盾构刀盘偏置中心刀对刀盘推力和扭矩的影响
- 格式:pdf
- 大小:7.01 MB
- 文档页数:8
盾构机刀盘动力系统设计与分析盾构机刀盘动力系统是盾构机的重要组成部分,其设计和分析对于盾构机的正常运行和施工效率具有重要的影响。
下面将对盾构机刀盘动力系统的设计与分析进行详细讨论。
首先,盾构机刀盘动力系统设计需要考虑的关键因素包括动力传递,扭矩传递和刀盘稳定性。
动力传递是指如何将主动轴上产生的动力传递到刀盘上,通常通过采用传动装置来实现。
传动装置的设计需要满足高效传动、耐久性和可靠性的要求。
扭矩传递是指可以将动力传递到刀盘的能力,这直接影响到刀盘在施工过程中的稳定性和效率。
因此,在设计中应选择合适的传动比和传动装置类型,以满足扭矩传递要求。
刀盘稳定性是指在切削过程中,刀盘系统能够保持良好的稳定性,避免刀盘过度摇摆或抖动。
在设计中,需要考虑刀盘的结构和重心位置,以及采用合理的支撑装置,保障刀盘的稳定性和工作效率。
其次,盾构机刀盘动力系统的分析是为了评估设计的可行性和性能,以确保系统能够实现预期的要求。
在分析中,需要进行动力学分析和强度分析。
动力学分析主要是为了研究刀盘在工作过程中的振动特性和动力特性,如刀盘的转速、扭矩和功率等。
通过对动力学特性的分析,可以确定刀盘动力系统的合理设计参数和工作状态。
强度分析主要是为了评估刀盘动力系统在工作过程中的承载能力和稳定性,通过计算和模拟分析,总结刀盘动力系统各种载荷下的应力、变形和疲劳寿命等参数,并根据分析结果进行优化设计。
除了动力系统的设计和分析,刀盘动力系统在实际施工中还需要做好监测和维护工作。
监测需要对刀盘动力系统进行实时监控,获取刀盘的工作状态和参数,以及对关键部件进行故障检测,确保刀盘动力系统的安全和稳定性。
维护工作包括定期检查和维护,例如检查传动装置的润滑情况,清洁刀盘表面,检查刀盘结构的状态,以及更换磨损的零件等。
通过有效的监测和维护工作,可以延长刀盘动力系统的使用寿命,并保证施工效率和质量。
综上所述,盾构机刀盘动力系统设计与分析是盾构机设计过程中的重要环节。
地铁盾构施工刀具管理及维修技术作者:吴启红来源:《中国房地产业·上半月》2017年第04期【摘要】近年来盾构施工普遍用于地铁建设,盾构施工适用于各类复杂地层,刀盘的配置及刀具的选用非常关键,刀具成本一般占总成本的15%~20%。
因此,建立合理的刀具管理制度和提高刀具利用率是盾构施工中一大技术点,刀具维修与刀具管理技术成为了降低项目成本主要手段。
【关键词】盾构施工;刀具维修;刀具管理1、刀盘特点根据地质条件划分,一般把刀盘分为软土刀盘、硬岩刀盘和复合刀盘。
软岩刀盘适用于未固结成岩的软土地层和某些全风化或强风化的软岩地层,一般破岩能力在单轴抗压强度30MPa 以下。
上海地区、天津等软地层,使用刮刀类刀具,刀盘结构相对简单,通常称为软土刀盘。
硬岩刀盘适用于已经成形的硬岩地层,一般破岩能力在单轴抗压强度30MPa以上。
现正在施工的成都地铁、山西引黄等工程,通常使用配有刮板的滚刀。
复合型刀盘适用于软硬不均、上软下硬、密实胶结卵石土等软硬不匀的地层。
刀盘上刀具配置滚刀和刮刀,滚刀主要作用是破岩,刮刀作用是清理掌子面泥土或碎石,这样的刀盘通常称为复合刀盘。
广州、深圳、南宁等地地质复杂多变,主要使用复合型刀盘的盾构机。
2、刀具的维修技术2.1刀具类型2.1.1刀具的分类。
目前使用的刀具一般分为刮刀和滚刀两大类。
刮刀是指只随刀盘转动而没有自转的破岩刀具。
刮刀的种类繁多,常用的刮刀有边缘刮刀、齿刀、先行刀、贝壳刀、鱼尾刀等。
滚刀是指不仅随刀盘转动,还同时作自转运动的破岩刀具。
根据刀刃的形状,滚刀可分为:齿形滚刀、盘形滚刀。
2.1.2滚刀的结构组成。
滚刀结构主要由刀圈、刀体(套)、刀轴、轴承、金属浮动密封环、刀盖(座)及联接螺栓等件组成。
滚刀的内部结构是保证滚刀工作时正常的关键,通常是由轴承、密封、润滑油脂组成。
2.1.3滚刀刀圈的材料。
根据刀圈的工作条件,刀圈材料应满足较高的屈服强度,避免刀刃端在高应力下压溃变形;较高的硬度,增加耐磨性,减少刀圈磨损;良好的冲击韧性,提高材料裂纹扩展功,防止刀圈断裂;良好的抗回火性能,提高材料的热稳定性,保证刀圈在热装和滚压岩体过程中不降低硬度;良好的热加工和冷加工的工艺性能,材料成本低,制造方便,提高产品合格率,是占领市场的有效途径。
盾构主要部件组成及功能描述公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]地铁盾构主要部件功能描述盾构是一个具备多种功能于一体的综合性设备,它集合了隧道施工过程中的开挖、出土、支护、注浆、导向等全部的功能。
盾构施工的过程也就是这些功能合理运用的过程。
盾构在结构上包括刀盘、盾体、人舱、螺旋输送机、管片安装机、管片小车、皮带机和后配套拖车等;在功能上包括开挖系统、主驱动系统、推进系统、出碴系统、注浆系统、油脂系统、液压系统、电气控制系统、自动导向系统及通风、供水、供电系统、有害气体检测装置等。
1、刀盘和刀具刀盘:根据北京地铁特殊地质条件设计。
辐条式刀盘,开口率约为50%。
6个刀梁。
刀梁及隔板上有5路碴土改良的注入孔(泡沫、膨润土、水注入管路)。
刀盘表面采用耐磨材料或堆焊耐磨材料,确保刀盘的耐磨性。
刀盘具有正反转功能,切削性能相同。
刀具:中心鱼尾刀1把,先行刀36把、主切刀82把(高64把、低18把),保径刀24把;合计:143把。
另配超挖刀2把。
2、盾体盾体钢结构承受土压、水压和工作荷载(土压3bar)。
盾体包括:前盾、中盾、盾尾。
前盾前盾又称切口环,它里面装有支撑主驱动和螺旋输送机的钢结构。
隔板上面设人舱、球阀通道、四个搅拌器。
前盾上有液压闭合装置,可以关闭螺旋输送机的前闸门。
前盾的隔板上装有土压传感器。
中盾和盾尾中盾又称支承环,前盾和中盾用螺栓联接,并加焊接联接。
中盾内布置有推进油缸、铰接油缸和管片安装机架。
中盾的盾壳园周布置有超前钻孔的预留孔。
中盾和盾尾之间通过铰接油缸连接,两者之间可以有一定的夹角,从而使盾构在掘进时可以方便的转向。
盾尾安装了三道密封钢丝刷及8个油脂注入管道、8根内置的同步注浆管道(4根正常使用4根注浆管为备用)。
3、主驱动系统主驱动机构包括主轴承、八个液压马达、八个减速器和安装在后配套拖车上的主驱动液压泵站。
刀盘通过螺栓与主轴承的内齿圈联接在一起,刀盘驱动系统通过液压马达驱动主轴承的内齿圈来带动刀盘旋转。
盾构机刀盘、刀具磨损分析浅谈摘要:造成刀盘和刀具的磨损是多方面的,而且很多都是不能定量分析的,但是只要综合土层性质、掘进参数、正确使用泡沫剂、适时开仓检查刀具和汲取以往的经验教训,就可能将刀盘和刀具的磨损量降到最小,从而达到保护刀盘、刀具的目的.关键词:盾构机;刀盘;刀具;磨损随着地铁建设的发展,盾构工法在地铁建设中起到了越来越重要的作用。
它的优越性,实际上是得益于盾构机技术的发展,正所谓“工欲善其事,必先利其器”.盾构机之所以特别重要是因为它与其它施工机械不一样,它被形象地称为“度身定做"(taitor-made)的[1]。
所谓“度身定做”度的什么身呢?就是根据特定的施工环境这个“身"来制造与之相适应的特定的盾构机。
在盾构机选型中刀具的选择又是重中之重,要根据地质情况选择相匹配的盾构机,盾构机刀盘刀具布置是盾构机配置的最重要的部分。
在实际施工过程中,若区间较长,需要进行开仓检查刀具和换刀,确保盾构机能够顺利到达出洞。
笔者对深圳地铁2号线后海站~科苑站区间盾构隧道刀盘、刀具磨损情况进行了总结分析,可为类似工程盾构机刀具选型提供参考。
1工程概况深圳地铁2号线是深圳市优先发展的轨道交通线路,是连接城市中心区与蛇口、南头半岛的纽带,也是特区内东西向交通走廊内的第二条轨道客运干线,沿途将经过蛇口、后海开发区、南山商业文化中心和深圳湾填海区,串联了上述片区主要的居住区和商业文化密集区,满足了南山与福田、罗湖二级客运走廊的客运需求。
地铁2号线建成后在深圳世界之窗站与1号线换乘,将直接为300万以上的市民提供安全便捷的交通服务,能有效缓解南山区的交通压力。
深圳地铁二号线某标段土压盾构机从后海站向科苑站方向掘进。
本区间左、右线隧道平面最大曲线半径为1000m,最小曲线半径为400m,左、右线线间距13.2m~14。
2m,区间隧道最大线路纵坡为28‰,最小纵坡为2‰,竖曲线半径最大为5000m,最小为3000m,隧道拱顶埋深为10m~15m。
盾构机推力和刀盘扭矩的地层适应性评价1、推力计算盾构的推力应包含以下几个部分:1)盾壳和土层的摩擦力 FM其中μ为盾壳和土体间的摩擦系数,根据经验值取0.25。
计算得:FM=8074KN2)盾构推进正时面推进阻力其中Di 为盾构机内径Ps 为设计掘削土压(kN/m2)设计掘削土压Ps=地下水压+土压+预压其中地下水压在粘土层处相对于隧道中部的水头最大约11.5m ,那么水压力为115kN/m 2;土压按静止土压力计算:Po=Ko γH上式中:Po—静止土压力H—覆土厚度Ko—静止土压系数Ko=1-sin φ式中:φ—有效内摩擦角经计算Po=127 kN/m2预压力一般取30 kN/m2Ps=115+127+30=272kN/m2M BA S NL F F F +F +F =+∑()[]4/11h h V V M P P P P L D F +++⨯⨯⨯=πμBA F 214BA i s F D p π==9109.3 KN3)盾尾密封的摩擦力(经验值,周向每米密封的摩擦力) (管片外径6.4m )4)拖拉后配套的力 FNL (经验值)5)总推力计算ΣF=17943.3KN在盾构上坡和转弯时盾构的推力按直线水平段的1.5倍考虑,盾构的实际推力应为:ΣF=17943.3×1.5=26914.95KN盾构机实际配备推力:S -488/S -698盾构机实际推力分别为34210KN 和50668KN 。
均能满足盾构的实际需要.2、扭矩计算1)刀具切削扭矩推进速度:刀盘转速: (根据类似工程选取经验值) 刀盘每转切深:岩土的抗压强度: ;刀盘直径: Dd=6.68mT 1=0.5x[100x0.0667x(6.68x0.5)2]=37.2KNm214BA i s F D p π=2S 'F i s F D π=S'10/F KN m=KN F NL 750=h m V /8.4max =rpm n 2.1=cm n V h 67.6/max ==100u q KPa =()[]2max 15.05.0⨯⨯⨯⨯=d u D h q T2)刀盘自重产生的主轴承旋转反力矩:其中:刀盘自重:主轴承滚动半径:滚动摩擦系数:3)刀盘推力荷载产生的旋转阻力矩 其中:推力载荷 ;刀盘不开口率: a=0.4;刀盘半径;P t =0.4x3.14x3.34x102=428KNT 3=428x1.3x0.004=2.23KN.m4)密封装置摩擦力矩式中:密封与钢之间的摩擦系数:;密封的推力:;密封数:密封的安装半径:5)刀盘前表面上的摩擦力矩; g R G T μ⨯⨯=12570G KN =m R 3.1=004.0=g μ2570 1.30.00429.6.T KN m=⨯⨯=g t R P T μ⨯⨯=3d t P R P ⨯⨯⨯=2παm R 14.32=()1/2102/d h h P P P KN m =+=2142m m m R n F T ⨯⨯⨯⨯=μπ2.0=m μKPa F m 5.1=3=n m R m 25.11=mKN T m .8.825.135.12.02214=⨯⨯⨯⨯=π()d p P R T ⨯⨯⨯⨯⨯=32532μπα其中土层和刀盘间的摩擦系数:;T5=2/3x(0.7x3.14x0.15x3.343x102)=835KN.m6)刀盘圆周的摩擦反力矩其中刀盘边缘宽度:;刀盘圆周土压力:T 6=2x3.14x6.68x0.45x205x0.15=580KN.m7)刀盘背面的摩擦力矩刀盘背面的摩擦力矩由土腔室内的压力所产生,假定土仓室内的土压力为Pd8)刀盘开口槽的剪切力矩其中土的抗剪应力:在切削腔内,由于碴土含有水,取C=15KPa ,内摩擦角为 T 8=2/3x3.14x23x3.343x(1-0.7)=538KN.m9)刀盘土仓内的搅动力矩T 9其中刀盘支撑柱直径:;刀盘支撑柱长度;支撑柱数量刀盘支撑柱外端半径:;刀盘支撑柱内端半径:所以,刀盘总扭矩15.0=p μp z d P B D T μπ⨯⨯⨯⨯=26m B 45.0=()11/4205z h h v v P P P P P KPa =+++=()3722722.94.3p d T R P KN m απμ=⨯⨯⨯⨯⨯=()απτ-⨯⨯⨯⨯=132328R C T 15102523d C C P tg tg KPa τφ=+=+⨯︒=︒=5φ()b d z b n r r P L T ⨯+⨯⨯⨯=2/219φm b 6.0=φm L z 1.1=4=b n m r 4.12=m r 7.01=()m KN T .5.44442/7.04.136.1601.16.09=⨯+⨯⨯⨯=,此为额定扭矩。
复合地层下盾构刀盘的扭矩分析
朱磊;郑再象;李瑞
【期刊名称】《机械工程与自动化》
【年(卷),期】2014(000)006
【摘要】在隧道掘进过程中,刀盘扭矩的计算关系到工程的进度及质量,由于复
合地层地质情况多变,其扭矩计算比软土地层更为复杂,软土地质情况下的公式仅适用于计算叶片的搅拌扭矩,然而复合地层中复杂的软硬地质变化会同时影响刀盘与地层的摩擦阻力矩、地层的抗力扭矩和刀盘正面与地层的摩擦力矩。
为了更进一步完善复合地况下的盾构刀盘扭矩计算方法,针对复合地质情况进行了一定的研究分析,并以此为依据制定了复合地层下的扭矩计算方法。
【总页数】2页(P110-111)
【作者】朱磊;郑再象;李瑞
【作者单位】扬州大学机械工程学院,江苏扬州225127;扬州大学机械工程学院,江苏扬州 225127;扬州大学机械工程学院,江苏扬州 225127
【正文语种】中文
【中图分类】TU621
【相关文献】
1.复合地层地质条件下复合式土压平衡盾构机刀盘泥饼防治 [J], 陈玉亮;张若松;李明锷
2.复合地层大直径盾构刀盘及扭矩计算 [J], 王瑶
3.复合地层下盾构施工模态系统刀盘荷载及振动特性研究 [J], 王鲁琦;刘海宁;李苗;周建军;刘汉东
4.复合地层盾构施工中泡沫对刀盘扭矩的影响分析及参数优化 [J], 李杰;郭京波;戴树合;张增强;章卫;牛江川
5.复合地层下盾构刀盘滚刀刀具的布置与优化 [J], 周阳宗;孙涛;李杰;章卫;郭京波因版权原因,仅展示原文概要,查看原文内容请购买。
优化盾构机刀盘刀具布局延长刀具使用寿命发布时间:2021-06-22T09:53:36.267Z 来源:《基层建设》2021年第6期作者:陈云[导读] 摘要:隧道掘进技术是先进的地下施工技术,广泛应用于城市地铁等领域施工中。
中铁十四局集团大盾构工程有限公司江苏南京 211899摘要:隧道掘进技术是先进的地下施工技术,广泛应用于城市地铁等领域施工中。
复合式盾构机广泛应用于软硬岩交替出现复合地层施工,掘进机刀盘刀具设计方案直接影响掘进性能。
复合式盾构机由于与硬岩掘进机有很多相同点,刀具系统设计研究已有一定基础,刀盘刀具布局方案研究是刀盘掘进系统研究的重点。
减小盾构机掘进刀具磨损,是保证盾构机长距离掘进的重要措施。
地下工程盾构掘进施工中经常出现刀具磨损严重等,为工程工期造价带来严重影响,研究如何减小盾构机掘进磨损,优化刀具刀盘布局,对刀具进行改进,使产品质量可靠完善,延长刀具使用寿命,对提高盾构机工作效率具有重要意义。
关键词:盾构机;刀盘刀具布局优化;延长使用寿命0、引言随着21世纪道路,城市建设快速发展,城市人口急剧膨胀,许多城市出现用地资源紧张、交通堵塞等制约社会经济的发展。
由于流动人口增加,城市道路有限性带来车速下降等系列问题。
城市地下空间开发成为世界性趋势,城市向立体化开发是市中心改造唯一途径。
地铁交通建设促使城市发展,随着北上广深等大城市城轨交通建设投资加大,盾构机大型设备国产化日益重要,国内对盾构机市场需求巨大。
我国各类盾构机潜在市场有200亿以上产值,我国盾构机掘进设备技术研制已经形成针对不同地质条件的掘进能力。
盾构机硬岩或者软硬不均地层掘进过程中,盾构刀具磨损会非常快,更换刀具非常频繁,使用进口刀具盾构机施工往往价格昂贵,进口刀具周期时间长,掘进土层变化难以预测。
本文根据徐州地铁2号线项目在中强风化灰岩岩层及多溶洞地层施工盾构机刀盘设计要点,研制适应不同工况的刀具,提高掘进效率,减少换刀次数降低施工风险。
盾构机械刀盘及刀具设计与优化随着城市地下空间的不断开发和利用,盾构机械在地铁、隧道等工程领域中得到了广泛应用。
盾构机械的刀盘及刀具是决定其施工质量和效率的重要因素之一。
本文将重点讨论盾构机械刀盘及刀具的设计与优化。
1. 刀盘设计1.1 刀盘结构设计刀盘是盾构机械的核心部件之一,其结构设计的合理性对盾构机械的工作效果有着重要的影响。
刀盘的结构设计应该考虑以下几个方面:1.1.1 刀盘刚度设计刀盘的刚度设计直接影响到刀具在施工过程中的稳定性和耐久性。
应该根据盾构机械的工作条件和土壤的物理特性,合理选择刀盘的材料和结构尺寸,确保刀盘具有足够的刚度。
1.1.2 刀盘模块化设计刀盘的模块化设计可以极大地提高刀具更换的效率,并且便于维护和保养。
刀盘的模块化设计应该考虑到刀具的安装和拆卸便捷性,同时也要保证刀具的工作性能。
1.1.3 刀盘防护设计刀盘的防护设计不仅能够保护刀具,在施工过程中还能够减少对环境的影响。
刀盘的防护设计应考虑到刀具的精度和平衡性,同时也要与盾构机械的其它部件协调配合。
1.2 刀盘传动系统设计刀盘传动系统是盾构机械的另一个重要部分,其设计的合理性对盾构机械的运行效果至关重要。
刀盘传动系统设计应该考虑以下几个方面:1.2.1 传动效率设计传动效率直接关系到盾构机械的工作效率。
刀盘传动系统的设计应该尽可能地提高传动效率,降低能量损耗。
1.2.2 齿轮设计齿轮是刀盘传动系统中常用的传动元件,其设计应考虑到负载分配、噪声控制等方面的需求。
合理选择齿轮的材料和结构尺寸,可以提高刀盘传动系统的可靠性和耐久性。
1.2.3 传动稳定性设计传动稳定性是刀盘传动系统设计时需要充分考虑的因素,合理选择传动比、减小晃动等措施,可以提高刀盘传动系统的稳定性。
2. 刀具设计与优化2.1 刀具材料选择刀具材料的选择直接影响到刀具的硬度、韧性和耐磨性等性能。
应根据盾构机械工作的土壤条件和设计要求,选择适合的刀具材料,以确保刀具有良好的工作性能和寿命。