微处理器最大系统最小系统
- 格式:pptx
- 大小:194.20 KB
- 文档页数:20
微型计算机系统数字电子计算机经历了电子管、晶体管、集成电路为主要部件的时代。
随着大规模集成电路的应用,计算机的功能越来越强大、体积却越来越微小,微型计算机(简称为微型机或微机)应运而生,并获得广泛应用。
本章以Intel 80x86微处理器和微机为实例,介绍微处理器的发展和微型计算机的组成结构。
1.1 微处理器发展在巨型机、大型机、小型机和微机等各类计算机中,微机(Microc- omputer)是性能、价格、体积较小的一类,常应用在科学计算、信息管理、自动控制、人工智能等领域。
工作学习中使用的个人微机,生产生活中运用的各种智能化电子设备都是典型的微机系统。
微机的运算和控制核心,即所谓的中央处理单元(Central Processing Unit,CPU),被称为微处理器(Microprocessor)。
它是一块大规模集成电路芯片,代表着整个微机系统的性能。
所以,通常就将采用微处理器为核心构造的计算机称为微机。
1.1.1微处理器历史微处理器的性能经常用字长、时钟频率、集成度等基本的技术参数来反映。
字长(Word)表明微处理器每个时间单位可以处理的二进制数据位数,例如一次进行运算、传输的位数。
时钟频率表明微处理器的处理速度,反映了微处理器的基本时间单位。
集成度表明微处理器的生产工艺水平,通常用芯片上集成的晶体管数量来表达。
1.通用微处理器1971年,美国Intel(英特尔)公司为日本制造商设计了一个微处理器芯片。
该芯片成为世界上第一个微处理器4004。
它字长4位,集成了约2300个晶体管,时钟频率为108kHz(赫兹)。
以它为核心组成的MCS-4计算机也就是世界上第一台微型计算机。
4004随后被改进为4040。
1972年Intel公司研制出字长8位的微处理器芯片8008,其时钟频率为500kHz,集成度约3500个晶体管。
随后的几年当中,微处理器开始走向成熟,出现了以Motorola 公司M6800、Zilog公司Z80和Intel公司8080/8085为代表的中、高档8位微处理器。
什么是单片机最小系统_单片机的最小系统简述单片机简介单片机是一种集成电路芯片。
它采用超大规模技术将具有数据处理能力的微处理器(CPU)、存储器(含程序存储器ROM和数据存储器RAM)、输入、输出接口电路(I/O接口)集成在同一块芯片上,构成一个即小巧又很完善的计算机硬件系统,在单片机程序的控制下能准确、迅速、高效地完成程序设计者事先规定的任务。
所以说,一片单片机芯片就具有了组成计算机的全部功能。
由此来看,单片机有着一般微处理器(CPU)芯片所不具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。
然而单片机又不同于单板机(一种将微处理器芯片、存储器芯片、输入输出接口芯片安装在同一块印制电路板上的微型计算机),单片机芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果对它进行应用开发,它便是一个小型的微型计算机控制系统,但它与单板机或个人电脑(PC机)有着本质的区别。
单片机的应用属于芯片级应用,需要用户(单片机学习者与使用者)了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。
不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。
这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。
软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。
开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源。
要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。
单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,例如通信产品、家用电。
微机原理课程设计学院:机电工程学院专业:自动化班级:XXXX学号:XXXX姓名:XX指导教师:XXXXXXXX 完成时间:2015一、课程设计的基本要求•设计8088微处理器最小系统•用8284设计频率恒定的时钟电路•用6264和2764设计存储器(RAM和ROM)电路。
•用ADC0809组成8位温度检测A/D变换接口电路•用DAC0832设计8位D/A变换接口电路驱动直流电机•用8255和8253设计步进电机控制电路•用8255外联LED和键盘显示电路二、设计的基本思路采用8088的最小方式,利用三片74LS373锁存器设计20位地址总线电路,利用一片74LS245收发器形成数据总线电路。
利用8254芯片提供频率恒定的时钟信号,同时具有复位信号和准备好信号发送给8088系统。
运用两片2764和两片6264进行扩展,形成16K的ROM和16K的RAM电路。
系统的定时计数器由一片8253构成,中断系统由8259组成,并行接口电路由8255构成。
AD转换电路由ADC0809及其外围电路构成,由DAC0832及其外围电路构成DA转换电路驱动直流电机。
芯片所需的片选信号均由74LS138译码电路产生。
三、系统的地址分配ROM2764(1):0FC000H~0FDFFFH;ROM2764(2):0FE000H~0FFFFFH;RAM6264(1):00000H~01FFFH;RAM6264(2):02000H~03FFFH;ADC0809:0058H~005FH;DAC0832:0074H;计时器8253:0020H~0023H;并行接口芯片8255:0028H~002BH;键盘地址:0070H~0073H; LED地址:0080H~0083H。
四、具体设计1、8088微处理器最小系统1.1 8088微处理器介绍8088微处理器采用40条引脚的双列直插式封装。
为减少引脚,采用分时复用的地址/数据总线,因而部分引脚具有两种功能。
第二章8086/8088微处理器及其系统结构内容提要:1.8086微处理器结构:CPU内部结构:总线接口部件BIU,执行部件EU;CPU寄存器结构:通用寄存器,段寄存器,标志寄存器,指令指针寄存器;CPU引脚及其功能:公用引脚,最小模式控制信号引脚,最大模式控制信号引脚。
2.8086微机系统存储器结构:存储器地址空间与数据存储格式;存储器组成;存储器分段。
3.8086微机系统I/O结构4.8086最小/最大模式系统总线的形成5.8086CPU时序6.最小模式系统中8086CPU的读/写总线周期7.微处理器的发展学习目标1.掌握CPU寄存器结构、作用、CPU引脚功能、存储器分段与物理地址形成、最小/最大模式的概念和系统组建、系统总线形成;2.理解存储器读/写时序;3.了解微处理器的发展。
难点:1.引脚功能,最小/最大模式系统形成;2.存储器读/写时序。
学时:8问题:为什么选择8088/8086?•简单、容易理解掌握•与目前流行的P3、P4向下兼容,形成x86体系•16位CPU目前仍在大量应用思考题1、比较8086CPU与8086CPU的异同之处。
2、8086CPU从功能上分为几部分?各部分由什么组成?各部分的功能是什么?3、CPU的运算功能是由ALU实现的,8086CPU中有几个ALU?是多少位的ALU?起什么作用?4、8086CPU有哪些寄存器?各有什么用途?标志寄存器的各标志位在什么情况下置位?5、8086CPU内哪些寄存器可以和I/O端口打交道,它们各有什么作用?6、8086系统中的物理地址是如何得到的?假如CS=2400H,IP=2l00H,其物理地址是多少?思考题1.从时序的观点分析8088完成一次存储器读操作的过程?2.什么是8088的最大、最小模式?3.在最小模式中,8088如何产生其三总线?4.在最大模式中,为什么要使用总线控制器?思考题1.试述最小模式下读/写总线周期的主要区别。
第一章ENIAC 的不足:运算速度慢、存储容量小、全部指令没有存放在存储器中、机器操作复杂、稳定性差 。
冯·诺依曼(Johe V on Neumman )提出了“存储程序”的计算机设计方案。
特点是: 1、采用二进制数形式表示数据和计算机指令。
2、指令和数据存储在计算机内部存储器中,能自动依次执行指令。
由控制器、运算器、存储器、输入设备、输出设备5大部分组成计算机硬件。
工作原理的核心是“存储程序”和“程序控制”。
一型计算机的分类字长:有4位、8位、16位、32位、64位微型计算机等 工艺:可分成MOS 工艺、双极型TTL 工艺的微处理器 结构类型:有单片机、单板机、位片机、微机系统等 用途:个人计算机、工作站/务器、网络计算机 体积大小:台式机、携机。
二.微型计算机的性能指标介绍位:这是计算机中所表示的最基本、最小的数据单元。
字长:是计算机在交换、加工和存放信息时的最基本的长度。
字节(Byte ):是计算机中通用的基本单元,由8个二进制位组成。
字:是计算机内部进行数据处理的基本单位。
主频:也称时钟频率,是指计算机中时钟脉冲发生器所产生的频率。
访存空间:是该微处理器构成的系统所能访问的存储单元数。
指令数:构成微型计算机的操作命令数。
基本指令执行时间:计算机执行程序所花的时间。
可靠性:指计算机在规定时间和条件下正常工作不发生故障的概率。
兼容性:指计算机硬件设备和软件程序可用于其他多种系统的性能。
性能价格比:是衡量计算机产品优劣的综合性指标。
微型计算机是以微处理器为核心,再配上存储器、接口电路等芯片构成的微型计算机系统由硬件系统和软件系统两大部分组成 :1.中央处理单元CPU (Control Processing Unit )是微型计算机的核心部件,是包含有运算器、控制器、寄存器组以及总线接口等部件的一块大规模集成电路芯片,俗称微处理器。
微处理器是微型计算机的核心,它的性能决定了整个微型机的各项关键指标。
1.什么是最大模式?什么是最小模式?用什么方法将8086/8088置于最大模式和最小模式?答:最小模式,即系统中只有一个微处理器,所有的总线控制信号都直接由8086/8088,因此,系统总线控制电路被减到最小。
最大模式,即系统里包括两个或多个微处理器,主处理器就是8086/8088,其它均为协助主处理器工作的协处理器。
它主要用于中等规模或大型的8086/8088系统中。
将8086/8088的第33脚接地时,系统处于最大模式,接+5V时,为最小模式2.8086有两种工作方式,即最小模式和最大模式,它由什么信号决定?最小模式的特点是什么?最大模式的特点是什么?MN/信号决定。
当接入+5V时,系统处于最小模式,只答:8086的两种工作模式由MAX有一个微处理器,总线控制逻辑部件被减到最小。
当接地时,系统处于最大模式,实现多处理器控制系统,主要应用于大中型系统。
3. 8086/8088的执行部件EU由多少个通用寄存器,多少个专用寄存器,几个标志寄存器和什么组成?答:执行部件由以下几部分组成:1、四个通用寄存器 AX BX CX DX;2、四个专用寄存器,即基数指针寄存器BP,堆栈指针寄存器SP,源变址寄存器SI,目的变址寄存器DI;3一个标志寄存器FR;4算术逻辑部件ALU。
4.简述8086CPU对中断的响应和处理过程。
答:8086对各类中断的响应不完全相同,主要区别在于如何获得中断类型码。
A.可屏蔽中断的响应过程。
首先必须满足中断允许标志IF置1,当没有内部中断,非屏蔽中断(NMI=0)和总线请求(HOLD=0)时,外设向中断控制器8259A发出中断请求,经8259A处理,得到相应的中断类型码,并向CPU申请中断(INTR=1)。
⑴等待当前指令结束,CPU发出中断响应信号。
⑵8259A连续(两个总周期)接收到两个INTA 的负脉冲的中断响应信号,则通过数据总线将中断类型码送CPU,CPU把中断类型码乘4作为中断矢量表的地址指针。
单片机最小系统单片机最小系统是指以单片机为核心,配以必要的外围电路,实现一定功能的电路系统。
它通常包含单片机、电源、时钟电路、复位电路和程序存储器等部分。
下面将详细介绍单片机最小系统的构成和特点。
单片机:单片机是整个系统的核心,它负责数据处理和控制信号输出。
常用的单片机型号有AT89CPIC16F877A等。
电源:为单片机提供电能,一般采用直流电源,如5V、3V等。
时钟电路:为单片机提供时钟信号,常用的时钟芯片有0592MHz和4MHz等。
复位电路:当单片机出现程序跑飞或异常情况时,可以通过复位电路使单片机重新启动。
常用的复位芯片有MAX811等。
程序存储器:用于存储单片机程序,常用的存储器有EPROM、EEPROM 和Flash等。
结构简单:单片机最小系统以单片机为核心,配以外围电路,结构简单,易于实现。
功能灵活:通过编程,单片机可以实现各种不同的功能,如数据采集、控制输出、通信等。
可靠性高:由于单片机最小系统结构简单,所以其可靠性较高,适用于各种工业控制和智能家居等领域。
成本低廉:单片机最小系统的硬件成本较低,适用于各种低成本应用场景。
单片机最小系统是一种简单、灵活、可靠且低成本的电路系统,广泛应用于各种嵌入式系统开发中。
随着物联网、智能家居等领域的快速发展,单片机最小系统的应用前景也将更加广阔。
在嵌入式系统和智能硬件领域,单片机最小系统作为一种基本的控制器单元,具有广泛的应用价值。
本文将介绍单片机最小系统的设计与应用,包括系统设计、系统应用和系统优化等方面的内容。
单片机最小系统通常由微处理器(MCU)、电源电路、时钟电路和复位电路等组成。
在设计单片机最小系统时,需要根据具体的应用需求选择合适的微处理器,并搭建相应的电源电路、时钟电路和复位电路。
单片机最小系统的架构设计应考虑应用需求和系统可靠性。
一般而言,系统架构应包括以下几个部分:(1)微处理器:作为系统的核心,微处理器负责数据计算、处理和传输等任务。
单片机最小系统讲解单片机(Microcontroller Unit,简称MCU)是指在一个芯片上集成了微处理器核心、存储器、输入输出接口和定时器等功能模块的专用集成电路。
单片机由于体积小、功耗低、成本低等优势,广泛应用于各种电子设备中。
而单片机的最小系统是指将单片机与必要的外部电路组合在一起,以实现单片机的基本功能。
本文将对单片机最小系统进行详细讲解。
一、单片机最小系统的组成单片机最小系统主要由单片机芯片、晶振、电源电路和复位电路等组成。
1. 单片机芯片单片机芯片是单片机最核心的部分,它集成了微处理器核心、存储器和各种外设接口等功能单元。
单片机芯片根据不同的应用需求,有不同的型号和规格可供选择。
2. 晶振晶振是单片机最小系统中的重要组成部分,它提供了单片机系统的时钟信号。
单片机通过时钟信号来同步各种操作,保证系统的正常运行。
3. 电源电路电源电路为单片机提供稳定的电源供电,保证单片机系统的正常工作。
一般情况下,单片机最小系统采用直流电源供电,可以是电池或者是稳压电源。
4. 复位电路复位电路是单片机最小系统中的另一个重要组成部分,它用于保证单片机系统在上电或者复位时,能够正常启动和初始化。
复位电路通常由电源复位电路和外部复位电路组成。
二、单片机最小系统的工作原理单片机最小系统的工作原理主要分为以下几个步骤:1. 上电初始化当单片机系统上电或者复位时,复位电路将在系统满足工作电压条件后,发送复位信号给单片机芯片。
单片机芯片接收到复位信号后,将会执行初始化动作,包括清除寄存器和设置初始值等。
2. 系统时钟初始化在上电初始化完成后,单片机系统将会初始化系统时钟。
系统时钟一般由晶振提供,并通过时钟分频器对时钟信号进行分频处理,以产生单片机内部各个模块需要的时钟信号。
3. 程序执行经过上电初始化和系统时钟初始化后,单片机系统就进入了正常的工作状态。
此时,单片机将开始按照程序内存中的指令顺序执行各种操作。
程序由程序员编写,并存储在单片机的闪存或者RAM中。
微型计算机和微处理器的发展本篇报告的目的讲述微型计算机和微处理器的发展史,以此来深化对计算机功能结构的认识,并进一步了解计算机工作的模式,在此基础上对未来的计算机发展做一个合理的推测和预期。
其实微型计算机的发展和微处理器的发展其实是紧密结合,密不可分的,微型计算机的发展主要表现在其核心部件——微处理器的发展上,每当一款新型的微处理器出现时,就会带动微机系统的其他部件的一并发展,比如在微机体系结构上,存储器存取容量、存取速度上,以及外围设备都在不断改进,在此基础上新设备也在不断出现并推动微型计算机的进一步发展。
第一篇微机的发展上根据微处理器的字长和功能,将微型计算机的发展简单划分为以下几个阶段。
第一阶段:概述:4位和8位低档微处理器(第1代)基本特点:采用PMOS工艺,集成度低(4000个晶体管/片),指令系统:系统结构和指令系统简单,主要采用机器语言或简单的汇编语言,指令数目少,基本指令周期为20~50μs,用于简单的控制场合。
举例:Intel4004和Intel8008微处理器和分别由它们组成的MCS-4和MCS-8微机第二阶段:概述:8位中高档微处理器(第二代)特点:采用NMOS工艺,集成度提高约4倍,运算速度提高约10~15倍指令系统:比较较完善,具有典型的计算机体系结构和中断、DMA等控制功能软件方面:除汇编语言外,还有BASIC、FORTRAN等高级语言和相应的解释程序和编译程序,在后期出现操作系统。
举例:Intel8080/8085、Motorola公司、Zilog公司的Z80第三阶段:概述:16位微处理器(第三代)特点:用HMOS工艺,集成度(20000~70000晶体管/片)和运算速度都比第2代提高了一个数量级指令系统:指令系统更加丰富、完善,采用多级中断、多种寻址方式、段式存储机构、硬件乘除部件,并配置了软件系统产品举例:Intel公司的8086/8088,Motorola公司的M68000,Zilog公司的Z8000 第四阶段:概述:32位微处理器(第四代)产品举例:Intel公司的80386/80486,Motorola公司的M69030/68040基本特点:采用HMOS或CMOS工艺,集成度高达100万个晶体管/片,具有32位地址线和32位数据总线评价:微型计算机的功能已经达到甚至超过超级小型计算机,完全可以胜任多任务、多用户的作业第五阶段:概述:奔腾系列微处理器(第5代)产品举例:Intel公司的奔腾系列芯片及与之兼容的AMD的K6系列微处理器芯片特点:AMD与Intel分别推出来时钟频率达1GHz的Athlon和PentiumⅢ。
单片机最小系统介绍什么是单片机最小系统单片机(Microcontroller Unit,简称MCU),是一种集成了微处理器核心、存储器、输入/输出接口和时钟等主要部件的微型计算机系统。
在单片机中,最小系统是指最基本的电路配置,能够使单片机正常工作所需的最简单电路。
单片机最小系统的组成单片机最小系统主要由以下几个部分组成:1. 单片机单片机是整个系统的核心,它负责接收输入信号、进行数据处理并控制输出。
2. 晶振与时钟电路晶振和时钟电路为单片机提供稳定的时钟信号,使得单片机能够按照一定的时间间隔执行指令。
3. 复位电路复位电路用于对单片机进行复位操作,使其恢复到初始状态。
复位电路通常由电容、电阻和复位按钮等元件组成。
4. 电源电路电源电路提供单片机所需的电源电压,保证其稳定工作。
一般情况下,单片机最小系统采用直流电源供电。
5. 外部扩展电路外部扩展电路包括与单片机相连的输入/输出接口以及其他外设。
这些外设可以是LED灯、继电器、传感器等,用于与外界进行交互。
单片机最小系统的工作原理单片机最小系统的工作原理如下:1.当系统上电或复位时,复位电路会将单片机复位到初始状态。
2.外部晶振和时钟电路提供稳定的时钟信号,单片机根据时钟信号执行指令。
3.单片机根据输入信号对数据进行处理,并控制输出信号。
4.单片机通过输出接口与外部扩展电路连接,完成与外界的交互。
单片机最小系统的应用单片机最小系统广泛应用于各个领域,包括家电、汽车、工业自动化等。
以下是一些常见的应用场景:•家电控制:单片机最小系统可以用于家电产品的控制,例如智能灯控系统、空调控制系统等。
•汽车电子:单片机最小系统在汽车电子领域应用广泛,例如车载娱乐系统、车载导航系统等。
•工业控制:单片机最小系统在工业自动化中起着重要作用,例如工厂控制系统、自动化生产线等。
•仪器仪表:单片机最小系统可以用于各种仪器仪表的控制与数据处理,例如温度计、压力计等。
总结单片机最小系统是单片机正常工作所需的最简单电路配置。