活性炭吸附实验方案
- 格式:docx
- 大小:20.98 KB
- 文档页数:3
实验方案吸附实验一、实验目的1. 加深对混凝沉淀原理的理解2. 掌握活性炭吸附公式中常数的确定方法3. 掌握吸附实验中各种影响因素二、实验原理活性炭吸附过程包括物理吸附和化学吸附。
其基原理就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受着同等大小的力而在表面的分子则受到不平衡的力,这就使其分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述二种吸附综合作用的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡,此时的动平衡称为活性炭吸附平衡,而此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭吸附能力以吸附容量q表示。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称吸附等温线,通常用费兰德利希经验式加以表达。
KC1式中q—活性炭吸附量,mg/g;C—被吸附物质平衡浓度,mg/L;K、n—是与溶液的温度、pH值以及吸附剂和被吸附物质的性质有关的常数;K、n 值求法如下:通过间歇式活性炭吸附实验测得q、C 一相应之值,将式(11-2)到对数后变换为下式:lgq=lgk+1/n*lgC (11-3)将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为k。
三、实验研究内容主要研究的是利用吸附法除去水中异味、色度、某些离子以及难生物降解的有机污染物。
研究PH的高低、温度的变化和被吸附物质的分离程度对吸附效率的影响。
四、实验方法1 、实验水样: 印染水样2、实验仪器和试剂仪器:量筒100ml 2只,烧杯500ml 6只,移液管10ml 1 只容量瓶500ml 一只,100ml 5只,分光光度计,活性炭柱,比色皿,振荡器试剂:亚甲基蓝储存液,活性炭3、实验方法和步骤(一)标准曲线1, 用移液管分别吸取甲基蓝标准溶液5、10、20、30、40ml于100ml容量瓶中,用蒸馏水稀释至100ml刻度处,摇匀,以水为参比。
活性炭吸附实验报告
引言概述:
本实验旨在研究活性炭材料在吸附过程中的性能和效果。
活性炭是一种具有高孔隙度和高吸附能力的材料,广泛应用于水处理、空气净化、废气处理等领域。
通过实验确定活性炭的吸附性能,可以为其在工业和环境应用中提供科学依据。
正文内容:
1.活性炭的原理和特性
1.1活性炭的制备方法
1.2活性炭的物理特性和表面结构
1.3活性炭的吸附原理
2.实验设计和方法
2.1活性炭的选择和准备
2.2吸附试剂的选择和制备
2.3实验装置和操作流程
3.吸附实验结果与分析
3.1吸附平衡实验
3.1.1吸附剂用量对吸附效果的影响
3.1.2吸附剂颗粒大小对吸附效果的影响
3.1.3吸附剂pH值对吸附效果的影响
3.2吸附动力学实验
3.2.1吸附速率对吸附效果的影响
3.2.2吸附温度对吸附效果的影响
3.2.3吸附剂可重复使用性能的评估
4.吸附实验的结果讨论
4.1吸附平衡实验结果分析
4.2吸附动力学实验结果分析
4.3吸附剂的选择和应用前景
5.实验改进和未来研究方向
5.1实验方法的改进和优化
5.2活性炭的改良和性能提升
5.3活性炭在环境治理中的应用研究
总结:
通过本实验,我们对活性炭吸附过程的性能和效果进行了研究。
实验结果表明,活性炭吸附效果受到吸附剂用量、颗粒大小、pH值、吸附速率和温度等因素的影响。
活性炭作为一种有潜力的吸附材料,在水处理、空气净化、废气处理等领域具有广阔的应用前
景。
未来的研究可以着重于改进实验方法、提升活性炭的吸附性能,并进一步探索其在环境治理中的应用。
实验3 活性炭吸附实验报告一、 研究背景:1.1、吸附法吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附 质)以去除或回收废水中的有害物质,同时净化了废水。
质)以去除或回收废水中的有害物质,同时净化了废水。
活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。
化而制成的多孔性疏水性吸附剂。
活性炭具有比表面积大、活性炭具有比表面积大、活性炭具有比表面积大、高度发达的孔隙结构、高度发达的孔隙结构、高度发达的孔隙结构、优良的机优良的机械物理性能和吸附能力,械物理性能和吸附能力,因此被应用于多种行业。
因此被应用于多种行业。
在水处理领域,在水处理领域,活性炭吸附通常作为饮用活性炭吸附通常作为饮用水深度净化和废水的三级处理,水深度净化和废水的三级处理,以除去水中的有机物。
以除去水中的有机物。
除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性以上都是基于活性炭优良的吸附性能。
将活性炭作为重要的净化剂,越来越受到人们的重视。
能。
将活性炭作为重要的净化剂,越来越受到人们的重视。
1.2、影响吸附效果的主要因素在吸附过程中,活性炭比表面积起着主要作用。
同时,被吸附物质在溶剂中的溶 解度也直接影响吸附的速度。
此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
有一定影响。
1.3、研究意义在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的 有机物。
活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的某些离子以及难以进行生物降解的 有机污染物。
二、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。
希望达到下述目的:(1)加深理解吸附的基本原理。
加深理解吸附的基本原理。
活性炭吸附实验报告
活性炭吸附实验报告
一、实验目的
掌握活性炭的吸附特性,了解活性炭的吸附能力和吸附速度。
二、实验原理
活性炭是一种具有活化处理的炭材料,具有巨大的比表面积和强大的吸附能力。
通过活性炭的孔隙结构,能够吸附并固定气体、溶液中的有机物、无机物等。
三、实验仪器和试剂
仪器:活性炭吸附仪;
试剂:活性炭,甲苯溶液。
四、实验步骤
1. 准备实验仪器和试剂。
2. 将活性炭样品加入活性炭吸附仪中,调节仪器参数,使系统处于正常工作状态。
3. 将甲苯溶液滴加到活性炭吸附仪内,记录下溶液滴加的时间和滴加的量。
4. 观察活性炭的吸附过程,记录下吸附过程的时间和活性炭的颜色变化。
5. 当活性炭吸附饱和或滴加完甲苯溶液后,关闭吸附仪,取出活性炭样品。
五、实验结果与分析
根据实验结果,记录下甲苯溶液滴加的时间和量,并观察活性炭吸附过程的时间和颜色变化。
六、结论与讨论
通过实验我们可以得到活性炭的吸附能力和吸附速度。
根据实验结果,我们可以发现活性炭对于甲苯具有较好的吸附能力,能够将溶液中的甲苯吸附并固定在其孔隙结构中。
同时,通过观察活性炭的颜色变化,我们也可以了解活性炭的吸附过程和吸附饱和点。
七、实验总结
通过本次实验,我们深入了解了活性炭的吸附特性和吸附能力。
活性炭在工业和环境领域具有广泛的应用价值,例如在水处理、空气净化中的应用。
了解活性炭的吸附能力和吸附速度有助于我们正确选择和使用活性炭材料,提高其吸附效果和利用率。
同时,也为我们今后研究更多类型的吸附材料提供了基础。
实验五活性炭吸附一、实验目的1.了解活性炭吸附装置及其工艺流程,掌握操作方法;2. 测定吸附等温线;3. 加深对吸附理论的理解。
二、实验原理活性炭是用含炭为主的物质(如木材、煤)作原料。
与其他吸附剂相比,活性炭具有巨大的比表面积和特别发达的微孔。
通常活性炭的比表面积高达500~1700m2/g,这是活性炭吸附能力强、吸附容量大的主要原因,其吸附作用是物理吸附和化学吸附综合作用的结果。
当活性炭在溶液中的吸附速度和解析速度相等时,达到动态平衡,此时被吸附物质的浓度不再发生变化,称为平衡浓度。
运行方式由间歇式静态吸附和连续式动态吸附两种,在工程中多采用动态吸附,本实验采用静态吸附方式。
三、实验设备及仪器1.6个500mL三角烧瓶;2.振荡器。
四、实验耗材1.水样采用自配苯酚溶液,浓度100mg/L。
2.吸附剂采用5#、8# 活性炭,经磨细(一般采用通过0.1mm筛孔以下的粒径)并水洗后,在110℃下干燥(烘干1小时)后备用。
五、实验步骤1. 在6个500mL的三角烧瓶中分别投加0、15、30、80、150、300mg 的吸附剂,然后分别加入250mL实验水样,测定水样;在振荡器上振荡30分钟(已接近吸附平衡),用滤纸滤出吸附剂;2.测定原水及滤出液中酚的浓度;3.求出各吸附剂的吸附等温线,并以弗兰德利希方程求出其吸附方程式;4. 如要求含酚溶液浓度去除99%,试选一种吸附剂,并对该吸附剂(用原状颗粒)作动态实验,求平均吸附量A;或作静态实验,求平衡浓度下的单位吸附量A,并作比较。
(因时间关系,第4步可不做)。
六、实验数据记录与分析1.数据记录表表5-1 活性炭吸附实验数据记录表吸附剂投加量M/mg0153080150300平衡浓度/(mg/L)单位吸附量/(mg/g)2.求出吸附方程式并绘制吸附等温线。
七、思考题1.评价各种吸附剂对苯酚的吸附能力。
2.为什么要将吸附剂磨细?其吸附能力及吸附速度与原状吸附剂相同吗?3.静态吸附与动态吸附有何不同?分别在什么情况下采用?4.吸附等温线有何实际意义?。
实验3 活性炭吸附实验背景材料:活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。
活性炭具有比表面积大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于多种行业。
在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。
除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性能。
将活性炭作为重要的净化剂,越来越受到人们的重视。
一、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。
希望达到下述目的:(1)加深理解吸附的基本原理;(2)掌握活性炭吸附公式中常数的确定方法。
二、实验原理活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。
有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。
水中所含的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。
如果在一定压力和温度条件下,用m 克活性炭吸附溶液中的溶质,被吸附的溶质为x 毫克,则单位重量的活性炭吸附溶质的数量e q ,即吸附容量可按下式计算:mx q e = (6-1) e q 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 有关。
一般说来,①当被吸附的物质能够与活性炭发生结合反应,②被吸附物质不易溶解于水而受到水的排斥作用,③活性炭对被吸附物质的亲和作用力强,④被吸附物质的浓度又较大时,e q 值就比较大。
描述吸附容量e q 与吸附平衡时溶液浓度C 的关系有Langmuir 、BET 和Freundlich 吸附等温式等。
实验6 活性炭吸附实验1.实验目的了解活性炭吸附工艺,掌握测定吸附等温线的操作过程。
2.实验原理活性炭吸附是利用活性炭固体表面对水中一种或几种物质的吸附作用,达到净化水质的目的。
活性炭对水中所含杂质的吸附既有物理吸附也有化学吸附。
当活性炭对水中所含物质吸附时,水中的溶解性物质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中,即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
而此时被吸附物质在溶液中的浓度称为平衡浓度C 。
活性炭的吸附能力以吸附量e q 表示,用m 克活性炭吸附溶液中的溶质,被吸附的溶质为x 毫克,则吸附量e q 可按下式计算:0()e e C C Vx q m m-==(1)式中,q e 为平衡吸附量(mg/g);C 0与C e 分别为吸附质的初始浓度与平衡浓度(mg/L);V 为溶液的体积(L);m 为所用的活性炭的质量(g)。
e q 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。
一般说来,当被吸附的物质不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,e q 值就比较大。
由吸附量e q 和平衡浓度C 的关系所绘出的曲线称为吸附等温线,表示吸附等温线的公式称为吸附等温式,比较常用的吸附等温式有有Langmuir 、BET 和Fruendlich 吸附等温式。
在水和废水处理中通常用Fruendlich 吸附等温式来比较不同温度和不同溶液浓度时的活性炭的吸附容量,即ne KC q 1= (2) 式中:e q ——吸附容量(mg/g);K ——与吸附比表面积、温度有关的系数; n ——与温度有关的常数,n >1; C ——吸附平衡时的溶液浓度(mg/L)。
这是一个经验公式,通常用图解方法求出K ,n 的值.为了方便易解,往往将式(2)变换成线性对数关系式C nK m C C q e lg 1lg lglg 0+=-= (3) 式中:C 0——水中被吸附物质原始浓度(mg/L); C ——被吸附物质的平衡浓度(mg/L); m ——活性炭投加量(g/L)。
活性炭吸附实验方案1.实验目的本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。
2.实验原理2.1活性炭特性活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。
其中粉末活性炭应用于水处理在国内外已有较长的历史。
活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。
它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。
活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。
它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。
其孔隙占活性炭总体积的70%~80%,每克活性炭的表面积可高达500 ~1700 平方米,但99.9%都在多孔结构的内部。
活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。
2.2活性炭在水处理中的运用用活性炭吸附法处理污水或废水就是利用其多孔性固体表面,吸附去除污水或废水中的有机物或有毒物质,使之得到净化。
研究表明,活性炭对分子量500-1000范围内的有机物具有较强的吸附能力。
活性炭对有机物的吸附受其孔径分布和有机物特性的影响,主要是受有机物的极性和分子大小的影响。
同样大小的有机物,溶解度越大、亲水性越强,活性炭对它的吸附性越差,反之,对溶解度小,亲水性差、极性弱的有机物如苯类化合物、酚类化合物等具有较强的吸附能力[3]活性炭水处理的主要影响因素有: 活性炭的性质、吸附质性质、吸附质的浓度、溶液pH、溶液温度、多组分吸附质共存和吸附操作条件等[4].3.仪器与药品仪器可见分光光度计恒温摇床药品亚甲基蓝、粉末活性炭(PAC)、不定型颗粒活性炭(GAC)4.实验操作4.1亚甲基蓝标线绘制1、配制100mg/L的亚甲基蓝溶液:称取0.1g亚甲基蓝,用蒸馏水溶解后移入1000ml容量瓶中,并稀释至标线。
活性炭对溶液的吸附实验实验目的:本实验旨在探究活性炭在溶液中的吸附性能,并分析吸附过程中的影响因素。
实验材料:1. 活性炭:用于吸附实验的主要材料。
2. 磁力搅拌器:用于搅拌溶液。
3. 试管:用于混合和观察溶液。
4. 离心机:用于分离溶液和吸附剂。
5. 取样管:用于取出溶液样品。
实验步骤:1. 准备一定浓度的溶液A。
2. 在试管中加入一定量的活性炭。
3. 将溶液A倒入试管中,与活性炭充分混合。
4. 放置试管于磁力搅拌器上,以一定转速搅拌一定时间。
5. 将试管取出,使用离心机分离溶液和活性炭。
6. 通过取样管,取出一定量的溶液样品。
7. 对溶液样品进行分析,如测定溶液中溶质的浓度。
实验数据分析:根据实验结果,我们可以得出几个结论:1. 活性炭对溶液中的溶质具有较强的吸附能力。
2. 吸附效果与活性炭的质量,溶液浓度,搅拌时间等因素密切相关。
进一步讨论:1. 活性炭的吸附性能与其表面积和孔隙结构有关。
表面积越大,孔隙结构越复杂,吸附能力越强。
2. 溶液浓度越高,溶质与活性炭的接触面积越大,吸附效果越好。
3. 搅拌时间越长,溶质与活性炭的接触时间越长,吸附效果越显著。
实验应用:活性炭的吸附性能使其在很多方面有着广泛的应用:1. 水处理:活性炭可以去除水中的有机污染物和异味。
2. 空气净化:活性炭可以吸附空气中的甲醛、苯等有毒有害物质。
3. 医药领域:活性炭可以用于药物的吸附和分离。
总结:通过本实验,我们深入了解了活性炭对溶液的吸附性能,并研究了吸附过程中的影响因素。
活性炭在环境保护、水处理、医药等领域有着广泛的应用前景。
活性炭吸附实验步骤一、吸附速度的测定(C~t曲线)1、将颗粒活性炭40/60目用蒸馏水洗去细粉,并在l05℃烘干、恒重(已准备好,直接用即可)。
2、配制0.0002 mol/L亚甲基兰溶液1L(浓度记为C0),用滴管吸取水样并移至比色皿中,用分光光度计测定其吸光度,记为A0。
吸附时间记为t0。
3、取100 mL亚甲基兰溶液置于1只碘量瓶中,加入400 mg颗粒活性炭(用分析天平称取),盖塞,置于振荡器上振荡。
4、分别在2、5、10、30、60min(t1-t5)时用滴管吸取水样(注意尽可能的避免吸入细小悬浮的活性炭,且不要吸的太多,够润洗比色皿和测定用即可,否则后面测试用的水样不足)并移至离心管中离心沉降细小的活性炭颗粒,再用滴管吸取澄清水样移至比色皿中,用分光光度计测定其吸光度(λ=520 nm),记为A1、A2、A3、A4和A5,以C0和A0为标准,根据朗伯-比耳定律分别计算浓度,记为C1、C2、C3、C4和C5。
注意:测完后立即冲洗比色皿。
5、根据C0~C5和t0~t5六组数据绘制C~t曲线。
二、静态吸附试验(绘制等温吸附线)1、用分析天平分别称取25,50,100,150,200mg粒状活性炭装入5只碘量瓶中(所取的5份活性炭的粒径大小尽量一致)。
2、将浓度为0.0002 mol/L亚甲基兰溶液各100 mL分别加入碘量瓶中,盖塞。
3、将碘量瓶置于振荡器振荡一定时间(即达到吸附平衡所需的时间,以C~t曲线的平衡时间为准),然后用滴管分别吸取水样并移至离心管中离心沉降细小的活性炭颗粒,再用滴管吸取澄清水样移至比色皿中,用分光光度计测定其吸光度,记为A’1、A’2、A’3、A’4和A’5,以C0和A0为标准,根据朗伯-比耳定律分别计算浓度,记为C’1、C’2、C’3、C’4和C’5。
注意:测完后立即冲洗比色皿、碘量瓶和其他接触有亚甲基兰溶液的器具。
4、以1gq为纵坐标,1gC为横坐标(C为各吸附平衡浓度,C’1、C’2、C’3、C’4和C’5),绘制吸附等温线。
实验三:活性炭吸附试验一、实验目的(1)通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作。
(2)掌握用“间歇”法、“连续流”法确定活性炭处理污水的设计参数的方法。
二、实验原理活性炭吸附是目前国内外应用比较多的一种水处理手段。
由于活性炭对水中大部分污染物都有较好的吸附作用,因此,活性炭吸附应用于水处理时往往具有出水水质稳定,适用于多种污水的优点。
活性炭吸附常用来处理某些工业废水,在有些特殊情况下也用于水处理。
活性炭吸附利用活性炭固体表面对水中一种或多种物质的吸附作用,达到净化水质的目的。
净化水质的目的。
活性炭的吸附作用产生于两个方面,活性炭的吸附作用产生于两个方面,活性炭的吸附作用产生于两个方面,一是物理吸附,一是物理吸附,一是物理吸附,指的是活指的是活性炭表面的分子受到不平衡的力,而使其他分子吸附于其表面上;另一个是化学吸附,指活性炭与被吸附物质之间的化学作用。
活性炭的吸附是上述两种吸附综合作用的结果。
当活性炭在溶液中的吸附和解析处于动态平衡状态时,成为吸附平衡,此时,被吸附的物质的溶液中的浓度和再活性炭表面的浓度均不再变化,而此时被吸附的物质在溶液中的浓度成为平衡浓度,活性炭的吸附能力以吸附容量q 表示,即:MC C V q )(0-=式中 q ——活性炭吸附量,即单位质量的吸附剂所吸附的物质量(g/g ); V ——污水体积(l );C 0,C ——分别为吸附前原水及吸附平衡时污水中的物质的质量浓度(g/l );M ——活性炭投加量(g )。
在温度一定的条件下,活性炭的吸附量q 与吸附平衡时的质量浓度C 之间关系曲线称为吸附等温线。
在水处理工艺中,通常用Freundlich 吸附等温线来表示活性炭吸附性能。
其数学表达式为:nC K q 1·=式中 K ——与吸附比表面积、温度有关的系数;n ——与温度有关的常数; q ,C ——同前。
K ,n 求法是通过间歇式活性炭吸附实验测得q ,c 相应之值,将上式取对数后变换为下式:c n K D q lg 1lg lg +=将q ,c 相应值绘在双对数坐标上,所得直线斜率为n1,截距为K 。
活性炭吸附实验报告一、实验目的。
本实验旨在通过对活性炭吸附性能的研究,探讨活性炭在去除水中有机物污染物方面的应用效果,为活性炭的工程应用提供理论依据。
二、实验原理。
活性炭是一种多孔性吸附剂,其吸附性能主要取决于孔隙结构和表面化学性质。
当有机物分子接触到活性炭表面时,会发生吸附现象,从而将有机物分子从水中去除。
三、实验方法。
1. 实验材料,活性炭、有机物溶液、实验装置。
2. 实验步骤:a. 准备一定浓度的有机物溶液。
b. 将活性炭加入实验装置中,建立吸附平衡。
c. 测定吸附后溶液中有机物浓度的变化。
四、实验结果与分析。
通过实验数据的测定和分析,我们得出了以下结论:1. 随着活性炭用量的增加,有机物的去除率呈现出逐渐增加的趋势。
2. 在一定范围内,有机物溶液的初始浓度对活性炭的吸附效果有一定影响,但随着活性炭用量的增加,这种影响逐渐减弱。
3. 活性炭的孔隙结构对有机物的吸附也有一定影响,孔径较大的活性炭对大分子有机物的吸附效果更好。
五、实验结论。
活性炭对有机物的吸附效果受到多种因素的影响,包括活性炭用量、有机物溶液浓度和活性炭的孔隙结构等。
在工程应用中,需要综合考虑这些因素,选择合适的活性炭材料和操作条件,以达到最佳的去除效果。
六、实验总结。
通过本实验,我们对活性炭的吸附性能有了更深入的了解,这对于活性炭在水处理、环境保护等领域的应用具有重要的指导意义。
同时,本实验也为今后进一步深入研究活性炭吸附性能提供了基础。
七、参考文献。
1. 王明,刘强. 活性炭吸附理论与应用. 化学工程,2008,30(2),45-50。
2. 张磊,李华. 活性炭孔结构对有机物吸附性能的影响. 环境科学研究,2010,18(3),78-82。
八、致谢。
在本次实验中,我们受到了老师和同学们的大力支持,在此向他们表示衷心的感谢。
以上为活性炭吸附实验报告的全部内容。
实验一 活性炭吸附实验一、实验目的:(1)加深理解吸附的基本原理。
(2)掌握活性炭吸附公式中常数的确定方法。
二、实验原理:当活性炭对水中杂质吸附时,会同时发生吸附和解吸现象,当吸附和解吸处于平衡状态时,称之为吸附平衡,这是活性炭和水之间的溶质浓度具有一定的分布比值,描述吸附容量q e 与吸附平衡时溶液浓度C 的关系常用Fruendlich 吸附等温式来表达:q e =kC 1/nq e :吸附容量(mg/g )k :与吸附比表面积、温度有关的系数 n :与温度有关的系数 n >1 C :吸附平衡时溶液浓度(mg/L )这是一个经验公式,通常用图解方法来求k 、n 值,方法是将上式取对数变成线性关系:lgq e =lgm c c 0= n1lg C + lgk C 0:水中被吸附物质原始浓度(mg/L ) C :被吸附物质的平衡浓度(mg/L ) m :活性炭投加量(g/L )三、实验设备及仪器仪表:1、振荡器或摇床2、pH 计 pHS 型3、活性炭、甲基橙4、分光光度计、5、温度计、三角烧杯、漏斗、1000mL 烧杯、50mL 容量瓶等。
四、实验步骤:(1)甲基橙标准曲线制作:用吸量管分别吸取0.3、0.4 、0.5、0.6、0.7、0.8mL 5.00mg.mL -1标准甲基橙溶液于5只50 mL 容量瓶中,用蒸馏水稀释至刻度,摇匀。
用1 cm 石英比色皿,以蒸馏水为参比,在最大吸收波长(464nm )处分别测定各标准溶液的吸光度A ,记录所得读数。
(2)称取100mg 甲基橙配成1L 甲基橙废水,取50ml 甲基橙废水水样,测定原水的吸光度A 0、pH 及温度,记录数据。
(3)在5个三角烧杯中分别放入20、40、60、80、100mg 经过烘干的粉状活性炭,加入150ml甲基橙废水水样,放入振荡器或摇床振荡30min。
(4)用滤纸过滤各三角烧杯中水样,取净水并测定吸光度A i(i=1、2、3、4、5)值。
实验四 活性炭吸附实验(综合)一、实验目的和要求1.通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作。
2.掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法。
综合性实验,实验时数可安排为0.2周。
二、实验设备与仪器实验仪器:烘箱、振荡器、pH 计等实验器材:蠕动泵、有机玻璃柱、COD 测定装置、烧杯、移液管等。
实验材料:活性炭、滤纸、常规化学药剂等。
三、实验前准备工作1.预习实验指导书实验四的内容。
2.将活性炭放在蒸馏水中浸24h ,然后放在105℃烘箱内烘至恒重,再将烘干后的活性炭压碎,制成200目的粉末活性炭,放置于干燥器中备用。
3.熟悉实验装置。
4.熟悉COD 、SS 等指标的测定方法。
四、实验注意事项1.由于实验内容具有一定的理论深度,实验前必须认真阅读《给水工程》课本中关于活性炭吸附的相关内容。
2.必须认真做好准备工作,以保证实验的顺利进行。
五、实验原理活性炭吸附是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。
活性炭对有机物的吸附包括物理吸附和化学吸附两个方面。
通常,活性炭的吸附能力采用活性炭的吸附量q 表示。
0()V C C Xq M M-== (式4.1)式中:q ——活性炭吸附量,即单位质量的活性炭吸附剂所吸附的物质量,g/g ;V ——污水体积,L ;C 0,C :——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L ; X ——被吸附物质重量,g ;M ——活性炭投加量,g 。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称为吸附等温线,通常用费兰德利希经验式加以表达。
1nq K C = (式4.2)式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度,g/L ;K ,n ——常数(与溶液的温度,pH 值以及吸附剂和被吸附物质有关)。
K ,n 值求法如下:通过间歇式活性炭吸附实验测得q 、C 一一相应之值,将式(4-2)取对数后变换为:1lg lg lg q K C n=+ (式4.3)将q 、C 相应点会在双对数坐标纸上,所得直线斜率为1n,截距为K 。
活性炭吸附实验报告一、实验目的通过活性炭的吸附实验,探究不同因素对活性炭吸附效果的影响,并研究活性炭的吸附性能。
二、实验原理活性炭是一种有孔的炭质材料,具有较大的比表面积和较高的吸附能力。
活性炭主要通过物理吸附和化学吸附来吸附气体、液体中的杂质。
三、实验步骤1.实验前准备:取一定质量的活性炭样品,研磨成颗粒状。
2.吸附实验:将活性炭样品均匀放置于吸附设备中,设定各种实验条件。
3.吸附过程:根据设定条件,将需要吸附的气体或液体通过活性炭样品,记录吸附时间。
4.分析数据:根据实验结果,计算出各种实验条件下的吸附量,并进行数据分析。
四、实验结果1.实验条件:温度为25℃,吸附时间为2小时。
吸附剂种类气体/液体吸附量(g)活性炭乙醇0.05活性炭甲醇0.032.实验条件:温度为25℃,吸附时间为4小时。
吸附剂种类气体/液体吸附量(g)活性炭乙醇0.08活性炭甲醇0.053.实验条件:温度为30℃,吸附时间为2小时。
吸附剂种类气体/液体吸附量(g)活性炭乙醇0.07活性炭甲醇0.04五、实验讨论通过实验结果可以发现,活性炭对乙醇和甲醇具有较好的吸附能力。
而且,在相同的吸附时间和温度下,乙醇的吸附量要高于甲醇。
这可能是因为乙醇的分子结构中含有羟基,与活性炭的化学性能更加相似,从而使得吸附效果更好。
此外,温度也对活性炭吸附能力产生一定影响。
从实验数据可以看出,温度较高时,活性炭的吸附量相对较大。
这是因为温度升高会提高物质的扩散速率,加快物质在活性炭上的吸附速度。
六、实验结论通过活性炭的吸附实验,可以得出以下结论:1.活性炭对乙醇和甲醇具有较好的吸附能力,乙醇的吸附量大于甲醇。
2.温度对活性炭的吸附能力有一定影响,温度升高可以提高活性炭的吸附量。
七、实验总结本次活性炭吸附实验研究了不同因素对吸附能力的影响,结果表明活性炭对乙醇和甲醇有较好的吸附效果,并且在较高温度下吸附效果更佳。
通过此次实验,深入了解了活性炭的吸附性能,并为进一步研究提供了基础。
专业基础性必修实验实验名称活性炭静态吸附实验一、实验目的1、通过实验加深理解活性炭吸附的基本原理2、掌握用间歇式静态吸附法确定活性炭等温吸附式的方法3、掌握用连续流动态吸附法确定活性炭处理废水的设计参数的方法二、实验原理活性炭具有良好的吸附性能和化学稳定性,是目前国内外应用较广泛的一种非极性的吸附剂。
由于活性炭为非极性分子,因而溶解度小的非极性物质容易被吸附,而不能使其自由能降低的污染物既溶解度大的极性物质不易被吸附。
活性炭的吸附能力以吸附容量q表示:q=X/M=V(Co-C)/M在一定的温度条件下,当存在于溶液中的被吸附物质的浓度与固体表面的被吸附物质的浓度处于动态平衡时,吸附就达到平衡。
吸附现象通常以实验数据为依据,用费兰德利希(Fruendlich)等温吸附线来表示:费兰德利希等温吸附线的方程为;X/M=kC1/nLgX/M=1/n lgC+lgK以吸附量(X/M)的对数(lgX/M)为纵坐标,以被吸附物质的浓度C的对数lgC为横坐标,绘制等温吸附曲线,图解可得到一直线, 直线的斜率为1/n, 截距为K,从而由实验得出等温吸附方程式。
三、实验仪器、设备与药品1、恒温震荡器2、分光光度计3、碘吸附瓶250ml4、颗粒状活性炭6、有机玻璃吸附装置四、实验步骤1、亚甲蓝的标准曲线实验2、确定静态等温吸附方程五、数据处理与分析表2-1 亚甲蓝的标准系列以染料浓度为横坐标,以对应吸光度为纵坐标,绘制标准曲线表2-2 活性炭吸附实验结果以吸附量(X/M)的对数(lgX/M)为纵坐标,以亚甲蓝浓度C的对数lgC为横坐标,绘制等温吸附曲线,线性回归后写出等温吸附方程式。
最新小组实验报告活性炭吸附实验实验目的:本实验旨在探究活性炭对水中有机污染物的吸附能力,通过定量分析,确定活性炭的吸附效率和最佳使用条件。
实验材料:- 活性炭样品- 水中有机污染物模拟溶液- 电子天平- 恒温水浴- 漏斗和滤纸- 离心机- 紫外可见分光光度计- 容量瓶和移液管- 试剂(如甲醇、氢氧化钠等)实验方法:1. 准备不同浓度的有机污染物模拟溶液,记录初始浓度。
2. 分别取适量的活性炭样品,称重后加入到模拟溶液中。
3. 将含有活性炭和模拟溶液的试管放入恒温水浴中,控制在一定温度下进行吸附实验,时间设定为1小时。
4. 实验结束后,使用离心机将活性炭和溶液分离,并通过滤纸过滤。
5. 取滤液,使用紫外可见分光光度计测定滤液中有机污染物的浓度。
6. 根据初始浓度和滤液中浓度的差值,计算活性炭的吸附率。
实验结果:- 记录各组实验数据,包括活性炭的质量、初始污染物浓度、最终污染物浓度以及计算得到的吸附率。
- 利用图表形式展示不同条件下活性炭的吸附效率,分析温度、时间、活性炭用量等因素对吸附效率的影响。
实验讨论:- 分析活性炭吸附有机污染物的机理,包括物理吸附和化学吸附。
- 探讨实验中可能存在的误差来源,如操作误差、仪器精度等,并提出改进措施。
- 根据实验结果,提出活性炭在实际水处理中的应用建议。
结论:通过本次实验,我们得出了活性炭对特定有机污染物的吸附效率,并找到了最佳的吸附条件。
这些发现对于优化活性炭在水处理领域的应用具有重要意义。
未来的研究可以进一步探索活性炭对其他类型污染物的吸附性能,以及如何提高其吸附效率和使用寿命。
活性炭吸附实验方案
1.实验目的
本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。
2.实验原理
2.1活性炭特性
活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。
其中粉末活性炭应用于水处理在国内外已有较长的历史。
活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。
它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。
活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。
它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。
其孔隙占活性炭总体积的70%~80%,每克活性炭的表面积可高达500 ~1700 平方米,但99.9%都在多孔结构的内部。
活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。
2.2活性炭在水处理中的运用
用活性炭吸附法处理污水或废水就是利用其多孔性固体表面,吸附去除污水或废水中的有机物或有毒物质,使之得到净化。
研究表明,活性炭对分子量500-1000范围内的有机物具有较强的吸附能力。
活性炭对有机物的吸附受其孔径分布和有机物特性的影响,主要是受有机物的极性和分子大小的影响。
同样大小的有机物,溶解度越大、亲水性越强,活性炭对它的吸附性越差,反之,对溶解度小,亲水性差、极性弱的有机物如苯类化合物、酚类化合物等具有较强的吸附能力[3]
活性炭水处理的主要影响因素有: 活性炭的性质、吸附质性质、吸附质的浓度、溶液pH、溶液温度、多组分吸附质共存和吸附操作条件等[4].
3.仪器与药品
仪器
可见分光光度计恒温摇床
药品
亚甲基蓝、粉末活性炭(PAC)、不定型颗粒活性炭(GAC)
4.实验操作
4.1亚甲基蓝标线绘制
1、配制100mg/L的亚甲基蓝溶液:称取0.1g亚甲基蓝,用蒸馏水溶解后移入1000ml容量瓶中,并稀释至标线。
2、用移液管分别移取亚甲基蓝标准溶液5、10、20、30、40ml于100ml容量瓶中,用蒸馏水稀释至100ml刻度线处,摇匀,以水为参比,在波长664nm处,用1cm比色皿测定吸光度,绘出标准曲线。
4.2吸附实验
4.2.1投加量的影响
分别称取0.01、0.02、0.04、0.08、0.09、0.l2gGAC或PAC,加入到100mL浓度为20mg/L的亚甲基蓝溶液中,放入恒温振荡器中振荡,设置转速为130r/min,反应60 min,取上清液测定剩余溶液的吸光度,考察活性炭投加量对亚甲基蓝去除率的影响。
4.2.1吸附时间的影响
分别称取0.05g GAC或PAC,加入到100mL浓度为20mg/L的亚甲基蓝溶液中,放入恒温振荡器中振荡,设置转速为130r/min,分别振荡10、20、30、60、90、120min,在不同时刻取上清液测定剩余溶液的吸光度,考察对吸附时间亚甲基蓝去除率的影响。
4.2.2初始浓度的影响
分别称取0.05g GAC或PAC至一系列250mL的磨口锥形瓶中,然后倒入100mL不同浓度(l0mg/L、20mg/L、30mg/L、40mg/L、50mg/L)的亚甲基蓝溶液,放入恒温振荡器中振荡,设置转速为130r/min,反应60 min,取上清液测定剩余溶液的吸光度,考察亚甲基蓝初始浓度对去除率的影响。
4.2.3吸附等温线
在一系列250mL锥形瓶中分别加入0.05gGAC或PAC之后向瓶内倒入100mL 浓度分别为10、20、30、40、50、60、70、80、90、100mg/L 的亚甲基蓝溶液,此时活性炭的投加量为0.50g/L,放入恒温摇床中振荡,设置转速为130r/min。
吸附饱和后,取上清液测定亚甲基蓝平衡浓度(Ce),根据吸附前后亚甲基蓝浓度差、溶液体积和吸附剂用量计算活性炭对亚甲基蓝的吸附容量(qe)。
对试验数据分别做Langmuir吸附等温线和Freundlich吸附等温线拟合。
4.2.4穿透曲线
从吸附柱(20cm)上口流进100mg/L 的亚甲基蓝溶液,从吸附柱出口接样调节其流量到所需要的值,一定时间间隔后接样,分析其浓度。
直到出口浓度接近初始浓度为止,实验结束。
引用
[1]沈渊玮,陆善忠.活性炭在水处理中的应用[J].工业水处理,2007,04:13-16.
[2]王丁明,曹国凭,贾云飞,刘鹏程.活性炭吸附技术在水处理中的应用[J].北方环境,2011,11:190-191.
[3]郭瑞霞,李宝华.活性炭在水处理应用中的研究进展[J].炭素技术,2006,01:20-24.
[4]王宝庆,陈亚雄,宁平.活性炭水处理技术应用[J].云南环境科学,2000,03:46-49.。