塔设备强度计算-裙座基础环和螺栓计算
- 格式:docx
- 大小:21.50 KB
- 文档页数:3
二、裙座的强度计算
裙座是最常见的塔设备支承结构,如右图所示。
按所支承设备的高度与直径比,裙座可分成两种:
一种是圆筒形,一种是圆锥形。
由于圆筒形裙座制
造方便和节省材料,所以被广泛采用。
但对于承受
较大风载荷和地震载荷的塔,需要配置较多的地角
螺栓和承受面积较大的基础环,则采用圆锥形裙座
支撑结构。
裙座由裙座体、基础环板、螺栓座及基础螺栓Array等结构组成。
裙座的上端与塔体的底封头焊接,下
端与基础环、筋板焊接,距地面一定高度处开有人
孔、出料孔等通道,基础环上筋板之间还组成螺栓
座结构。
裙座体常用Q235-A或16Mn材料。
裙座体
直径超过800mm时,一般开设人孔。
裙座体上方开
直径为50mm的排气孔,在底部开设排液孔,以便
随时排除液体。
座体和塔体的联接焊缝应和塔体本身的环焊封
保持一定距离。
如果封头是由数块钢板拼焊而成,
则应在裙座上相应部位开有缺口,以免联接焊缝和
封头焊缝相互交叉,见下图。
基础环板通常是一块环形板,基础环板上的螺栓孔开成圆缺口而不是圆形孔,如下图螺栓座
由筋板和压板构成。
地脚螺栓穿过基础环板与压板,便把裙座固定在地基上。
㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
塔器裙座兼作储液槽时地脚螺栓和圆底板的强度计算刘武昌;关永祥;刘鑫杰;高建明【摘要】对裙座兼作储液槽的化工塔器,提出了地脚螺栓和圆底板的强度计算方法---根据“维赫曼法”的概念,假设一个“虚拟基础环”。
在抵抗外力矩时,该“虚拟基础环”所应提供的拉应力,由地脚螺栓的拉力来提供,由此计算出地脚螺栓的直径。
对于圆底板,则按圆形截面计算出其抵抗外力矩所需提供的压应力,以此计算出圆底板的厚度。
%Proposeastrengthcalculation methodforanchorboltsandroundbaseplate when chemicaltowerskirt doublesasaliquid storagetant.The methodis asfollows:according to Weiherrmannmethodconcept,assumea virtualbasering",whenresistingexte rnaltorque,thetensilestressshouldbeofferedby virtualbasering"isofferedbyanchorboltsinf act,therebycalculatethediameteroftheanchorbolt.Tocalculatestrengthoftheroundbasep late,calculateit s compressivestressstrengthresistingtoexternaltorqueaccordingtosizeofthecir cularcross-section, therebycalculatethethicknessofroundbaseplate.【期刊名称】《化工设计通讯》【年(卷),期】2013(000)002【总页数】5页(P90-94)【关键词】维赫曼法;虚拟基础环;地脚螺栓;圆底板;扇形圆环;合力矩;弯矩;抗弯截面模量【作者】刘武昌;关永祥;刘鑫杰;高建明【作者单位】天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津 300130【正文语种】中文【中图分类】TQ053在化工塔器中,常有利用裙座兼作储液槽的情况。
塔设备强度计算-裙座基础环和螺栓计算㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外⼒传递到混凝⼟基础上,基础环的主要尺⼨为内、外直径(见下图),其⼤⼩⼀般可参考下式选⽤(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截⾯的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备⾃重及各种弯矩的作⽤,在背风侧外缘的压应⼒最⼤,其组合轴向压应⼒为:(4-69)式中:A b-基础环⾯积,mm2;W b-基础环的截⾯系数,mm3;(1)基础环板上⽆筋板基础环板上⽆筋板时,可将基础环板简化为⼀悬臂梁,在均布载荷σbmax的作⽤下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许⽤应⼒,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从⽽减薄基础环厚度。
此时,可将基础环板简化为⼀受均布载荷σbmax作⽤的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算⼒矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较⼤者,M x、M y按表4-35计算,N·mm/mm。
⽆论⽆筋板或有筋板的基础环厚度均不得⼩于16mm。
㈢地脚螺栓地脚螺栓的作⽤是使设备能够牢固地固定在基础底座上,以免其受外⼒作⽤时发⽣倾倒。
在风载荷、⾃重、地震载荷等作⽤下,塔设备的迎风侧可能出现零值甚⾄拉⼒作⽤,因⽽必须安装⾜够数量和⼀定直径的地脚螺栓。
塔设备在基础⾯上由螺栓承受的最⼤拉应⼒为:(4-72)式中:σB-地脚螺栓承受的最⼤拉应⼒,MPa。
当σB≤0时,塔设备可⾃⾝稳定,但为固定塔设备位置,应设置⼀定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹⼩径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹⼩径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,⼀般取4的倍数;对⼩直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许⽤应⼒,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
3.1 塔体及裙座的强度计算3.1.1 适用范围本章计算适用于高度大于10m,且高度与直径之比大于5的裙座自支承式钢制塔设备。
塔设备的设计压力可以是内压或外压。
3.1.2 引用标准JB 4710-92“钢制塔式容器”、GB150-98“钢制压力容器”。
3.1.3 设计计算条件3.1.3.1 塔设备的设计压力及设计温度设计压力系指在相应设计温度下用以确定塔设计壳体厚度的压力,其值不得小于塔设备顶部可能出现的最高压力。
设计温度指塔壳体的设计温度,系指塔设备在正常操作情况,并在相应设计压力下,设定的受压元件的金属温度,其值不得低于元件金属可能达到的最高金属温度。
裙座设计温度一般取建塔地区室外计算温度(冬季),见表3-1。
3.1.3.2 塔设备设计应考虑的载荷⑴设计压力;⑵液柱静压;⑶塔设备自重(包括内件和填料)以及正常操作条件下或试验状态下内容物的重力载荷;⑷附属设备及隔热材料、衬里、管道、扶梯及平台等重力载荷;⑸风载荷和地震载荷;必要时,应考虑以下载荷的影响:⑹连接管道和其它部件的影响;⑺由于热膨胀量不同而引起的作用力;⑻压力和温度变化的影响;⑼塔设备在运输或吊装时承受的作用力。
上述载荷中⑴~⑹部分载荷在本章计算中予以考虑。
⑺~⑼部分的载荷引起的机械计算应采用其它相应的计算方法。
3.1.3.3 塔设备壁厚⑴最小壁厚塔壳圆筒不包括腐蚀裕度的最小厚度,对于碳钢和低合金钢制塔设备为2‟的塔内径,且不小于4mm;不锈钢制塔设备为3mm;裙座最小壁厚为6mm。
⑵计算厚度指按GB150及JB4710相应公式计算所得的厚度,不包括壁厚附加量。
⑶壁厚附加量、设计厚度、名义厚度及有效厚度详见JB4710第3章中的定义。
3.1.3.4 材料及其许用应力⑴受压元件用钢的选用原则、钢材标准、热处理状态及许用应力等均按GB150中的相关规定。
表3-1 中国部分地区室外计算温度注:⒈本表摘自TJ19-75《工业企业采暖通风和空气调节设计规范》(试行),表中带*数字系《暖通空调气象资料集》(增编Ⅰ稿)中的数据。
㈡基础环板设计
1. 基础环板内、外径的确定
裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用
(4-68)
式中:
D ob-基础环的外径,mm;
D ib-基础环的内径,mm;
D is-裙座底截面的外径,
mm。
2. 基础环板厚度计算
在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:
(4-69)
式中:
A b-基础环面积,mm2;
W b-基础环的截面系数,mm3;
(1)基础环板上无筋板
基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:
(4-70)
式中:
δb-基础环厚度,mm;
[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板
基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:
(4-71)
式中:
δb-基础环厚度,mm;
M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按表4-35计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓
地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:
(4-72)
式中:
σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:
(4-73)
式中:
d1-地脚螺栓螺纹小径,mm;
C2-地脚螺栓腐蚀裕量,取3mm;
n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;
[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
圆整后地脚螺栓的公称直径不得小于M24。
㈣裙座体与塔体底封头的焊接结构
裙座体与塔体的焊接形式有下表所示的两种:
名称结构要求特点适用对象
对接焊
缝裙座与塔体直径相等,二者对
齐焊在一起
焊缝承受压应力作用,可承受较高
的轴向载荷
大型塔设备
搭接焊
缝
裙座内径稍大于塔体外径焊缝承受剪应力作用,受力条件差小型塔设备1.裙座体与塔体对接焊缝(如附图)J-J截面的拉应力校核
(4-74)
式中D it-裙座顶截面的内直径,mm。
2.裙座体与塔体搭接焊缝(如附图)J-J截面的剪应力校核
(4-75)
(4-76)
式中:
A W-焊缝抗剪断面面积,mm2;
D ot-裙座壳顶部截面的外直径,mm;
M max J-J-搭接焊缝处的最大弯矩,N·mm;
m max J-J-压力试验时塔设备的最大质量(不计裙座质量),Kg;
m0J-J-J-J截面以上塔设备的操作质量,Kg;
W W-焊缝抗剪截面系数,mm3;
[ ]W t-设计温度下焊接接头的许用应力,取两侧母材许用应力的小值,MPa。