编程实践,让学生掌握这些通信方法的用法和特点。
最后,结合实际应用场景,讨论进程间通信在操作系统中的应用和意义。
三、教学方法为了达到本节课的教学目标,采用多种教学方法相结合的方式进行教学。
首先,采用讲授法,向学生讲解进程间通信的基本概念和原理。
其次,通过案例分析法,分析实际应用场景中的进程间通信问题,引导学生学会运用所学知识解决实际问题。
然后,利用实验法,让学生动手实践,编写进程间通信程序,加深对通信方法的理解和记忆。
最后,采用讨论法,鼓励学生积极参与课堂讨论,培养团队合作精神和批判性思维。
四、教学资源为了支持本节课的教学内容和教学方法的实施,准备以下教学资源。
首先,教材《Linux操作系统原理与应用》,作为学生学习的基础资料。
其次,参考书《Linux进程间通信》,为学生提供更深入的理论学习资料。
再次,多媒体教学课件,用于直观展示进程间通信的原理和实例。
最后,实验室设备,包括计算机和网络设备,用于学生进行进程间通信实验。
通过这些教学资源,丰富学生的学习体验,提高学习效果。
五、教学评估本节课的教学评估将采用多种方式,以全面、客观地评价学生的学习成果。
IPC方法Linux环境下,进程地址空间相互独立,每个进程各自有不同的用户地址空间。
任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间不能相互访问,要交换数据必须通过内核,在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进程2再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信(IPC,InterProcess Communication)。
在进程间完成数据传递需要借助操作系统提供特殊的方法,如:文件、管道、信号、共享内存、消息队列、套接字、命名管道等。
随着计算机的蓬勃发展,一些方法由于自身设计缺陷被淘汰或者弃用。
现今常用的进程间通信方式有:①管道(使用最简单)②信号(开销最小)③共享映射区(无血缘关系)④本地套接字(最稳定)管道管道的概念:管道是一种最基本的IPC机制,作用于有血缘关系的进程之间,完成数据传递。
调用pipe系统函数即可创建一个管道。
有如下特质:1. 其本质是一个伪文件(实为内核缓冲区)2.由两个文件描述符引用,一个表示读端,一个表示写端。
3. 规定数据从管道的写端流入管道,从读端流出。
管道的原理: 管道实为内核使用环形队列机制,借助内核缓冲区(4k)实现。
管道的局限性:①数据自己读不能自己写。
②数据一旦被读走,便不在管道中存在,不可反复读取。
③由于管道采用半双工通信方式。
因此,数据只能在一个方向上流动。
④只能在有公共祖先的进程间使用管道。
常见的通信方式有,单工通信、半双工通信、全双工通信。
pipe函数创建管道int pipe(int pipefd[2]); 成功:0;失败:-1,设置errno函数调用成功返回r/w两个文件描述符。
无需open,但需手动close。
规定:fd[0] →r;fd[1] →w,就像0对应标准输入,1对应标准输出一样。
向管道文件读写数据其实是在读写内核缓冲区。
管道创建成功以后,创建该管道的进程(父进程)同时掌握着管道的读端和写端。
第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
一、实验目的1. 理解进程通信的概念和作用。
2. 掌握进程通信的常用方法,包括管道、消息队列、信号量等。
3. 通过编程实践,加深对进程通信机制的理解和应用。
二、实验环境操作系统:Linux开发环境:gcc三、实验内容1. 管道通信2. 消息队列通信3. 信号量通信四、实验步骤及分析1. 管道通信(1)实验步骤1)创建一个父进程和一个子进程;2)在父进程中创建一个管道,并将管道的读端和写端分别赋给父进程和子进程;3)在父进程中,通过管道的写端发送数据给子进程;4)在子进程中,通过管道的读端接收父进程发送的数据;5)关闭管道的读端和写端;6)结束进程。
(2)实验分析通过管道通信,实现了父进程和子进程之间的数据传递。
管道是半双工通信,数据只能单向流动。
在本实验中,父进程向子进程发送数据,子进程接收数据。
2. 消息队列通信(1)实验步骤1)创建一个消息队列;2)在父进程中,向消息队列中发送消息;3)在子进程中,从消息队列中接收消息;4)删除消息队列;5)结束进程。
(2)实验分析消息队列是一种进程间通信机制,允许不同进程之间传递消息。
消息队列的创建、发送、接收和删除等操作都是通过系统调用实现的。
在本实验中,父进程向消息队列发送消息,子进程从消息队列接收消息,实现了进程间的消息传递。
3. 信号量通信(1)实验步骤1)创建一个信号量;2)在父进程中,对信号量执行P操作,请求资源;3)在子进程中,对信号量执行V操作,释放资源;4)结束进程。
(2)实验分析信号量是一种用于实现进程同步的机制。
在进程通信中,信号量可以用来协调多个进程对共享资源的访问。
在本实验中,父进程和子进程通过信号量实现了对共享资源的同步访问。
五、实验结果1. 管道通信实验结果:父进程成功向子进程发送数据,子进程成功接收数据。
2. 消息队列通信实验结果:父进程成功向消息队列发送消息,子进程成功从消息队列接收消息。
3. 信号量通信实验结果:父进程成功获取资源,子进程成功释放资源。
第1篇一、实验目的1. 理解进程通信的概念和原理;2. 掌握进程通信的常用机制和方法;3. 能够使用进程通信机制实现进程间的数据交换和同步;4. 增强对操作系统进程管理模块的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C3. 开发环境:GCC三、实验内容1. 进程间通信的管道机制2. 进程间通信的信号量机制3. 进程间通信的共享内存机制4. 进程间通信的消息队列机制四、实验步骤1. 管道机制(1)创建管道:使用pipe()函数创建管道,将管道文件描述符存储在两个变量中,分别用于读和写。
(2)创建进程:使用fork()函数创建子进程,实现父子进程间的通信。
(3)管道读写:在父进程中,使用read()函数读取子进程写入的数据;在子进程中,使用write()函数将数据写入管道。
(4)关闭管道:在管道读写结束后,关闭对应的管道文件描述符。
2. 信号量机制(1)创建信号量:使用sem_open()函数创建信号量,并初始化为1。
(2)获取信号量:使用sem_wait()函数获取信号量,实现进程同步。
(3)释放信号量:使用sem_post()函数释放信号量,实现进程同步。
(4)关闭信号量:使用sem_close()函数关闭信号量。
3. 共享内存机制(1)创建共享内存:使用mmap()函数创建共享内存区域,并初始化数据。
(2)映射共享内存:在父进程和子进程中,使用mmap()函数映射共享内存区域。
(3)读写共享内存:在父进程和子进程中,通过指针访问共享内存区域,实现数据交换。
(4)解除映射:在管道读写结束后,使用munmap()函数解除映射。
4. 消息队列机制(1)创建消息队列:使用msgget()函数创建消息队列,并初始化消息队列属性。
(2)发送消息:使用msgsnd()函数向消息队列发送消息。
(3)接收消息:使用msgrcv()函数从消息队列接收消息。
(4)删除消息队列:使用msgctl()函数删除消息队列。
进程的管道通信实验报告一、实验目的本实验旨在通过实际操作,深入理解进程间通信(IPC)的原理,掌握管道通信的实现方法,提高对操作系统进程管理的理解。
二、实验环境实验环境为Linux操作系统,使用Shell脚本进行进程的管道通信实验。
三、实验内容1. 创建两个Shell脚本文件,分别命名为sender.sh和receiver.sh。
2. 在sender.sh中,编写一个简单的程序,用于向管道中写入数据。
程序包括一个无限循环,每次循环中随机生成一个数字并写入管道。
3. 在receiver.sh中,编写一个简单的程序,用于从管道中读取数据。
程序同样包括一个无限循环,每次循环中从管道中读取一个数字并输出。
4. 使用Shell命令将sender.sh和receiver.sh链接起来,实现进程间的管道通信。
四、实验过程1. 打开两个终端窗口,分别用于运行sender.sh和receiver.sh。
2. 在第一个终端窗口中,输入命令“bash sender.sh”运行sender.sh脚本。
该脚本将创建一个无限循环,每次循环中随机生成一个数字并写入管道。
3. 在第二个终端窗口中,输入命令“bash receiver.sh”运行receiver.sh脚本。
该脚本将创建一个无限循环,每次循环中从管道中读取一个数字并输出。
4. 观察两个终端窗口的输出,可以看到sender.sh进程向管道中写入的数字被receiver.sh进程读取并输出。
五、实验总结通过本次实验,我们成功实现了进程间的管道通信。
在实验过程中,我们深入了解了进程间通信的原理和实现方法,掌握了管道通信的基本操作。
通过实际操作,我们更好地理解了操作系统中进程管理、进程间通信的相关知识。
同时,我们也发现了一些不足之处,例如在程序中没有添加异常处理机制等。
在今后的学习中,我们将继续深入探索进程间通信的相关知识,提高自己的编程技能和系统设计能力。
实验四进程间通信一、实验目的1.掌握利用管道机制实现进程间的通信的方法2.掌握利用消息缓冲队列机制实现进程间的通信的方法3.掌握利用共享存储区机制实现进程间的通信的方法4.了解Linux系统中进程软中断通信的基本原理二、实验学时2学时三、实验内容1.掌握实现进程间通信的系统调用的功能和方法进程通信,是指进程之间交换信息。
从这个意义上讲,进程之间的同步、互斥也是一种信息交换,也是一种通信。
但是,这里所说的“通信”是指进程之间交换较多的信息这样一种情况,特别是在由数据相关和有合作关系的进程之间,这种信息交换是十分必要和数量较大的。
进程间通信是协调解决多个进程之间的约束关系,实现进程共同进展的关键技术,是多道系统中控制进程并发执行必不可少的机制。
(1)进程的通信方式:a. 直接通信是指信息直接传递给接收方,如管道。
在发送时,指定接收方的地址或标识,也可以指定多个接收方或广播式地址, send(Receiver, message)。
在接收时,允许接收来自任意发送方的消息,并在读出消息的同时获取发送方的地址, receive(Sender,message)。
b. 间接通信:借助于收发双方进程之外的共享数据结构作为通信中转,如消息队列。
这种数据结构称为缓冲区或信箱。
通常收方和发方的数目可以是任意的。
(2)进程间通信的类型:a. 共享存储器系统:基于共享数据结构的通信方式:只能传递状态和整数值(控制信息),包括进程互斥和同步所采用的信号量机制。
速度快,但传送信息量小,编程复杂,属于低级通信;基于共享存储区的通信方式:能够传送任意数量的数据,属于高级通信。
b. 消息传递系统:在消息传递系统中,进程间的数据交换以消息为单位,用户直接利用系统提供的一组通信命令(原语)来实现通信。
c. 管道通信:管道是一条在进程间以字节流方式传送的通信通道。
它由OS 核心的缓冲区(通常几十KB)来实现,是单向的;在实质上,是一个有OS 维护的特殊共享文件,常用于命令行所指定的输入输出重定向和管道命令。
一、linux下进程间通信概述AT&T的贝尔实验室,对UNIX早期的进程间通信进行了改进和扩充,形成了“system V IPC”,其通信进程主要局限在单个计算机内。
BSD(加州大学伯克利分校伯克利软件发布中心),跳过了该限制,形成了基于套接字(socket)的进程间通信机制。
linux继承了上述所有通信方式:1、传统通信方式无名管道(pipe),有名管道(fifo),信号(signal)2、system V IPC对象共享内存(share memory),消息队列(message queue),信号灯(又叫信号灯集,与线程中的信号灯要区分清楚,semaphore)3、BSD套接字(socket,这个其实主要用于网络间线程通信,所以肯定可以支持本机线程通信)二、每种通信方式的介绍1、无名管道(pipe)无名管道只能用于具有亲缘关系的进程间通信,即父子进程,兄弟进程等。
无名管道由内核来维护,是一种半双工的通信模式,具有固定的读端和写端(读端只能读,写端只能写),可以将其看成文件,使用write和read函数进行读写。
由于子进程完全继承父进程打开的文件描述符,所以父子进程可以通过pipe进行通信创建无名管道pipe需要用到函数:int pipe(int fd[2]);fd[0]固定为读端,fd[1]固定为写端。
举例如下:int fd[2];pipe(fd);这样,一个进程通过fd[1]写入数据,另一个就可以从fd[0]读出来了。
注意无名管道无读者时,写操做将会返回一个信号,如果进程未对此信号进行捕捉,会被信号杀死(即进程退出)。
若无写者,则读操作会返回0无名管道不能保证原子性,既如果有多个进程同时向同一个管道里面写数据,可能会造成数据交错,得不到我们想要的结果,这点希望读者能够在编程时注意。
2、有名管道fifo有名管道可以使互不相关的两个进程之间进行通信,有名管道想普通文件一样在linux文件系统中可见,可以通过路径来指定,用open,write,read等函数进行操作,而且他与无名管道不通,他可以保证写入数据的原子性,而且遵循先进先出的原则。
进程通信-管道(lockf)实验四进程通信一、实验目的以管道通信为例了解Linux系统中进程通信的基本原理。
二、预备知识1.系统调用lockf (fd,mode,size),对指定文件的指定区域(由size指示)进行加锁或解锁,以实现进程的同步与互斥。
其中fd是文件描述字;mode是锁定方式,=1表示加锁,=0表示解锁,size是指定文件fd的指定区域,用0表示从当前位置到文件尾。
2.进程管道的通信。
建立进程间的管道,格式为:pipe(fd); int fd[2]; 其中,fd[1] 是写端,向管道中写入; fd[0] 是读端,从管道中读出;本质上将其当作文件处理。
进程间可通过管道,用write与read来传递数据,但write 与read不可以同时进行,在管道中只能有4096字节的数据被缓冲。
写端fd[1] pipe(fd) 读端fd[0]write(fd[1],buf,size) read(fd[0],buf,size)3.write()写文件函数,把buf中的长度为size字符的消息送入管道入口fd[1]。
4.read()读文件函数,从管道出口fd[0]读出size字符的消息置入buf中。
5.系统调用sleep(second)用于进程的同步与互斥,自变量是暂停秒数。
其功能是使现行进程暂停执行由自变量规定的秒数。
6.sprintf()格式化输出到数组的函数。
7.系统调用exit()和wait()参考课本238页。
三、实验内容1.分析示例程序且编译执行。
编写一个程序,建立一个pipe,同时父进程产生一个子进程,子进程向pipe中写入一个字符串,父进程相隔5秒钟从该pipe中读出该字符串。
#include<stdio.h>main(){ int x, fd[2];char buf[30],s[30];pipe(fd);while((x=fork())==-1);if ( x==0){ sprintf(buf,”this is an example\n”);printf(“child procee running! \n”);write(fd[1],buf,30); /*把buf中的字符写入管道*/sleep(5); /*睡眠5秒,让父进程读*/exit(0); /*关闭x,子进程自我中止*/}else{ wait(0); /*父进程挂起直到其某一子进程中止为止*/read(fd[0],s,30);printf(“%s”,s);}2.编写一段程序,使用系统调用pipe()建立一条管道,同时父进程生成2个子进程分别向这条管道写一句话:child1 is sending a message! Child2 is sending a message! 父进程则循环从管道中读出信息,显示在屏幕上。