换热器 (4)
- 格式:ppt
- 大小:4.96 MB
- 文档页数:47
11.2.4 折流板和支持板最小厚度:根据换热器直径和换热管无支撑跨距查GB151 表34。
工程设计中应注意如下:(1)表34 值为卧式换热器折流板的最小厚度(2)立式换热器无腐蚀时,可适当减薄(3)需抽管束且重量较重时,应适当加厚(4)有振动时,应适当加厚11.3 支持板(1)当换热器不需要设置折流板,但换热管无支撑跨距大于GB151 表42 规定时,应设置支持板。
(2)浮头换热器浮头端宜设置加厚的圆环形支持板11.4 U 形换热器的尾部支持U 形换热器中,靠近弯管段起支撑作用的折流板,结构尺寸A+B+C 大于GB151 表42规定时,应在弯管部分加支撑。
11.5 折流杆:用与换热管垂直的四组圆钢所形成的“井”字将换热管固定住。
折流杆换热器使壳程流体沿着管束轴线纵向流动,从而彻底消除流体横向流动而产生的诱发振动。
并且折流杆会使流体不断地产生卡门漩涡以提高传热的效率。
同时由于没有横向流动,故壳程流体压降较底。
折流杆换热器的关键技术在于正确的传热工艺计算及制造组装技术。
折流杆的直径等于换热管的间隙;可视一组折流圈相当于一块折流板(或支板承)11.6 螺旋折流板由数块扇形板排列在有一定升角的螺旋线上,使流体在壳体内形成螺旋流,其特点为:(1)可以使流体达到近似于柱塞流的效果;(2)返混程度很低,几乎没有流动的死区;(3)传热效率提高的同时,又获得了较佳的压降;(4)传热系数与螺旋角关系密切,最佳的螺旋角为25°~40°;(5)为减少无支撑跨长避免振动可用二头或多头螺旋。
11.7 拉杆,定距管:(1)换热管外径≥19mm 时,采用拉杆定距管结构;(2)换热管外径≤14mm 时,采用拉杆与折流板点焊结构;(3)拉杆应尽量均匀布置在管束外边缘。
对于大直径的换热器,在布管区内或靠近折流板缺口处应布置适当数量的拉杆,任何折流板应不少于3 个支承点。
(4)拉杆直径和数量根据GB151 表43,表4411.8 防冲与导流(1)管程设置防冲板条件:当管程采用轴向入口接管或换热管内流体流速超过3m/s 时,应设置防冲板,以减少流体的不均匀分布和对换热管端的冲蚀。
第九章 传热过程分析和换热器计算在这一章里讨论几种典型的传热过程,如通过平壁、圆筒壁和肋壁的传热过程通过分析得出它们的计算公式。
由于换热器是工程上常用的热交换设备,其中的热交换过程都是一些典型的传热过程。
因此,在这里我们对一些简单的换热器进行热平衡分析,介绍它们的热计算方法,以此作为应用传热学知识的一个较为完整的实例。
9-1传热过程分析在实际的工业过程和日常生活中存在着的大量的热量传递过程常常不是以单一的热量传递方式出现,而多是以复合的或综合的方式出现。
在这些同时存在多种热量传递方式的热传递过程中,我们常常把传热过程和复合换热过程作为研究和讨论的重点。
对于前者,传热过程是定义为热流体通过固体壁面把热量传给冷流体的综合热量传递过程,在第一章中我们对通过大平壁的传热过程进行了简单的分析,并给出了计算传热量的公式 t kF Q ∆=, 9-1式中,Q 为冷热流体之间的传热热流量,W ;F 为传热面积,m 2;t ∆为热流体与冷流体间的某个平均温差,oC ;k 为传热系数,W/(⋅2m o C)。
在数值上,传热系数等于冷、热流体间温差t ∆=1 o C 、传热面积A =1 m2时的热流量值,是一个表征传热过程强烈程度的物理量。
在这一章中我们除对通过平壁的传热过程进行较为详细的讨论之外,还要讨论通过圆筒壁的传热过程,通过肋壁的传热过程,以及在此基础上对一些简单的包含传热过程的换热器进行相应的热分析和热计算。
对于后者,复合换热是定义为在同一个换热表面上同时存在着两种以上的热量传递方式,如气体和固体壁面之间的热传递过程,就同时存在着固体壁面和气体之间的对流换热以及因气体为透明介质而发生的固体壁面和包围该固体壁面的物体之间的辐射换热,如果气体为有辐射性能的气体,那么还存在固体壁面和气体之间的辐射换热。
这样,固体壁面和它所处的环境之间就存在着一个复合换热过程。
下面我们来讨论一个典型的复合换热过程,即一个热表面在环境中的冷却过程,如图9-1所示。
第四章换热器4.1概述制氧机的换热器很多。
空气在压缩过程中,为了提高等温效率就需要机壳冷却、级间冷却器、空气液化循环中需设置主换热器。
空分装置的保冷箱中有液化器、过冷器以及精馏系统的主冷凝蒸发器等。
它们的性能直接影响制氧机的经济指标,其可靠性关系着制氧机的安全运行状况。
4.2换热器分类4.2.1换热器原理可分为三大类:1、混合式换热器。
冷、热流体通过直接接触进行热量交换,故亦称直接接触式换热器.如水冷塔、空冷塔。
2、蓄热式换热器。
冷、热流体交替通过传热表面。
当冷流体通过时将冷量(或热量)贮存起来,而后热流体(或冷流体)再将冷量取走。
如蓄冷器。
3、间壁式换热器(亦称间接式换热器)。
冷、热流体被固体传热表面隔开,而热量的传递通过固体传热面而进行。
此类换热器应用十分普遍,在空分装置中所应用的换热器多属于此种类型。
间壁式换热器按其传热面的结构又分为:管式换热器、板式换热器、板翅式换热器等。
4.2.2换热器根据流体状态变化可分为三种:1、传热双方都没有相变。
例如蓄冷器(或可逆式换热器)中是气体与气体之间的传热。
过冷器是气体与液体间的传热。
2、仅有一侧发生相变。
例如液化器是气体与冷凝气体之间的传热。
饱和空气在液化器中放出热量后部分变成液体。
3、传热双方都有相变。
如主冷凝器和辅助冷凝器中气氮放出热量冷凝成液氮、液氧吸收热量蒸发为气氧。
4.3换热器的结构形式及工作原理4.3.1空冷塔的作用及工作原理为了使冷却水与空气充分接触,充分混合,以增大传热面积,强化传热通常采用的是“填料塔”或“筛板塔”。
也有用空心喷淋塔的。
目前我国大型空分设备的空气冷却塔主要采用上段为填料塔,装新型塑料环,下段为筛板塔取得了较好的效果。
顶部的传热温差只有0.5℃,并彻底解决了结垢问题。
其次,在空气冷却塔中,空气和水直接接触,既换热又受到了洗涤,能够清除空气中的灰尘,溶解一些有腐蚀性的杂质气体如H 2S、SO 2、SO 3等,避免板翅式换热器铝合金材质的腐蚀,延长使用寿命。
传热过程与换热器1. 下列哪种传热器不是间壁式换热器?(1)板翅式换热器(2)套管式换热器(3)回转式换热器(4)螺族板式换热器2. 下列哪个是传热单元数?(3)(1)ε (2) Cmin/Cmax (3) KA/C min (4) 课本公式(8-29)3. 热流体和冷流体交替地流过同一流道的换热器称为。
(3)(1)热管换热器(2) 间壁式换热器(3)回热式换热器(4)混合式换热器4. 试计算逆流时的对数平均温差,已知热流体由300℃冷却到150℃,而冷流体由50℃加热到100℃。
(1)(1)124 ℃ (2)134 ℃ (3)144℃ (4)154℃5. 下列哪个不是增强传热的有效措施?(4)(1)波纹管(2)逆流(3)板翅式换热器(4)在对流传热系数较大侧安装肋片6. 已知一传热设备,新投入时传热系数为78W/(m2.K),使用一年后其传热系数为55W/(m2.K),则其污垢热阻:(2)(1)0.018(m2.K)/W (2)0.005(m2.K)/W(3)0.0128(m2.K)/W (4)0.003(m2.K)/W7. 已知敷设在圆管外的保温材料的导热系数为0.08 W/(m.K),管外环境介质的传热系数为8W/(m2.K),其临界热绝缘直径为:(1)(1)0.02m (2)200m (3)0.005m (4)50m8. 换热器管内为被加热水;管外为烟气,水侧结垢后管壁温度将会如何改变?或烟侧积灰后,管壁温度又将如何改变? (3 )(1)增大,增大(2)减小,减小(3)增大,减小(4)减小,增大9. 高温换热器为了避免出现较高壁温,常优先考虑采用哪种流动型式?(2)(1)逆流(2)顺流(3)叉排(4)顺排10. 试判断下述几种传热过程中哪一种的传热系数最大?(1)从气体到气体传热(2)从气体到水传热(3)从油到水传热(4)从凝结水蒸气到水11. 增厚圆管外的保温层,管道热损失将如何变化? (4)(1)变大(2)变小(3)不变(4)可能变大,也可能变小12. 在某一传热过程中,热流给定,若传热系数增加1倍,冷热流体间的温差将是原来的多少倍?( 4)(1)1倍(2)2倍(3)3倍(4) 0.5倍13. 临界热绝缘直径是指:(1 )(1)管道热损失最大时的热绝缘直径(2)?管道热损失最小时的热绝缘直径(3)?管道完全没有热损失时的热绝缘直径(4)?管道热阻最大时的热绝缘直径14. 对于换热器的顺流与逆流布置,下列哪种说是错误的?(2 )(1)逆流的平均温差大于等于顺流(2)逆流的流动阻力大于等于顺流(3)冷流体出口温度逆流可大于顺流(4)换热器最高壁温逆流大于等于顺流15. 在相同的进出口温度下,换热器采用哪种流动型式有可能获得最大平均温差?(3)(1)顺流(2)交叉流(3)逆流(4)混合流16. 用ε—NTU法进行换热器的校核计算比较方便是由于下述的哪个理由? (3 )(1)流体出口温度可通过查图得到(2)不需要计算传热系数(3)不需要计算对数平均温差(4)不需要进行试算17. 有一板式传热器,热流体进口温度80℃、出口温度50℃,冷流体进口温度10℃、出口温度30℃,则顺流布置时和逆流布置时的对数平均温差分别为多少? (4)(1)45.0℃,45.0℃ (2)42.5℃,40.0℃(3)44.8℃,39.9℃ (4)39.9℃,44.8℃18. 若冷、热流体的温度给定,传热器热流体侧结垢后传热壁面的温度将如何改变?(1)增加(2)减小(3)不变(4)有时增加,有时减小(2)19. 强化传热时,增强传热过程中哪一侧的传热系数最有效? ( 3)(1)热流体侧(2)冷流体侧(3)传热热阻大的一侧(4)传热热阻小的一侧20. 强化传热时,增强传热过程中哪一侧的传热系数最有效? ( 2)(1)热流体侧(2)冷流体侧(3)传热热阻大的一侧(4)传热热阻小的一侧21. 当采用加肋方法强化传热时,肋片应加在会最有效。
第2章工艺计算2.1设计原始数据表2—1名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / /壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB1502.2管壳式换热器传热设计基本步骤(1)了解换热流体的物理化学性质和腐蚀性能(2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。
(3)确定流体进入的空间(4)计算流体的定性温度,确定流体的物性数据(5)计算有效平均温度差,一般先按逆流计算,然后再校核(6)选取管径和管内流速(7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核(8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍l(9)选取管长(10)计算管数NT(11)校核管内流速,确定管程数(12)画出排管图,确定壳径D和壳程挡板形式及数量等i(13)校核壳程对流传热系数(14)校核平均温度差(15)校核传热面积(16)计算流体流动阻力。
若阻力超过允许值,则需调整设计。
第2章工艺计算2.3 确定物性数据2.3.1定性温度由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。
对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。
其壳程混合气体的平均温度为:t=420295357.52+=℃(2-1)管程流体的定性温度:T=3103303202+=℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
2.3.2 物性参数管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】表2—2密度ρi-=709.7 ㎏/m3定压比热容cpi=5.495 kJ/㎏.K热导率λi=0.5507 W/m.℃粘度μi=85.49μPa.s普朗特数Pr=0.853壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】表2—3密度 ρo =28.8 ㎏/m 3定压比热容 c po =3.033 kJ/㎏.K 热导率 λo =0.0606 W/m.℃ 粘度 μo =22.45 μPa.s 普朗特数Pr=1.1222.4估算传热面积 2.4.1热流量根据公式(2-1)计算:p Q Wc t =∆ 【化原 4-31a 】 (2-2)将已知数据代入 (2-1)得:111p Q WC t =∆=60000×5.495×310 (330-310)/3600=1831666.67W式中: 1W ——工艺流体的流量,kg/h ;1p C ——工艺流体的定压比热容,kJ/㎏.K ;1t ∆——工艺流体的温差,℃;Q ——热流量,W 。
换热器试压方案材料工程基础论文管壳式换热器论文摘要;本文主要介绍管壳式换热器。
并分析其特点。
关键词:管壳式换热器、传热管束、管板、折流板正文。
管壳式换热器由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。
壳体多为圆筒形,内部装有管束,管束两端固定在管板上。
进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。
为提高管外流体的传热分系数,通常在壳体内____若干挡板。
挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。
换热管在管板上可按等边三角形或正方形排列。
等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。
管壳式换热器流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。
图示为最简单的单壳程单管程换热器,简称为1-1型换热器。
为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。
这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。
类型。
由于管内外流体的温度不同,因此换热器的壳体与管束的温度也不同。
如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。
因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。
根据所09无机非(1)材料工程基础论文采用的补偿措施,管壳式换热器可分为以下几种主要类型:①固定管板式换热器管束两端的管板与壳体联成一体,结构简单,但只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。
当温度差稍大而壳程压力又不太高时,可在壳体上____有弹性的补偿圈,以减小热应力。
②浮头式换热器管束一端的管板可自由浮动,完全消除了热应力;且整个管束可从壳体中抽出,便于机械清洗和检修。
浮头式换热器的应用较广,但结构比较复杂,造价较高。
③u型管换热器每根换热管皆弯成u形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。
换热器课程设计一、教学目标本课程的教学目标是让学生掌握换热器的基本原理、类型、性能及计算方法,能够运用所学知识分析和解决实际工程问题。
具体目标如下:1.知识目标:(1)理解换热器的基本概念和作用;(2)掌握换热器的各种类型及其特点;(3)熟悉换热器的性能评价指标;(4)学会换热器的计算方法和步骤。
2.技能目标:(1)能够根据工程需求选择合适的换热器类型;(2)能够运用换热器计算方法进行分析;(3)具备绘制换热器原理图和流程图的能力。
3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对工程实践的认知和兴趣;(3)培养学生关注环保、节能等社会责任。
二、教学内容本课程的教学内容主要包括换热器的基本原理、类型、性能及计算方法。
具体安排如下:1.第一章:换热器概述(1)换热器的定义和作用;(2)换热器的分类及特点;(3)换热器的基本性能评价指标。
2.第二章:换热器类型(1)表面式换热器;(2)对流换热器;(3)混合换热器;(4)蓄热换热器。
3.第三章:换热器性能(1)换热器的热传导方程;(2)换热器的传热系数;(3)换热器的效能和热损失。
4.第四章:换热器计算方法(1)换热器的尺寸计算;(2)换热器的流动阻力计算;(3)换热器的热负荷计算;(4)换热器的效率计算。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:通过教师的讲解,使学生掌握换热器的基本原理和计算方法;2.案例分析法:分析实际工程中的换热器应用案例,提高学生的实践能力;3.实验法:安排实验室实践环节,让学生动手操作,加深对换热器的理解;4.讨论法:学生进行小组讨论,培养学生的团队合作精神和创新意识。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:《换热器原理与应用》;2.参考书:相关领域的研究论文和书籍;3.多媒体资料:PPT课件、视频教程等;4.实验设备:换热器实验装置,流动阻力测试设备等。
第4章 传热及换热器1)用平板法测定材料的导热系数,其主要部件为被测材料构成的平板,其一侧用电热器加热,另一侧用冷水将热量移走,同时板的两侧用热电偶测量其表面温度。
设平板的导热面积为0.03m 2,厚度为0.01m 。
测量数据如下:电热器材料的表面温度 ℃ 安培数 A 伏特数 V 高温面 低温面 2.8 2.3140 115300 200100 50试求:①该材料的平均导热系数。
②如该材料导热系数与温度的关系为线性:,则λ0和a 值为多少?001825.0)/(4786.0]2/)50200(1[5878.0]2/)100300(1[6533.0)/(6206.02/)()/(5878.01153.201.0/03.0)50200()/(6533.01408.201.0/03.0)200300(/)(1][000002102201121=⋅=++=++=∴⋅=+=⋅=⨯=⨯-⋅=⨯=⨯-∴=-=a C m w a a C m w C m w C m w VIL S t t Q m λλλλλλλλλλλ得)解2)通过三层平壁热传导中,若测得各面的温度t 1、t 2、t 3和t 4分别为500℃、400℃、200℃和100℃,试求合平壁层热阻之比,假定各层壁面间接触良好。
12112)100200()200400(21200400400500(/)(/)(/)(][3213221343232121::::::::)):(:解==--==--=-=-=-=R R R R R R R R T T R T T R T T Q3)某燃烧炉的平壁由耐火砖、绝热砖和普通砖三种砌成,它们的导热系数分别为1.2W/(m ·℃),0.16 W/(m ·℃)和0。
92 W/(m ·℃),耐火砖和绝热转厚度都是0.5m ,普通砖厚度为0.25m 。
已知炉内壁温为1000℃,外壁温度为55℃,设各层砖间接触良好,求每平方米炉壁散热速率。
第一章1.填空:1.按传递热量的方式,换热器可以分为间壁式, 混合式, 蓄热式2. 对于沉浸式换热器,传热系数低,体积大,金属耗量大。
3. 相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数较低,喷淋式换热器冷却水过少时,冷却器下部不能被润湿.4.在沉浸式换热器、喷淋式换热器和套管式换热器中,套管式换热器中适用于高温高压流体的传热。
5.换热器设计计算内容主要包括热计算、结构计算流动阻力计算和强度计算6.按温度状况来分,稳定工况的和非稳定工况的换热器7.对于套管式换热器和管壳式换热器来说,套管式换热器金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。
2.简答:1.说出以下任意五个换热器,并说明换热器两侧的工质及换热方式答:如上图,热力发电厂各设备名称如下:1.锅炉(蒸发器) *; 2.过热器*; 3.省煤器* 4.空气预热器*; 5.引风机; 6.烟囱; 7.送风机; 8.油箱 9.油泵 1 0.油加热器*; 11.气轮机; 12.冷凝器*; 13.循环水冷却培* 14.循环水泵; 15.凝结水泵;16.低压加热器*; 17.除氧(加热)器*;18.给水泵 19.高压加热器·柱!凡有·者均为换热器2.比较沉浸式换热器、喷淋式换热器、套管式换热器和管壳式换热器的优缺点答:⑴沉浸式换热器缺点:自然对流,传热系数低,体积大,金属耗量大。
优点:结构简单,制作、修理方便,容易清洗,可用于有腐蚀性流体⑵喷淋式换热器:优点:结构简单,易于制造和检修。
换热系数和传热系数比沉浸式换热器要大,可以用来冷却腐蚀性流体缺点:冷却水过少时,冷却器下部不能被润湿,金属耗量大,但比沉浸式要小⑶套管式换热器:优点:结构简单,适用于高温高压流体的传热。
特别是小流量流体的传热,改变套管的根数,可以方便增减热负荷。
方便清除污垢,适用于易生污垢的流体。
缺点:流动阻力大,金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。
换热器基础知识测试题姓名:分数:一、填空题(每空1分,共50分)1、以在(两种流体)之间用来(传递热量)为基本目的的传热设备装置,称为换热器,又叫做(热交换器)。
2、换热器按作用原理和传热方式分类可分为:(直接接触式换热器)、(蓄热式换热器)(间壁式换热器)。
3、、离心式压缩机可用来(压缩)和(输送)化工生产中的多种气体。
它具有:处理量大,(体积小),结构简单,(运转平稳),(维修方便)以及气体不受污染等特点。
4、换热器按传热面形状和结构分类可分为:(管式换热器)、(板式换热器)及特殊形式换热器。
5、管壳式换热器特点是圆形的(外壳)中装有(管束)。
一种介质流经(换热管)内的通道及其相贯通部分(称为壳程)。
它可分为:(浮头式换热器)、(U 型管式换热器)、套管式换热器、(固定管板式换热器)填料函式换热器等。
6、U型管式换热器不同于固定管板式和浮头式,只有一块(管板),换热管作为(U字形)、两端都固定在(同一块管板)上;管板和壳体之间通过(螺栓)固定在一起。
7、(换热管)是管壳式换热器的传热元件,它直接与两种介质(接触),换热管的形状和(尺寸)对传热有很大的影响。
8、写出下列换热管及其在管板上的排列名称分别为:(a)正三角形(b)转角正三角形(c)正方形(d)转角正方形9、管壳式换热器流体的流程:一种流体走管内称为(管程),另一种流体走管外称为(壳程)。
管内流体从换热管一端流向另一端一次,称为(一程);对U 形管换热器,管内流体从换热管一端经过U形弯曲段流向另一端一次称为(两程)。
10、管板与换热管间的连接方式有(胀接)、(焊接)或二者并用的连接方式。
11、折流板的作用是引导(壳程流体)反复地(改变方向)作错流流动或其他形式的流动,并可调节(折流板间距)以获得适宜流速,提高(传热效率)。
另外,折流板还可起到(支撑管束)的作用。
12、换热器的水压试验压力为最高操作压力的(1.25~1.5)倍。
13、换热器的清洗方法有:(酸洗法)、(机械清洗法)、(高压水冲洗法)、海绵球清洗法。