定常&非定常
- 格式:pdf
- 大小:198.73 KB
- 文档页数:4
定常流动流体(气体、液体)流动时,若流体中任何一点的压力,速度和密度等物理量都不随时间变化,则这种流动就称为定常流动;反之,只要压力,速度和密度中任意一个物理量随时间而变化,液体就是作非定常流动或者说液体作时变流动。
所以,定常流动时,管中流体每单位时间流过的体积(体积流量)qV为常量,流体每单位体积的质量(密度)ρ也是常量。
非定常流动流体的流动状态随时间改变的流动。
若流动状态不随时间而变化,则为定常流动。
流体通常的流动几乎都是非定常的。
分类按流动随时间变化的速率,非定常流动可分为三类:①流场变化速率极慢的流动:流场中任意一点的平均速度随时间逐渐增加或减小,在这种情况下可以忽略加速度效应,这种流动又称为准定常流动。
水库的排灌过程就属于准定常流动。
可认为准定常流动在每一瞬间都服从定常流动的方程,时间效应只是以参量形式表现出来。
②流场变化速率很快的流动:在这种情况下须考虑加速度效应。
活塞式水泵或真空泵所造成的流动,飞行器和船舶操纵问题中所考虑的流动都属这一类。
这类流动和定常流动有本质上的差别。
例如,用伯努利方程(见伯努利定理)描述这类流动,就须增加一个与加速度有关的项,成为:,式中为理想流体沿流线的速度分布;A和B表示同一流线上的两个点;P 为压强;为密度;g为重力加速度;z为重力方向上的坐标;ds为流线上的长度元。
③流场变化速率极快的流动:在这种情况下流体的弹性力显得十分重要,例如瞬间关闭水管的阀门。
阀门突然关闭时,整个流场中流体不可能立即完全静止下来,速度和压强的变化以压力波(或激波)的形式从阀门向上游传播,产生很大的振动和声响,即所谓水击现象。
这种现象不仅发生在水流中,也发生在其他任何流体中。
在空气中的核爆炸也会发生类似现象。
除上述三类流动外,某些状态反复出现的流动也被认为是一种非定常流动。
典型的例子是流场各点的平均速度和压强随时间作周期性波动的流动,即所谓脉动流,这种流动存在于汽轮机、活塞泵和压气机的进出口管道中。
大地形激发的准静止行星波(定常波)天气学分析假定平直(均匀)西风气流爬越南北向山脉,如果气流没有水平切变(即初始时ζ= 0),大气层结是稳定的,且运动近于干绝热过程,则这种运动可视为垂直位涡守恒(如图1)即:++==constf f h h ζζ前前后后后前图1 西风气流过山形成的背风槽(a )纬向剖面(b )水平面气流爬越山脉时,迎风坡有地形强迫产生的上升运动,气柱厚度h 减小,则相对涡度ζ应随之减小。
因为初始时相对涡度ζ=0,这时应有ζ< 0,因此气流便产生反气旋式曲率,则空气将转向南运动;下山时,气柱厚度h 增大,相对涡度也增大,即上山时具有的反气旋式曲率减小。
若山脉是对称的,则上山过程的作图2 西风气流过山形成的背风槽示意图用被下山的相反作用所抵消,则在背风坡山脚,ζ恢复为零。
但是因为气流过山的全过程是反气旋路径,因此到达山脚时,气流已位于初始纬度0ϕ之南(即位于1ϕ维度),ƒ比初始时小,所以ζ必须比原来大(即下山时ζ增加的幅度大于上山时ζ减小的幅度),则在山脚变为正涡度,气流轨迹应为气旋式弯曲,即向北运动。
当气流返回到初始纬度0ϕ时,ζ应该回复到初始状态,即ζ=0.但是由于惯性作用(此时h=const .,则位涡守恒→绝对涡度守恒),气流将继续向北运动→ƒ增大→ζ减小→反气旋式弯曲,到达一定纬度2ϕ时,气流又转向南运动……(重复上述过程)。
这样,山脉背风坡形成一系列的槽脊,但是由于摩擦作用,只有第一个槽在天气图上最清楚,称为背风槽或地形槽(见图2)。
由于是气流爬越山脉时为保持位涡守恒而形成的槽,故又称为地形Rossby (罗斯贝)波。
动力学理论数学推导据图3分析:假定平直西风爬越南北向山脉,气流无水平切变(即初始时ζ= 0),大气层结稳定,运动近似于无摩擦、干绝热过程。
过山前(0x <),有一均匀西风u ,气层厚度为H ,相对涡度00ζ=; 过迎风坡山脚(=0x )后(0x >),由于存在山脉,设山脉高度为s h ,则气层厚度为s H h -,相对涡度00ζ≠。
定常流动流体(气体、液体)流动时,若流体中任何一点的压力,速度和密度等物理量都不随时间变化,则这种流动就称为定常流动;反之,只要压力,速度和密度中任意一个物理量随时间而变化,液体就是作非定常流动或者说液体作时变流动。
所以,定常流动时,管中流体每单位时间流过的体积(体积流量)qV为常量,流体每单位体积的质量(密度)ρ也是常量。
非定常流动流体的流动状态随时间改变的流动。
若流动状态不随时间而变化,则为定常流动。
流体通常的流动几乎都是非定常的。
分类按流动随时间变化的速率,非定常流动可分为三类:①流场变化速率极慢的流动:流场中任意一点的平均速度随时间逐渐增加或减小,在这种情况下可以忽略加速度效应,这种流动又称为准定常流动。
水库的排灌过程就属于准定常流动。
可认为准定常流动在每一瞬间都服从定常流动的方程,时间效应只是以参量形式表现出来。
②流场变化速率很快的流动:在这种情况下须考虑加速度效应。
活塞式水泵或真空泵所造成的流动,飞行器和船舶操纵问题中所考虑的流动都属这一类。
这类流动和定常流动有本质上的差别。
例如,用伯努利方程(见伯努利定理)描述这类流动,就须增加一个与加速度有关的项,成为:,式中为理想流体沿流线的速度分布;A和B表示同一流线上的两个点;P 为压强;为密度;g为重力加速度;z为重力方向上的坐标;ds为流线上的长度元。
③流场变化速率极快的流动:在这种情况下流体的弹性力显得十分重要,例如瞬间关闭水管的阀门。
阀门突然关闭时,整个流场中流体不可能立即完全静止下来,速度和压强的变化以压力波(或激波)的形式从阀门向上游传播,产生很大的振动和声响,即所谓水击现象。
这种现象不仅发生在水流中,也发生在其他任何流体中。
在空气中的核爆炸也会发生类似现象。
除上述三类流动外,某些状态反复出现的流动也被认为是一种非定常流动。
第三十八章线性定常控制系统的数学模型第一节控制系统模型的构成一、控制系统的模型描述控制系统动态特性的数学表达式称为系统的数学模型,它是分析和设计系统的依据。
数学模型应当既能足够准确地反映系统的动态特性,又具有较简单的形式。
实际系统都程度不同地存在非线性和分布参数特性,如果这些因素影响不大,则可忽略不计。
在正常工作点附近变化时,可以用线性化模型来处理;但当系统在大范围内变化时采用线性化的模型就会带来较大误差。
可以根据系统内部的变化机理写出有关的运动方程,或者通过实验测取系统的输入!输出数据,然后对这些数据进行处理,从而建立系统的数学模型。
前者是机理法,后者是测试法,又称系统辨识。
二、微分方和差分方程微分方程是连续系统最基本的数学模型,可按下列步骤建立:"!将系统划分为单向环节,并确定各个环节的输入量、输出量。
单向环节是指后面的环节无负载效应,即后面的环节存在与否对该环节的动态特性没有影响。
#!根据系统内部机理,通过简化、线性化、增量化建立各个环节的微分方程。
$!消去中间变量,保留系统的输入量、输出量,得出系统的微分方程。
%!整理成标准形式,将含输出量的项写在方程左端,含输入量的项写在右端,并将各导数项按降阶排列。
设&!’,则单输入!单输出系统的微分方程的一般形式为((")())*+"((&!")())*…*+&!"(!())*+&(()),-./(’)())*-"/(’!")())*…*-’!"/!())*-’/())($0!")离散系统在某一时刻12的输出((1),可能既与同一时刻的输入与同一时刻的输入/(1)有关,又与过去时刻的输入((1!"),…,/(1!’)有关;而且还与过去时刻的输出/(1!"),…,((1!&)有关。
因此,&!’时,输入和输出之间的关系可表示为#($)*%"#($!")*…*%"#($!"),&.’($)*&"’($!")*…*&(’($!()($0!#)不失一般性,可以假定/(1),.,((1),.,13.。