变分法和加权余量法
- 格式:docx
- 大小:16.38 KB
- 文档页数:1
加权余量法的基本原理
加权余量法是一种常用于工程设计中的计算方法,其基本原理是在设计时考虑各种偏差因素,通过对这些因素进行加权,得出可靠的设计参数。
加权余量法的主要思想是在设计时加入一定的安全余量,以应对可能存在的各种不确定因素,如材料强度、加工精度、负荷变化等。
这样,在实际使用时,即使存在一些误差或者随机因素,也能保证设计的可靠性和安全性。
在具体的计算中,加权余量法通常采用统计学方法,对各种偏差因素进行量化,并按照其权重进行加权。
这样,可以得到一个综合的设计余量,即在各种偏差因素都存在的情况下,仍能保证设计的可靠性和安全性。
总之,加权余量法是一种在工程设计中广泛应用的计算方法,其基本原理是考虑各种偏差因素,通过加权计算得出可靠的设计参数,以保证工程的可靠性和安全性。
- 1 -。
有限单元法的概念
1、基本思想:借助于数学和力学知识,利用计算机技术而解决工程技术问题。
三大类型(按其推导方法分):
(1) 直接刚度法(简称直接法):根据单元的物理意义,建立有关场变量表示的单元性质方程。
(2) 变分法:直接从求解泛函的极值问题入手,把泛函的极植问题规划成线性代数方程组,然后求其近似解的一种计算方法。
(3) 加权余量法:直接从控制方程中得到有限单元方程,是一种近似解法。
2、有限单元法基本步骤
(1) 待求解域离散化
(2) 选择插值函数
(3) 形成单元性质的矩阵方程
(4) 形成整体系统的矩阵方程
(5) 约束处理,求解系统方程
(6) 其它参数计算
本文来源于:元计算官网。
第1章 有限元法的理论基础——加权余量法和变分原理 复习题1.1已知一个数学微分方程,如何建立它的等效积分形式?如何证明两者是等效的? 1.2 等效积分形式和等效积分“弱”形式的区别何在?为什么后者在数值分析中得到更多的应用?1.3 不同形式的加权余量法之间饿区别何在?除书中已列举的几种方法以外,你还能提出其他形式的加权余量法吗?如能,分析新方法有什么特点。
1.4什么是加权余量的伽辽金方法?它有什么特点? 1.5如何识别一个微分算子是线性、自伴随的?识别它的意义何在? 1.6 如何建立与线性、自伴随微分方程相等效的泛函和变分原理?如何证明它和加权余量的伽辽金方法之间的等效性?练习题1.1 一维热传导问题微分方程由(1.2.26)式给出,按1.2.2节例1.4给定的近似解及权函数用加权余量的配点法、子域法及伽辽金法求解并用图1.3进行校核。
1.2 某问题的微分方程是22220c Q x y φφφ∂∂+++=∂∂ 在Ω内 边界条件是 _φφ= (在1Γ上)_q n φ∂=∂ (在2Γ上) 其中和Q 仅是坐标的函数,试证明此方程的微分算子是自伴随的,并建立相应的自然变分原理。
c第2章 弹性力学问题有限元方法的一般原理和表达格式 复习题2.1 选择位移模式的原则是什么?以8结点四边形单元为例,如何选择体现所述原则的位移模式?2.2 单元刚度矩阵每一个元素的力学意义是什么?矩阵具有什么性质?这些性质的力学意义是什么?2.3 什么是单元结点自由度和结构结点自由度之间的转换矩阵?它在实际计算执行中有什么作用?2.4结构刚度矩阵和载荷列阵的集成实际是如何进行的? 2.5结构刚度矩阵有什么性质和特点?在计算中如何利用它们? 2.6 什么是有限元解的收敛性?什么是解的收敛准则?为什么必须满足这些准则,有限元解才能收敛于微分方程的精确解?2.7为什么位移元解具有下限性?力学上如何解释? 2.8 为什么位移有限元的应力结果精度低于位移结果?应力结果表现出哪些特点?有什么能改进应力结果的方法?2.9 和平面问题有限元分析相比较,轴对称问题有限元分析有什么相同点和不同点? 练习题2.1 如图2.1所示的3结点三角形单元,厚度=1cm ,弹性模量t E =2.0×MPa ,泊桑比510ν=0.3。
加权余量法的基本原理
加权余量法是一种常用的风险控制方法,其基本原理为在投资决策时考虑一个适当的余量,以应对不确定性因素带来的风险。
具体来说,加权余量法的应用步骤如下:
1. 确定投资目标和预期收益率。
2. 评估投资组合中的风险,并计算出组合的标准差。
3. 根据投资者的偏好和风险承受能力,确定适当的加权余量。
这个余量通常是投资者的风险承受能力的一个百分比。
4. 通过将余量与标准差相乘,得出组合的最大净亏损额。
如果该净亏损额超过了投资者能够承受的最大亏损额,就需要对组合进行调整。
5. 确定投资组合中每个资产的权重,并根据加权余量的原则,对其进行调整。
加权余量法的基本原理是在保证投资者的收益率目标的同时,尽可能地降低风险。
通过合理的加权余量设置,投资者可以在保证收益的前提下,有效地控制风险,从而获得更加稳健的投资回报。
- 1 -。
有限元的理论基础有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
1.加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。
(Weigh ted residual method WRM )是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。
加权余量法是求解微分方程近似解的一种有效的方法。
设问题的控制微分方程为:在V 域内 在S 边界上式中 :L 、B ——分别为微分方程和边界条件中的微分算子;f 、g ——为与未知函数u 无关的已知函数域值;u ——为问题待求的未知函数 ()0B u g -=(5.1.2)()0L u f -=(5.1.1)混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。
对内部法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难,但试函数一经建立,其工作量较小。
无论采用何种方法,在建立试函数时均应注意以下几点:(1)试函数应由完备函数集的子集构成。
已被采用过的试函数有幂级数、三角级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。
(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导数连续性。
(3)试函数应与问题的解析解或问题的特解相关联。
若计算问题具有对称性,应充分利用它。
显然,任何独立的完全函数集都可以作为权函数。
按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。
其中伽辽金法的精度最高。
2、虚功原理——平衡方程和几何方程的等效积分“弱”形式虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。
第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。
有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。
2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。
在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。
2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。
同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。
A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。
微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。
所以在以上两式中采用了矩阵形式。
以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。
固体力学计算方法的发展孙秀山 岑章志 刘应华(北京大学工程力学系, 北京100084)摘要本文简要回顾了固体力学计算方法的发展过程。
从早期通过解析方法求解简单问题开始,固体力学的计算方法经历了一个从精确解法到近似解法、从解析方法到数值方法的发展过程,这一过程可以依据其历史阶段分为三种类型:传统解析方法、近似求解方法(古典数值方法)和现代数值方法。
文中分析了不同发展阶段中典型固体力学计算方法的形成及其特点,探讨了这些方法对固体力学发展的作用以及影响,最后总结了这些方法之间的关系。
关键词固体力学,计算方法,发展过程,继承关系1 引言固体力学是在经典牛顿力学框架下最先发展起来的学科之一,主要研究可变形体在各种外界因素作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律,是力学中形成较早、理论性较强、应用较广的一个分支[1]。
固体力学的发展首先是建立在弹性理论基础之上的,随后在工业发展的推动下,固体力学中有关塑性理论、强度理论以及稳定理论等得到了进一步的发展[2, 3]。
在传统的固体力学理论中,一般把研究对象看作是由无限个假象的元素组合在一起的连续体,因此研究对象(连续体)中的力学量(如位移、应变、应力等)就可以假设为空间或时间的连续函数。
这样,对于一个确定的固体力学问题,借助于数学方法最终可以将其转化相应的偏微分方程(或方程组)在给定条件下的边值问题或初值问题,如经典弹性理论中L-N方程或B-M方程的狄利赫莱(Dirichlet)边值问题和诺依曼(Neumann)边值问题。
对于这类方程(或方程组)的求解一直贯穿着固体力学的整个发展阶段,成为固体力学的重要研究内容之一。
从早期通过解析方法求解简单问题开始,固体力学的计算方法依据其历史发展过程大致经历了如下三个阶段:传统的解析方法、近似求解方法(古典数值方法)和现代数值方法,其中每个阶段里都出现了多种分析方法和计算方法。
在这些方法的发展中,尤以计算机技术的出现和应用为转折点,标志着固体力学计算方法的一个飞跃,促使了固体力学无论在理论研究方面还是在实际工程应用中都有了显著的进步[4, 5]。
变分法和加权余量法是两种在数学和工程领域中常用的方法,它们主要用于解决微分方程和积分方程的近似解问题。
变分法是一种寻找函数最优解的方法,通常用于解决泛函的最小值问题。
它通过选取适当的函数,使得泛函取得极小值,从而得到原方程的近似解。
变分法广泛应用于物理学、工程学和经济学等领域,如最小势能原理、最小作用量原理等都是变分法的应用实例。
加权余量法是一种直接从微分方程或积分方程出发,通过选取适当的试探解,使余量在某种平均意义上为零的方法。
这种方法通过引入权函数来控制余量的分布,从而得到原方程的近似解。
加权余量法在计算力学、流体力学、固体力学等领域有广泛的应用,如有限元法、边界元法、无网格法等都是基于加权余量法的思想发展而来的。
总之,变分法和加权余量法都是重要的数学和工程方法,它们在不同的领域有着广泛的应用,是研究和解决微分方程和积分方程的有力工具。
如需了解更多相关信息,建议咨询数学或物理专业人士。